-
Notifications
You must be signed in to change notification settings - Fork 3.6k
Closed
Labels
Description
Bug description
I wrote a custom TQDMProgressBar class with some changes. When I run train.fit()
in JupyterLab the default progress bar is still used, however.
What version are you seeing the problem on?
v2.4
How to reproduce the bug
from lightning.pytorch.callbacks import TQDMProgressBar
class CustomProgBar(TQDMProgressBar):
def __init__(self, ncols: int = 100):
super().__init__(leave=True)
self.ncols = ncols
def init_sanity_tqdm(self):
bar = super().init_sanity_tqdm()
bar.ncols = self.ncols
return bar
def init_train_tqdm(self):
bar = super().init_train_tqdm()
bar.ncols = self.ncols
return bar
def init_validation_tqdm(self):
bar = super().init_validation_tqdm()
bar.ncols = self.ncols
return bar
trainer = L.Trainer(accelerator="cpu", max_epochs=5, callbacks=[CustomProgBar(),], log_every_n_steps=1)
# `model` and `data` are LightningModule and LightningDataModule instances, respectively.
# I can include the code for this if you think it's needed for debugging this.
trainer.fit(model, datamodule=data)
Error messages and logs
Printout without callbacks
argument passed:
| Name | Type | Params | Mode
------------------------------------------
0 | model | UNet | 3.0 M | eval
1 | loss | DiceLoss | 0 | eval
------------------------------------------
3.0 M Trainable params
0 Non-trainable params
3.0 M Total params
11.893 Total estimated model params size (MB)
0 Modules in train mode
112 Modules in eval mode
Sanity Checking: | | 0/? [00:00<…
Training: | | 0/? [00:00<…
Printout with just the CustomProgBar
callaback:
| Name | Type | Params | Mode
------------------------------------------
0 | model | UNet | 3.0 M | eval
1 | loss | DiceLoss | 0 | eval
------------------------------------------
3.0 M Trainable params
0 Non-trainable params
3.0 M Total params
11.893 Total estimated model params size (MB)
0 Modules in train mode
112 Modules in eval mode
Sanity Checking: | | 0/? [00:00<…
Training: | | 0/? [00:00<…
Environment
Current environment
#- PyTorch Lightning Version (e.g., 2.4.0): 2.4.0
#- PyTorch Version (e.g., 2.4): 2.4.0
#- Python version (e.g., 3.12): 3.12.3
#- OS (e.g., Linux): Windows 10
#- CUDA/cuDNN version: n/a
#- GPU models and configuration: none, CPU only
#- How you installed Lightning(`conda`, `pip`, source): pip
#- TQDM version: 4.66.6
More info
No response
cc @lantiga