Skip to content

Commit 6ef689d

Browse files
committed
[ci skip] rearrange opacity section of changelog
1 parent a199a1d commit 6ef689d

File tree

1 file changed

+43
-47
lines changed

1 file changed

+43
-47
lines changed

docs/source/changelog.rst

Lines changed: 43 additions & 47 deletions
Original file line numberDiff line numberDiff line change
@@ -21,10 +21,50 @@ New Features
2121
``max_allowed_nz`` is now ignored if the value is less than or equal to zero.
2222

2323
Kap
24-
~~~~~
24+
~~~
2525

26-
`Opacity interpolation`
27-
~~~~~~~~~~~~~~~~~~~~~~~
26+
**High Temperature Opacity Tables**
27+
28+
Type 1 Rosseland-mean opacity tables from The Los Alamos
29+
OPLIB database (`Colgan et al. 2016 <https://ui.adsabs.harvard.edu/abs/2016ApJ...817..116C/abstract>`_) are now available (Farag et al. 2024).
30+
These tables cover the region :math:`0.0 \leq X \leq 1-Z` and
31+
:math:`0.0\leq Z \leq 0.2`. Each set of OPLIB
32+
opacity tables contains 1194 individual tables, a
33+
dramatic increase in table density (in the X--Z plane) over the standard
34+
126 individual tables provided in previous opacity releases. These tables
35+
are available for four solar-scaled abundance mixtures constructed from photospheric estimates of the solar heavy element abundance:
36+
(`GS98, Grevesse & Sauval 1998 <https://ui.adsabs.harvard.edu/abs/1998SSRv...85..161G/abstract>`_),
37+
(`AGSS09(a09p), Asplund et al. 2009 <https://ui.adsabs.harvard.edu/abs/2009ARA%26A..47..481A/abstract>`_),
38+
(`AAG21, Asplund et al. 2021 <https://ui.adsabs.harvard.edu/abs/2021A%26A...653A.141A/abstract>`_),
39+
and (`MB22, Magg et al. 2022 <https://doi.org/10.1051/0004-6361/202142971>`_). Users can
40+
adopt this new set of tables by selecting one of the following
41+
options for ``kap_file_prefix``:
42+
43+
+ ``'oplib_gs98'``
44+
+ ``'oplib_agss09'``
45+
+ ``'oplib_aag21'``
46+
+ ``'oplib_mb22'``
47+
48+
See :ref:`kap/overview:Overview of kap module` and
49+
:ref:`kap/defaults:kap_file_prefix` for more details on the
50+
implementation of these tables. For further details on these new OPLIB opacity tables, a direct comparison with
51+
the Type 1 OPAL/OP tables as well as their effect on solar models can be found in
52+
in Farag et al. 2024.
53+
54+
55+
**Low Temperature Opacity Tables**
56+
57+
Low temperature Rosseland-mean opacity tables for both (`AAG21, Asplund et al. 2021 <https://ui.adsabs.harvard.edu/abs/2021A%26A...653A.141A/abstract>`_),
58+
and (`MB22, Magg et al. 2022 <https://doi.org/10.1051/0004-6361/202142971>`_)
59+
solar-scaled abundance mixtures have been privately communicated by Jason Ferguson. These opacity tables were
60+
computed following the approach of `Ferguson et al. (2005) <https://ui.adsabs.harvard.edu/abs/2005ApJ...623..585F/abstract>`_. Users can
61+
adopt this new set of tables by selecting one of the following
62+
options for :ref:`kap/defaults:kap_lowT_prefix`:
63+
64+
+ ``'lowT_fa05_mb22'``
65+
+ ``'lowT_fa05_aag21'``
66+
67+
**Opacity interpolation**
2868

2969
MESA interpolates across opacity tables in the :math:`X–Z` plane through the use of two consequtive 1D splines.
3070
Previous versions of MESA have offered the users the ability to choose linear or cubic interpolation for these splines,
@@ -88,50 +128,6 @@ opacity of a model, and can directly effect the structure of solar models, see A
88128
We encourage users to experiment with these different opacity interpolation routines and be mindful of the effect they can have on their stellar models.
89129

90130

91-
92-
93-
`High Temperature Opacity Tables`
94-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
95-
96-
Type 1 Rosseland-mean opacity tables from The Los Alamos
97-
OPLIB database (`Colgan et al. 2016 <https://ui.adsabs.harvard.edu/abs/2016ApJ...817..116C/abstract>`_) are now available (Farag et al. 2024).
98-
These tables cover the region :math:`0.0 \leq X \leq 1-Z` and
99-
:math:`0.0\leq Z \leq 0.2`. Each set of OPLIB
100-
opacity tables contains 1194 individual tables, a
101-
dramatic increase in table density (in the X--Z plane) over the standard
102-
126 individual tables provided in previous opacity releases. These tables
103-
are available for four solar-scaled abundance mixtures constructed from photospheric estimates of the solar heavy element abundance:
104-
(`GS98, Grevesse & Sauval 1998 <https://ui.adsabs.harvard.edu/abs/1998SSRv...85..161G/abstract>`_),
105-
(`AGSS09(a09p), Asplund et al. 2009 <https://ui.adsabs.harvard.edu/abs/2009ARA%26A..47..481A/abstract>`_),
106-
(`AAG21, Asplund et al. 2021 <https://ui.adsabs.harvard.edu/abs/2021A%26A...653A.141A/abstract>`_),
107-
and (`MB22, Magg et al. 2022 <https://doi.org/10.1051/0004-6361/202142971>`_). Users can
108-
adopt this new set of tables by selecting one of the following
109-
options for ``kap_file_prefix``:
110-
111-
+ ``'oplib_gs98'``
112-
+ ``'oplib_agss09'``
113-
+ ``'oplib_aag21'``
114-
+ ``'oplib_mb22'``
115-
116-
See :ref:`kap/overview:Overview of kap module` and
117-
:ref:`kap/defaults:kap_file_prefix` for more details on the
118-
implementation of these tables. For further details on these new OPLIB opacity tables, a direct comparison with
119-
the Type 1 OPAL/OP tables as well as their effect on solar models can be found in
120-
in Farag et al. 2024.
121-
122-
`Low Temperature Opacity Tables`
123-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
124-
125-
Low temperature Rosseland-mean opacity tables for both (`AAG21, Asplund et al. 2021 <https://ui.adsabs.harvard.edu/abs/2021A%26A...653A.141A/abstract>`_),
126-
and (`MB22, Magg et al. 2022 <https://doi.org/10.1051/0004-6361/202142971>`_)
127-
solar-scaled abundance mixtures have been privately communicated by Jason Ferguson. These opacity tables were
128-
computed following the approach of `Ferguson et al. (2005) <https://ui.adsabs.harvard.edu/abs/2005ApJ...623..585F/abstract>`_. Users can
129-
adopt this new set of tables by selecting one of the following
130-
options for :ref:`kap/defaults:kap_lowT_prefix`:
131-
132-
+ ``'lowT_fa05_mb22'``
133-
+ ``'lowT_fa05_aag21'``
134-
135131
Chem
136132
~~~~~
137133
New initial metal mass fractions ``initial_zfracs`` taken from photospheric estimates of the solar heavy element abundances in (AAG21, Asplund et al. 2021) and (MB22, Magg et al. 2022)

0 commit comments

Comments
 (0)