Skip to content

Getting triton compiler error while running the inference code mentioned in the README. #140

@sahiljoshi515

Description

@sahiljoshi515

triton.compiler.errors.CompilationError: at 114:14:
else:
if EVEN_HEADDIM:
k = tl.load(k_ptrs + start_n * stride_kn,
mask=(start_n + offs_n)[:, None] < seqlen_k,
other=0.0)
else:
k = tl.load(k_ptrs + start_n * stride_kn,
mask=((start_n + offs_n)[:, None] < seqlen_k) &
(offs_d[None, :] < headdim),
other=0.0)
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, k, trans_b=True)

Hi, I am not sure why I get this, I am simply running the code below:

`import torch
from transformers import AutoTokenizer, AutoModel
from transformers.models.bert.configuration_bert import BertConfig

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

config = BertConfig.from_pretrained("zhihan1996/DNABERT-2-117M")
tokenizer = AutoTokenizer.from_pretrained("zhihan1996/DNABERT-2-117M", trust_remote_code=True, config=config)
model = AutoModel.from_pretrained("zhihan1996/DNABERT-2-117M", trust_remote_code=True, config=config)
model.to(device)
model.eval()

dna = "ACGTAGCATCGGATCTATCTATCGACACTTGGTTATCGATCTACGAGCATCTCGTTAGC"
inputs = tokenizer(dna, return_tensors = 'pt')["input_ids"].to(device)
hidden_states = model(inputs)[0] # [1, sequence_length, 768]

embedding with mean pooling

embedding_mean = torch.mean(hidden_states[0], dim=0)
print(embedding_mean.shape) # expect to be 768

embedding with max pooling

embedding_max = torch.max(hidden_states[0], dim=0)[0]
print(embedding_max.shape) # expect to be 768
`

If anybody has solved this please let me know. Thank you for your awesome work!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions