|
1 | 1 | # Richtmyer-Meshkov Instability (2D) |
2 | 2 |
|
3 | | -Reference: |
4 | | -> A.S. Chamarthi, S.H. Frankel, A. Chintagunta, Implicit gradients based novel finite volume scheme for compressible single and multi-component flows, arXiv preprint arXiv:2106.01738 (2021)., see Example 4.18 |
5 | | -
|
6 | | -**Key Parameters** |
7 | | - |
8 | | -* $\lambda = 1.0$ |
9 | | -* $Re = 1e4$ |
10 | | - |
11 | | -**Initial Conditions** |
12 | | - |
13 | | -* **Spatial Domain:** $(x, y) \in [0, 16\lambda] \times [0, \lambda]$ |
14 | | - |
15 | | -The domain is divided into three regions: Post-shock Air, Pre-shock Air, and SF6. The shock position is given by $x_{shock}=0.7\lambda$. The interface position $x_{int}(y)$ is defined by the sinusoidal perturbation: |
16 | | - |
17 | | -$$ |
18 | | -x_{int}(y) = \lambda \left[ 0.4 - 0.1 \sin\left( 2\pi \left( \frac{y}{\lambda} + 0.25 \right) \right) \right] |
19 | | -$$ |
20 | | - |
21 | | -The initial state is given by: |
22 | | - |
23 | | -$$ |
24 | | -(\rho, u, v, p, \gamma) = |
25 | | -\begin{cases} |
26 | | - (1.4112, 0.8787, 0, 1.6272/1.4, 1.4) & \text{if } x > x_{shock} \quad \text{(Post-shock Air)} \\ |
27 | | - (1.0, 1.24, 0, 1/1.4, 1.4) & \text{if } x_{int}(y) < x \leq x_{shock} \quad \text{(Pre-shock Air)} \\ |
28 | | - (5.04, 1.24, 0, 1/1.4, 1.093) & \text{if } x \leq x_{int}(y) \quad \text{(SF6)} \\ |
29 | | -\end{cases} |
30 | | -$$ |
31 | | - |
32 | | -The initial perturbation is then smoothed by |
33 | | -$$f_{sm} = \frac{1}{2}\left(1 + \text{erf}\left(\frac{\Delta D}{E_i\sqrt{\Delta x \Delta y}}\right)\right)$$ |
34 | | - |
35 | | -$$u = u_L(1 - f_{sm}) + u_Rf_{sm}$$ |
36 | | - |
37 | | -where $u$ is each primitive variable. $E_i$ is a thickness constant, and $\Delta D$ is the signed horizontal distance from $x_{int}(y)$. $u_L$ and $u_R$ are left and right interface conditions. |
38 | | - |
| 3 | +Reference: See Example 4.18. |
| 4 | +> A.S. Chamarthi, S.H. Frankel, A. Chintagunta, Implicit gradients based novel finite volume scheme for compressible single and multi-component flows, arXiv preprint arXiv:2106.01738 (2021). |
39 | 5 |
|
40 | 6 | ### Initial State |
41 | 7 | <img src="figure0.png" height="MAX_HEIGHT"/> |
|
0 commit comments