-
Notifications
You must be signed in to change notification settings - Fork 3.6k
Description
Bug description
When using the LearningRateFinder() in a pl.Trainer callback, it says it sets a learning rate but it seemingly does not. When logging the learning rate with self.log("learning_rate", self.optimizers().param_groups[0]['lr']) or with LearningRateMonitor() the learning rate is still the one that is defined in the pl.LigthningModule not the one "set" with the LearningRateFinder()
pl.Lightning Version:2.5.2
torch version 2.7+cu12.8
using jupyter notebook
What version are you seeing the problem on?
v2.5
Reproduced in studio
No response
How to reproduce the bug
import os
import torch
from torch import nn
import torch.nn.functional as F
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
import pytorch_lightning as pl
import pytorch_lightning as pl
print(pl.__version__)
print(torch.__version__)
class LitAutoEncoder(pl.LightningModule):
def __init__(self):
super().__init__()
self.encoder = nn.Sequential(nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 3))
self.decoder = nn.Sequential(nn.Linear(3, 128), nn.ReLU(), nn.Linear(128, 28 * 28))
self.lr = 0.00001
def forward(self, x):
# in lightning, forward defines the prediction/inference actions
embedding = self.encoder(x)
return embedding
def training_step(self, batch, batch_idx):
# training_step defines the train loop. It is independent of forward
x, _ = batch
x = x.view(x.size(0), -1)
z = self.encoder(x)
x_hat = self.decoder(z)
loss = F.mse_loss(x_hat, x)
self.log("train_loss", loss)
self.log("learning_rate", self.optimizers().param_groups[0]['lr'])
return loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
return optimizer
from pytorch_lightning.callbacks import LearningRateFinder,LearningRateMonitor
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
train, val = random_split(dataset, [55000, 5000])
autoencoder = LitAutoEncoder()
trainer = pl.Trainer(callbacks=[LearningRateFinder(),LearningRateMonitor()],max_epochs=50)
trainer.fit(autoencoder, DataLoader(train), DataLoader(val))
Error messages and logs
epoch,learning_rate,lr-Adam,step,train_loss
,,1e-05,0,
,,1e-05,49,
0,9.999999747378752e-06,,49,0.1070743054151535
,,1e-05,99,
0,9.999999747378752e-06,,99,0.20870453119277954
,,1e-05,149,
0,9.999999747378752e-06,,149,0.11257157474756241
,,1e-05,199,
0,9.999999747378752e-06,,199,0.0726708397269249
,,1e-05,249,
0,9.999999747378752e-06,,249,0.1520737260580063
,,1e-05,299,
0,9.999999747378752e-06,,299,0.14219748973846436
,,1e-05,349,
0,9.999999747378752e-06,,349,0.08788570761680603
,,1e-05,399,
0,9.999999747378752e-06,,399,0.15874463319778442
,,1e-05,449,
0,9.999999747378752e-06,,449,0.14308691024780273
,,1e-05,499,
0,9.999999747378752e-06,,499,0.09943148493766785
,,1e-05,549,
0,9.999999747378752e-06,,549,0.0940447598695755
,,1e-05,599,
0,9.999999747378752e-06,,599,0.06538216769695282
,,1e-05,649,
0,9.999999747378752e-06,,649,0.09586357325315475

Environment
Current environment
#- PyTorch Lightning Version (e.g., 2.5.2):
#- PyTorch Version (e.g., 2.7):
#- Python version (e.g., 3.12.3):
#- OS (e.g., Linux):
#- CUDA/cuDNN version: 12.8
#- GPU models and configuration:
#- How you installed Lightning(`conda`, `pip`, source): pip/uv
More info
No response