Skip to content

Commit 22e3756

Browse files
author
Mark Zhang
committed
Remove initial conditions in README's from previous commit
1 parent 831cbdc commit 22e3756

File tree

3 files changed

+4
-83
lines changed

3 files changed

+4
-83
lines changed

examples/2D_kelvin_helmholtz/README.md

Lines changed: 1 addition & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -1,36 +1,8 @@
11
# Kelvin-Helmholtz Instability (2D)
22

3-
Reference:
3+
Reference: See Example 4.8.
44
> A.S. Chamarthi, S.H. Frankel, A. Chintagunta, Implicit gradients based novel finite volume scheme for compressible single and multi-component flows, arXiv preprint arXiv:2106.01738 (2021).
55
6-
**Key Parameters**
7-
8-
* $\gamma = 5/3$
9-
10-
**Initial Conditions**
11-
12-
* **Spatial Domain:** $(x, y) \in [0, 1] \times [0, 1]$
13-
14-
$$
15-
p = 2.5, \rho(x, y) = \begin{cases}
16-
2, \text{if } 0.25 < y \leq 0.75\\
17-
1, \text{else, }\\
18-
\end{cases}
19-
$$
20-
21-
$$
22-
u(x, y) = \begin{cases}
23-
0.5, \text{if } 0.25 < y \leq 0.75\\
24-
-0.5, \text{else, }
25-
\end{cases}
26-
$$
27-
28-
$$
29-
v(x, y) = 0.1 \sin(4\pi x) \left[ \exp\left( -\frac{(y-0.75)^2}{2\sigma^2} \right) + \exp\left( -\frac{(y-0.25)^2}{2\sigma^2} \right) \right]
30-
$$
31-
32-
where $\sigma = \frac{0.05}{\sqrt{2}}$.
33-
346
### Initial State
357
<img src="figure0.png" height="MAX_HEIGHT"/>
368

examples/2D_richtmyer_meshkov/README.md

Lines changed: 2 additions & 36 deletions
Original file line numberDiff line numberDiff line change
@@ -1,41 +1,7 @@
11
# Richtmyer-Meshkov Instability (2D)
22

3-
Reference:
4-
> A.S. Chamarthi, S.H. Frankel, A. Chintagunta, Implicit gradients based novel finite volume scheme for compressible single and multi-component flows, arXiv preprint arXiv:2106.01738 (2021)., see Example 4.18
5-
6-
**Key Parameters**
7-
8-
* $\lambda = 1.0$
9-
* $Re = 1e4$
10-
11-
**Initial Conditions**
12-
13-
* **Spatial Domain:** $(x, y) \in [0, 16\lambda] \times [0, \lambda]$
14-
15-
The domain is divided into three regions: Post-shock Air, Pre-shock Air, and SF6. The shock position is given by $x_{shock}=0.7\lambda$. The interface position $x_{int}(y)$ is defined by the sinusoidal perturbation:
16-
17-
$$
18-
x_{int}(y) = \lambda \left[ 0.4 - 0.1 \sin\left( 2\pi \left( \frac{y}{\lambda} + 0.25 \right) \right) \right]
19-
$$
20-
21-
The initial state is given by:
22-
23-
$$
24-
(\rho, u, v, p, \gamma) =
25-
\begin{cases}
26-
(1.4112, 0.8787, 0, 1.6272/1.4, 1.4) & \text{if } x > x_{shock} \quad \text{(Post-shock Air)} \\
27-
(1.0, 1.24, 0, 1/1.4, 1.4) & \text{if } x_{int}(y) < x \leq x_{shock} \quad \text{(Pre-shock Air)} \\
28-
(5.04, 1.24, 0, 1/1.4, 1.093) & \text{if } x \leq x_{int}(y) \quad \text{(SF6)} \\
29-
\end{cases}
30-
$$
31-
32-
The initial perturbation is then smoothed by
33-
$$f_{sm} = \frac{1}{2}\left(1 + \text{erf}\left(\frac{\Delta D}{E_i\sqrt{\Delta x \Delta y}}\right)\right)$$
34-
35-
$$u = u_L(1 - f_{sm}) + u_Rf_{sm}$$
36-
37-
where $u$ is each primitive variable. $E_i$ is a thickness constant, and $\Delta D$ is the signed horizontal distance from $x_{int}(y)$. $u_L$ and $u_R$ are left and right interface conditions.
38-
3+
Reference: See Example 4.18.
4+
> A.S. Chamarthi, S.H. Frankel, A. Chintagunta, Implicit gradients based novel finite volume scheme for compressible single and multi-component flows, arXiv preprint arXiv:2106.01738 (2021).
395
406
### Initial State
417
<img src="figure0.png" height="MAX_HEIGHT"/>

examples/2D_viscous_shock_tube/README.md

Lines changed: 1 addition & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -1,25 +1,8 @@
11
# Viscous Shock Tube (2D)
22

3-
Reference:
3+
Reference: See Example 4.13.
44
> A.S. Chamarthi, S.H. Frankel, A. Chintagunta, Implicit gradients based novel finite volume scheme for compressible single and multi-component flows, arXiv preprint arXiv:2106.01738 (2021)., see Example 4.13
55
6-
**Key Parameters**
7-
8-
* $\gamma = 7/5$
9-
* $Re = 1000$
10-
11-
**Initial Conditions**
12-
13-
* **Spatial Domain:** $(x, y) \in [0, 1] \times [0, 0.5]$
14-
15-
$$
16-
(\rho, u, v, p) =
17-
\begin{cases}
18-
(120, 0, 0, \frac{120}{\gamma}) & \text{if } 0 < x < 0.5 \\
19-
(1.2, 0, 0, \frac{1.2}{\gamma}) & \text{if } 0.5 \leq x < 1
20-
\end{cases}
21-
$$
22-
236
### Initial State
247
<img src="figure0.png" height="MAX_HEIGHT"/>
258

0 commit comments

Comments
 (0)