@@ -200,13 +200,13 @@ table(all.crit$cat.reg.clean, all.crit$redlistCategory)
200200
201201# How many species with CNCFlora assessments
202202table(all.crit $ status.reflora )
203- 100 * sum(table(all.crit $ status.reflora ))/ dim(all.crit )[1 ] # 19.7% with previous CNCFlora asses.; remained the same in both reviews
203+ 100 * sum(table(all.crit $ status.reflora ))/ dim(all.crit )[1 ] # 19.7% with previous CNCFlora asses.; remained the same in 1st review; 48% in 2nd review
204204
205205# How many species with national assessments
206206tmp <- all.crit [! is.na(all.crit $ status.reflora ) |
207207 ! is.na(all.crit $ category.ARG ) |
208208 ! is.na(all.crit $ category.PAY ),]
209- 100 * dim(tmp )[1 ]/ dim(all.crit )[1 ] # 20.3%; now 20.2%/ 2nd revision? the same
209+ 100 * dim(tmp )[1 ]/ dim(all.crit )[1 ] # 20.3%; now 20.2%/ 1st revision the same; 2nd revision 49%
210210
211211# # ENDEMIC SPECIES - proportions not show in the new version of the main text
212212# #How may species with IUCN assessments
@@ -227,13 +227,14 @@ tmp <- all.crit[is.na(all.crit$redlistCategory) &
227227 is.na(all.crit $ status.reflora ) &
228228 is.na(all.crit $ category.ARG ) &
229229 is.na(all.crit $ category.PAY ),]
230- dim(tmp )[1 ] # 2959 species (58.09%) without assessments; now 1923 assessments (38.8%); revised 1534 assessments (31%); 2nd revision 1532 assessments (31%)
231- 100 * dim(tmp )[1 ] / dim(all.crit )[1 ] # before 58.09%; now 38.8%; revised 31%; 2nd the same
232- dim(tmp [tmp $ endemic %in% " endemic" ,])[1 ] # before 1632 endemic species; now 1011; revised 768; 2n revision (the same)
233- 100 * dim(tmp [tmp $ endemic %in% " endemic" ,])[1 ] / dim(tmp )[1 ] # before 55.12% without assessments; now: 52.6%; revised 50.1%; 2n revision (the same)
230+ dim(tmp )[1 ] # 2959 species (58.09%) without assessments; now 1923 assessments (38.8%); revised 1534 assessments (31%); 2nd revision 1120 assessments (31%)
231+ 100 * dim(tmp )[1 ] / dim(all.crit )[1 ] # before 58.09%; now 38.8%; revised 31%; 2nd 23%
232+ dim(tmp [tmp $ endemic %in% " endemic" ,])[1 ] # before 1632 endemic species; now 1011; revised 768; 2n revision 456
233+ 100 * dim(tmp [tmp $ endemic %in% " endemic" ,])[1 ] / dim(tmp )[1 ] # before 55.12% without assessments; now: 52.6%; revised 50.1%; 2n revision 40.71%
234234
235235# #Species EX or EW
236236ex.spp <- all.crit $ species [all.crit $ redlistCategory %in% c(" EX" ," EW" )]
237+ ex.spp <- c(ex.spp , " Cathedra grandiflora" , " Rustia simpsonii" )
237238all.crit [all.crit $ species %in% ex.spp , cols ]
238239all.crit [all.crit $ species %in% ex.spp , c(" species" ," population" )]
239240oc.data <- readRDS(" data/threat_occ_data_final.rds" )
@@ -243,10 +244,16 @@ table(oc.data$coly, oc.data$tax)
243244table(oc.data $ coly > = 1998 , oc.data $ tax )
244245table(oc.data $ coly [is.na(oc.data $ typeStatus )] > = 1998 , oc.data $ tax [is.na(oc.data $ typeStatus )])
245246oc.data [oc.data $ tax %in% " Pouteria stenophylla" ,]
247+ oc.data [oc.data $ tax %in% " Cathedra grandiflora" ,]
248+ oc.data [oc.data $ tax %in% " Rustia simpsonii" ,]
249+
246250# Identifications confirmed by specialists
247251oc.data [oc.data $ tax.check2 %in% " TRUE" , c(" coly" ," tax" )]
248252oc.data [oc.data $ tax %in% c(" Pouteria stenophylla" ),
249253 c(" coly" ," tax" ," tax.check2" ," source" ," detBy" ," dety" ," vouchers" )]
254+ oc.data [oc.data $ tax %in% c(" Cathedra grandiflora" , " Rustia simpsonii" ),
255+ c(" coly" ," tax" ," tax.check2" ," source" ," detBy" ," dety" ," vouchers" )]
256+
250257
251258# paths = dir("C://Users//renato//Documents//raflima//Pos Doc//Manuscritos//Artigo AF checklist//data analysis//occurrence_data",full.names=TRUE)
252259# paths = paths[grepl('merged_outliers.csv',paths) & grepl('Sapotaceae',paths)]
@@ -267,7 +274,7 @@ red::rli(all.crit$cat.reg.clean[all.ids], boot = TRUE, runs = 50000) # now 0.48;
267274# endemics: presenting only this one in the main text
268275end.ids <- ! is.na(all.crit $ redlistCategory ) & all.crit $ endemic %in% " endemic"
269276red :: rli(all.crit $ redlistCategory [end.ids ], boot = TRUE , runs = 50000 ) # 0.736; revised 0.742; 2nd revision: the same
270- red :: rli(all.crit $ cat.reg.clean [end.ids ], boot = TRUE , runs = 50000 ) # 0.478; revised 0.484 [0.472-0.495]; 2nd revision: 0.484 [0.472 -0.495 ]
277+ red :: rli(all.crit $ cat.reg.clean [end.ids ], boot = TRUE , runs = 50000 ) # 0.478; revised 0.484 [0.472-0.495]; 2nd revision: 0.498 [0.487 -0.510 ]
271278
272279# # how many remained as LC in both assessemnts?
273280tmp <- table(all.crit $ cat.reg.clean [all.ids ], all.crit $ redlistCategory [all.ids ])
@@ -403,7 +410,7 @@ table(tmp0$redlistCriteria, tmp0$EOO < 20000)
403410table(tmp0 $ redlistCriteria , tmp0 $ AOO < = 2000 , useNA = " always" )
404411table(tmp0 $ redlistCriteria , tmp0 $ reduction_A12 < 30 , useNA = " always" )
405412
406- # # MORE FORMAL COMAPRISON (ASKED BY THE REVIEWERS )
413+ # # MORE FORMAL COMPARISON BETWEEN PREVIOUS (IUCN Red List) AND RE-ASSESSMENTS (HERE )
407414# confusion matrix (all assessments)
408415tmp <- all.crit [! is.na(all.crit $ redlistCategory ) &
409416 ! all.crit $ cat.reg.clean %in% c(" NA" , NA ), ]
0 commit comments