-
Notifications
You must be signed in to change notification settings - Fork 91
Description
triton.compiler.errors.CompilationError: at 114:14:
else:
if EVEN_HEADDIM:
k = tl.load(k_ptrs + start_n * stride_kn,
mask=(start_n + offs_n)[:, None] < seqlen_k,
other=0.0)
else:
k = tl.load(k_ptrs + start_n * stride_kn,
mask=((start_n + offs_n)[:, None] < seqlen_k) &
(offs_d[None, :] < headdim),
other=0.0)
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, k, trans_b=True)
Hi, I am not sure why I get this, I am simply running the code below:
`import torch
from transformers import AutoTokenizer, AutoModel
from transformers.models.bert.configuration_bert import BertConfig
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config = BertConfig.from_pretrained("zhihan1996/DNABERT-2-117M")
tokenizer = AutoTokenizer.from_pretrained("zhihan1996/DNABERT-2-117M", trust_remote_code=True, config=config)
model = AutoModel.from_pretrained("zhihan1996/DNABERT-2-117M", trust_remote_code=True, config=config)
model.to(device)
model.eval()
dna = "ACGTAGCATCGGATCTATCTATCGACACTTGGTTATCGATCTACGAGCATCTCGTTAGC"
inputs = tokenizer(dna, return_tensors = 'pt')["input_ids"].to(device)
hidden_states = model(inputs)[0] # [1, sequence_length, 768]
embedding with mean pooling
embedding_mean = torch.mean(hidden_states[0], dim=0)
print(embedding_mean.shape) # expect to be 768
embedding with max pooling
embedding_max = torch.max(hidden_states[0], dim=0)[0]
print(embedding_max.shape) # expect to be 768
`
If anybody has solved this please let me know. Thank you for your awesome work!