-
Notifications
You must be signed in to change notification settings - Fork 3.6k
Open
Labels
bugSomething isn't workingSomething isn't workingdata handlingGeneric data-related topicGeneric data-related topicver: 2.5.x
Description
Bug description
More complicated datasets for real-world applications can demand more sophisticated data sampling, that are not just indices but perhaps a dictionary with additional info to query the dataset and return samples. When using the overfit_batches setting, which should still be useful in these settings to test an implementation, the dataloaders fail, because in the overfit_batches setting any custom sampler passed to the dataset loader is replaced with a standard SequentialLoader from pytorch.
An example of a domain library that extensively makes use of custom query logic for geospatial data and is heavily integrated into lightning is torchgeo.
What version are you seeing the problem on?
v2.5
Reproduced in studio
No response
How to reproduce the bug
"""Minimal reproducible example: Custom dict sampler with Lightning overfit_batches."""
import torch
from torch.utils.data import Dataset, DataLoader, Sampler
from lightning import LightningModule, LightningDataModule, Trainer
from collections.abc import Iterator
import numpy as np
# ============================================================================
# 1. SIMPLE DATASET (accepts dict queries)
# ============================================================================
class SimpleQueryDataset(Dataset):
"""Simple dataset that accepts dictionary queries."""
def __init__(self, n_items: int = 100):
"""Initialize with some dummy items."""
self.n_items = n_items
def __len__(self) -> int:
return self.n_items
def __getitem__(self, query: dict) -> dict:
"""Accept a dictionary query.
Args:
query: Dict with keys:
- 'index': int identifier
- 'param': some parameter value
Returns:
Dict with random dummy data
"""
# Validate input type
if not isinstance(query, dict):
raise TypeError(
f"Expected dict query, got {type(query)}. "
f"Content: {query}"
)
index = query["index"]
param = query["param"]
# Generate deterministic data based on query
n_points = 10 + (index % 20)
return {
"data": torch.randn(n_points, 3),
"target": torch.randn(n_points, 1),
"query_index": index,
"query_param": param,
}
# ============================================================================
# 2. SIMPLE QUERY SAMPLER (yields dict queries)
# ============================================================================
class SimpleQuerySampler(Sampler):
"""Simple sampler that yields dictionary queries."""
def __init__(self, n_queries: int = 50, shuffle: bool = True, seed: int = 42):
"""Generate some simple queries."""
self.n_queries = n_queries
self.shuffle = shuffle
self.seed = seed
self.rng = np.random.RandomState(seed)
# Pre-generate queries
self.queries = []
for i in range(n_queries):
self.queries.append({
"index": i,
"param": self.rng.uniform(0, 1),
})
def __iter__(self) -> Iterator[dict]:
"""Yield query dictionaries."""
indices = list(range(self.n_queries))
if self.shuffle:
self.rng.shuffle(indices)
for idx in indices:
yield self.queries[idx]
def __len__(self) -> int:
return self.n_queries
# ============================================================================
# 3. LIGHTNING DATAMODULE
# ============================================================================
class SimpleDataModule(LightningDataModule):
"""Lightning DataModule using dict-based query sampler."""
def __init__(self, batch_size: int = 4, num_workers: int = 0):
super().__init__()
self.batch_size = batch_size
self.num_workers = num_workers
# Create dataset
self.dataset = SimpleQueryDataset(n_items=100)
def train_dataloader(self) -> DataLoader:
sampler = SimpleQuerySampler(n_queries=50, shuffle=True, seed=42)
return DataLoader(
self.dataset,
batch_size=self.batch_size,
sampler=sampler,
num_workers=self.num_workers,
collate_fn=self._collate_fn,
)
def val_dataloader(self) -> DataLoader:
sampler = SimpleQuerySampler(n_queries=20, shuffle=False, seed=43)
return DataLoader(
self.dataset,
batch_size=self.batch_size,
sampler=sampler,
num_workers=self.num_workers,
collate_fn=self._collate_fn,
)
def _collate_fn(self, batch: list[dict]) -> dict:
"""Simple collate function."""
# Stack data across batch
data = torch.cat([sample["data"] for sample in batch], dim=0)
target = torch.cat([sample["target"] for sample in batch], dim=0)
return {
"data": data,
"target": target,
"batch_sizes": [sample["data"].shape[0] for sample in batch],
"query_indices": [sample["query_index"] for sample in batch],
}
# ============================================================================
# 4. SIMPLE MODEL
# ============================================================================
class SimpleModel(LightningModule):
"""Simple model for testing."""
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(3, 1)
def forward(self, x):
return self.linear(x)
def training_step(self, batch, batch_idx):
data = batch["data"]
target = batch["target"]
pred = self(data)
loss = torch.nn.functional.mse_loss(pred, target)
self.log("train_loss", loss)
print(f" Train batch {batch_idx}: query_indices={batch['query_indices']}")
return loss
def validation_step(self, batch, batch_idx):
data = batch["data"]
target = batch["target"]
pred = self(data)
loss = torch.nn.functional.mse_loss(pred, target)
self.log("val_loss", loss)
print(f" Val batch {batch_idx}: query_indices={batch['query_indices']}")
return loss
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=1e-3)
# ============================================================================
# TEST FUNCTIONS
# ============================================================================
def test_lightning_overfit():
"""Test: Lightning WITH overfit_batches (THE FAILING CASE)."""
datamodule = SimpleDataModule(batch_size=2, num_workers=0)
model = SimpleModel()
trainer = Trainer(
max_epochs=1,
accelerator="cpu",
enable_checkpointing=False,
logger=False,
enable_model_summary=False,
overfit_batches=2, # This causes the issue
)
trainer.fit(model, datamodule)
if __name__ == "__main__":
test_lightning_overfit()
Error messages and logs
# Error messages and logs here please
Environment
Current environment
#- PyTorch Lightning Version (e.g., 2.5.0):
#- PyTorch Version (e.g., 2.5):
#- Python version (e.g., 3.12):
#- OS (e.g., Linux):
#- CUDA/cuDNN version:
#- GPU models and configuration:
#- How you installed Lightning(`conda`, `pip`, source):
More info
No response
cc @tchaton
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't workingdata handlingGeneric data-related topicGeneric data-related topicver: 2.5.x