|
1 | | -# DeepFixel |
2 | | -Deep learning-based identification of crossing fiber bundle elements |
| 1 | +# DeepFixel: Crossing white matter fiber identification through spherical convolutional neural networks |
| 2 | +[](https://arxiv.org/abs/2511.03893) |
3 | 3 |
|
4 | | -## Training and testing the model |
| 4 | +DeepFixel is a deep learning method for identification of crossing fiber bundle elements from diffusion MRI. |
| 5 | + |
| 6 | +> Adam M. Saunders, Lucas W. Remedios, Elyssa M. McMaster, Jongyeon Yoon, Gaurav Rudravaram, Adam Sadriddinov, Praitayini Kanakaraj, Bennett A, Landman, and Adam W. Anderson. DeepFixel: Crossing white matter fiber identification through spherical convolutional neural networks. SPIE Medical Imaging: Clinical and Biomedical Imaging, 2026. [https://arxiv.org/abs/2511.03893](https://arxiv.org/abs/2511.03893) |
| 7 | +
|
| 8 | +## Installation |
5 | 9 | You can set up an environment using [`uv`](https://github.com/astral-sh/uv) by running the following command: |
6 | 10 | ```bash |
7 | 11 | uv sync |
8 | 12 | ``` |
9 | 13 |
|
10 | | -To run the model, download the weights and testing dataset from the following link: [https://zenodo.org/records/16587458](https://zenodo.org/records/16587458). |
| 14 | +Alternatively, you can use Docker or Apptainer (see instructions below). |
11 | 15 |
|
| 16 | +## Usage |
| 17 | +To run the model, download the weights and testing dataset from the following link: [https://zenodo.org/records/16587458](https://zenodo.org/records/16587458). |
12 | 18 | - Unzip and copy the testing data to `./test_data` |
13 | 19 | - Put the weights in `./models/pretrained` |
14 | 20 |
|
15 | | -See `run_pretrained_deep_fixel.py` to test the pretrained model and `run_deep_fixel.py` to train and test a new model. |
16 | 21 |
|
17 | | -## Using the model |
18 | | -If you wish to apply the model to your own dataset, you can use `fissile.test_mesh_model()` as a basis for your code. You can also use `fissile.dataset.GeneratedMeshNIFTIDataset()` if your data is stored as spherical harmonic coefficients in a NIFTI file. |
| 22 | +To train the model: |
| 23 | +```bash |
| 24 | +python train_deep_fixel.py --config config/example_scnn.yaml |
| 25 | +``` |
| 26 | + |
| 27 | +To test the model on the provided testing dataset: |
| 28 | +```bash |
| 29 | +python test_deep_fixel.py --config config/example_scnn.yaml |
| 30 | +``` |
| 31 | + |
| 32 | + |
| 33 | +## Usage (Docker) |
| 34 | +To build the Docker image, clone the repository and run the following command in the root directory: |
| 35 | +```bash |
| 36 | +sudo docker build -t spherical_deep_fixel:v1.0.0 . |
| 37 | +``` |
| 38 | + |
| 39 | +Then run the Docker container with the following command (note you will likely need to bind in local directories with `-v`): |
| 40 | +```bash |
| 41 | +sudo docker run --rm -it --gpus all -v $(pwd):$(pwd) $spherical_deep_fixel:v1.0.0 python train_deep_fixel.py --config /path/to/config/example_scnn.yaml |
| 42 | +sudo docker run --rm -it --gpus all -v $(pwd):$(pwd) $spherical_deep_fixel:v1.0.0 python test_deep_fixel.py --config /path/to/config/example_scnn.yaml |
| 43 | +``` |
| 44 | + |
| 45 | +## Usage (Apptainer) |
| 46 | +A pre-built Apptainer image is available on Zenodo: |
| 47 | + |
| 48 | +```bash |
| 49 | +apptainer run -C -B $(pwd):$(pwd) --nv https://zenodo.org/records/16587458/files/spherical_deep_fixel_v1.0.0.sif python /app/train_deep_fixel.py --config /path/to/config/example_scnn.yaml |
| 50 | +apptainer run -C -B $(pwd):$(pwd) --nv https://zenodo.org/records/16587458/files/spherical_deep_fixel_v1.0.0.sif python /app/test_deep_fixel.py --config /path/to/config/example_scnn.yaml |
| 51 | +``` |
| 52 | + |
| 53 | +## Applying the model to your own data |
| 54 | +If you wish to apply the model to your own dataset, you can use `fissile.test_mesh_model()` as a basis for your code. You can also use `fissile.dataset.GeneratedMeshNIFTIDataset()` if your data is stored as spherical harmonic coefficients in a NIFTI file. |
| 55 | + |
| 56 | +## Citation |
| 57 | +If you use this code in your research, please cite the following paper: |
| 58 | + |
| 59 | +> Adam M. Saunders, Lucas W. Remedios, Elyssa M. McMaster, Jongyeon Yoon, Gaurav Rudravaram, Adam Sadriddinov, Praitayini Kanakaraj, Bennett A, Landman, and Adam W. Anderson. DeepFixel: Crossing white matter fiber identification through spherical convolutional neural networks. SPIE Medical Imaging: Clinical and Biomedical Imaging, 2026. [https://arxiv.org/abs/2511.03893](https://arxiv.org/abs/2511.03893) |
0 commit comments