You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi! Thank you for your grrreat project. I encounter error log liker below:
Error log
File "/opt/conda/lib/python3.7/site-packages/pytorch_lightning/trainer/data_loading.py", line 409, in reset_val_dataloader
self.num_val_batches, self.val_dataloaders = self._reset_eval_dataloader(model, 'val')
File "/opt/conda/lib/python3.7/site-packages/pytorch_lightning/trainer/data_loading.py", line 358, in _reset_eval_dataloader
self.auto_add_sampler(dl, shuffle=False, mode=self.state.stage) for dl in dataloaders if dl is not None
File "/opt/conda/lib/python3.7/site-packages/pytorch_lightning/trainer/data_loading.py", line 358, in <listcomp>
self.auto_add_sampler(dl, shuffle=False, mode=self.state.stage) for dl in dataloaders if dl is not None
File "/opt/conda/lib/python3.7/site-packages/pytorch_lightning/trainer/data_loading.py", line 142, in auto_add_sampler
dataloader = self.replace_sampler(dataloader, sampler, mode=mode)
File "/opt/conda/lib/python3.7/site-packages/pytorch_lightning/trainer/data_loading.py", line 213, in replace_sampler
dataloader = type(dataloader)(**dl_args)
TypeError: __init__() got an unexpected keyword argument 'pin_memory'
My code sample:
classAudioDataLoader(DataLoader):
""" Audio Data Loader """def__init__(
self,
dataset: torch.utils.data.Dataset,
num_workers: int,
batch_sampler: torch.utils.data.sampler.Sampler,
) ->None:
super(AudioDataLoader, self).__init__(dataset=dataset, num_workers=num_workers, batch_sampler=batch_sampler)
self.collate_fn=_collate_fnclassBucketingSampler(Sampler):
""" Samples batches assuming they are in order of size to batch similarly sized samples together. """def__init__(self, data_source, batch_size: int=32, drop_last: bool=False) ->None:
super(BucketingSampler, self).__init__(data_source)
self.batch_size=batch_sizeself.data_source=data_sourceids=list(range(0, len(data_source)))
self.bins= [ids[i:i+batch_size] foriinrange(0, len(ids), batch_size)]
self.drop_last=drop_lastdef__iter__(self):
foridsinself.bins:
np.random.shuffle(ids)
yieldidsdef__len__(self):
returnlen(self.bins)
defshuffle(self, epoch):
np.random.shuffle(self.bins)
classLightningCustomDataModule(pl.LightningDataModule):
deftrain_dataloader(self) ->DataLoader:
train_sampler=BucketingSampler(self.dataset['train'], batch_size=self.batch_size)
returnAudioDataLoader(
dataset=self.dataset['train'],
num_workers=self.num_workers,
batch_sampler=train_sampler,
)
reacted with thumbs up emoji reacted with thumbs down emoji reacted with laugh emoji reacted with hooray emoji reacted with confused emoji reacted with heart emoji reacted with rocket emoji reacted with eyes emoji
Uh oh!
There was an error while loading. Please reload this page.
-
Hi! Thank you for your grrreat project. I encounter error log liker below:
Please let me know if you have any doubts.
Beta Was this translation helpful? Give feedback.
All reactions