Skip to content

Commit 6c7183a

Browse files
committed
fix masked variables
1 parent 2b8c796 commit 6c7183a

File tree

15 files changed

+484
-483
lines changed

15 files changed

+484
-483
lines changed

src/common/m_boundary_common.fpp

Lines changed: 102 additions & 102 deletions
Large diffs are not rendered by default.

src/common/m_finite_differences.fpp

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -69,17 +69,17 @@ contains
6969
!! @param q Number of cells in the s-coordinate direction
7070
!! @param s_cc Locations of the cell-centers in the s-coordinate direction
7171
!! @param fd_coeff_s Finite-diff. coefficients in the s-coordinate direction
72-
pure subroutine s_compute_finite_difference_coefficients(q, s_cc, fd_coeff_s, buff_size, &
72+
pure subroutine s_compute_finite_difference_coefficients(q, s_cc, fd_coeff_s, local_buff_size, &
7373
fd_number_in, fd_order_in, offset_s)
7474
7575
integer :: lB, lE !< loop bounds
7676
integer, intent(IN) :: q
77-
integer, intent(IN) :: buff_size, fd_number_in, fd_order_in
77+
integer, intent(IN) :: local_buff_size, fd_number_in, fd_order_in
7878
type(int_bounds_info), optional, intent(IN) :: offset_s
7979
real(wp), allocatable, dimension(:, :), intent(INOUT) :: fd_coeff_s
8080
8181
real(wp), &
82-
dimension(-buff_size:q + buff_size), &
82+
dimension(-local_buff_size:q + local_buff_size), &
8383
intent(IN) :: s_cc
8484
8585
integer :: i !< Generic loop iterator

src/common/m_helper.fpp

Lines changed: 69 additions & 69 deletions
Original file line numberDiff line numberDiff line change
@@ -79,22 +79,22 @@ contains
7979
real(wp), optional, intent(in) :: div
8080

8181
integer :: i, j
82-
integer :: m, n
82+
integer :: local_m, local_n
8383
real(wp) :: c
8484

85-
m = size(A, 1)
86-
n = size(A, 2)
85+
local_m = size(A, 1)
86+
local_n = size(A, 2)
8787

8888
if (present(div)) then
8989
c = div
9090
else
9191
c = 1._wp
9292
end if
9393

94-
print *, m, n
94+
print *, local_m, local_n
9595

96-
do i = 1, m
97-
do j = 1, n
96+
do i = 1, local_m
97+
do j = 1, local_n
9898
write (*, fmt="(F12.4)", advance="no") A(i, j)/c
9999
end do
100100
write (*, fmt="(A1)") " "
@@ -251,10 +251,10 @@ contains
251251
end subroutine s_int_to_str
252252

253253
!> Computes the Simpson weights for quadrature
254-
subroutine s_simpson(weight, R0)
254+
subroutine s_simpson(local_weight, local_R0)
255255

256-
real(wp), dimension(:), intent(inout) :: weight
257-
real(wp), dimension(:), intent(inout) :: R0
256+
real(wp), dimension(:), intent(inout) :: local_weight
257+
real(wp), dimension(:), intent(inout) :: local_R0
258258

259259
integer :: ir
260260
real(wp) :: R0mn, R0mx, dphi, tmp, sd
@@ -268,7 +268,7 @@ contains
268268
do ir = 1, nb
269269
phi(ir) = log(R0mn) &
270270
+ (ir - 1._wp)*log(R0mx/R0mn)/(nb - 1._wp)
271-
R0(ir) = exp(phi(ir))
271+
local_R0(ir) = exp(phi(ir))
272272
end do
273273
dphi = phi(2) - phi(1)
274274

@@ -277,15 +277,15 @@ contains
277277
! Gaussian
278278
tmp = exp(-0.5_wp*(phi(ir)/sd)**2)/sqrt(2._wp*pi)/sd
279279
if (mod(ir, 2) == 0) then
280-
weight(ir) = tmp*4._wp*dphi/3._wp
280+
local_weight(ir) = tmp*4._wp*dphi/3._wp
281281
else
282-
weight(ir) = tmp*2._wp*dphi/3._wp
282+
local_weight(ir) = tmp*2._wp*dphi/3._wp
283283
end if
284284
end do
285285
tmp = exp(-0.5_wp*(phi(1)/sd)**2)/sqrt(2._wp*pi)/sd
286-
weight(1) = tmp*dphi/3._wp
286+
local_weight(1) = tmp*dphi/3._wp
287287
tmp = exp(-0.5_wp*(phi(nb)/sd)**2)/sqrt(2._wp*pi)/sd
288-
weight(nb) = tmp*dphi/3._wp
288+
local_weight(nb) = tmp*dphi/3._wp
289289
end subroutine s_simpson
290290
291291
!> This procedure computes the cross product of two vectors.
@@ -318,40 +318,40 @@ contains
318318
!> This procedure creates a transformation matrix.
319319
!! @param p Parameters for the transformation.
320320
!! @return Transformation matrix.
321-
pure function f_create_transform_matrix(p, center) result(out_matrix)
321+
pure function f_create_transform_matrix(param, center) result(out_matrix)
322322
323-
type(ic_model_parameters), intent(in) :: p
323+
type(ic_model_parameters), intent(in) :: param
324324
real(wp), dimension(1:3), optional, intent(in) :: center
325325
real(wp), dimension(1:4, 1:4) :: sc, rz, rx, ry, tr, t_back, t_to_origin, out_matrix
326326
327327
sc = transpose(reshape([ &
328-
p%scale(1), 0._wp, 0._wp, 0._wp, &
329-
0._wp, p%scale(2), 0._wp, 0._wp, &
330-
0._wp, 0._wp, p%scale(3), 0._wp, &
328+
param%scale(1), 0._wp, 0._wp, 0._wp, &
329+
0._wp, param%scale(2), 0._wp, 0._wp, &
330+
0._wp, 0._wp, param%scale(3), 0._wp, &
331331
0._wp, 0._wp, 0._wp, 1._wp], shape(sc)))
332332
333333
rz = transpose(reshape([ &
334-
cos(p%rotate(3)), -sin(p%rotate(3)), 0._wp, 0._wp, &
335-
sin(p%rotate(3)), cos(p%rotate(3)), 0._wp, 0._wp, &
334+
cos(param%rotate(3)), -sin(param%rotate(3)), 0._wp, 0._wp, &
335+
sin(param%rotate(3)), cos(param%rotate(3)), 0._wp, 0._wp, &
336336
0._wp, 0._wp, 1._wp, 0._wp, &
337337
0._wp, 0._wp, 0._wp, 1._wp], shape(rz)))
338338
339339
rx = transpose(reshape([ &
340340
1._wp, 0._wp, 0._wp, 0._wp, &
341-
0._wp, cos(p%rotate(1)), -sin(p%rotate(1)), 0._wp, &
342-
0._wp, sin(p%rotate(1)), cos(p%rotate(1)), 0._wp, &
341+
0._wp, cos(param%rotate(1)), -sin(param%rotate(1)), 0._wp, &
342+
0._wp, sin(param%rotate(1)), cos(param%rotate(1)), 0._wp, &
343343
0._wp, 0._wp, 0._wp, 1._wp], shape(rx)))
344344
345345
ry = transpose(reshape([ &
346-
cos(p%rotate(2)), 0._wp, sin(p%rotate(2)), 0._wp, &
346+
cos(param%rotate(2)), 0._wp, sin(param%rotate(2)), 0._wp, &
347347
0._wp, 1._wp, 0._wp, 0._wp, &
348-
-sin(p%rotate(2)), 0._wp, cos(p%rotate(2)), 0._wp, &
348+
-sin(param%rotate(2)), 0._wp, cos(param%rotate(2)), 0._wp, &
349349
0._wp, 0._wp, 0._wp, 1._wp], shape(ry)))
350350
351351
tr = transpose(reshape([ &
352-
1._wp, 0._wp, 0._wp, p%translate(1), &
353-
0._wp, 1._wp, 0._wp, p%translate(2), &
354-
0._wp, 0._wp, 1._wp, p%translate(3), &
352+
1._wp, 0._wp, 0._wp, param%translate(1), &
353+
0._wp, 1._wp, 0._wp, param%translate(2), &
354+
0._wp, 0._wp, 1._wp, param%translate(3), &
355355
0._wp, 0._wp, 0._wp, 1._wp], shape(tr)))
356356
357357
if (present(center)) then
@@ -484,18 +484,18 @@ contains
484484
!! @param x is the input value
485485
!! @param l is the degree
486486
!! @return P is the unassociated legendre polynomial evaluated at x
487-
pure recursive function unassociated_legendre(x, l) result(P)
487+
pure recursive function unassociated_legendre(x, l) result(result_P)
488488
489489
integer, intent(in) :: l
490490
real(wp), intent(in) :: x
491-
real(wp) :: P
491+
real(wp) :: result_P
492492
493493
if (l == 0) then
494-
P = 1._wp
494+
result_P = 1._wp
495495
else if (l == 1) then
496-
P = x
496+
result_P = x
497497
else
498-
P = ((2*l - 1)*x*unassociated_legendre(x, l - 1) - (l - 1)*unassociated_legendre(x, l - 2))/l
498+
result_P = ((2*l - 1)*x*unassociated_legendre(x, l - 1) - (l - 1)*unassociated_legendre(x, l - 2))/l
499499
end if
500500
501501
end function unassociated_legendre
@@ -504,20 +504,20 @@ contains
504504
!! @param x is the x coordinate
505505
!! @param phi is the phi coordinate
506506
!! @param l is the degree
507-
!! @param m is the order
507+
!! @param m_order is the order
508508
!! @return Y is the spherical harmonic function evaluated at x and phi
509-
pure recursive function spherical_harmonic_func(x, phi, l, m) result(Y)
509+
pure recursive function spherical_harmonic_func(x, phi, l, m_order) result(Y)
510510
511-
integer, intent(in) :: l, m
511+
integer, intent(in) :: l, m_order
512512
real(wp), intent(in) :: x, phi
513-
real(wp) :: Y, prefactor, pi
514-
515-
pi = acos(-1._wp)
516-
prefactor = sqrt((2*l + 1)/(4*pi)*factorial(l - m)/factorial(l + m));
517-
if (m == 0) then
518-
Y = prefactor*associated_legendre(x, l, m);
519-
elseif (m > 0) then
520-
Y = (-1._wp)**m*sqrt(2._wp)*prefactor*associated_legendre(x, l, m)*cos(m*phi);
513+
real(wp) :: Y, prefactor, local_pi
514+
515+
local_pi = acos(-1._wp)
516+
prefactor = sqrt((2*l + 1)/(4*local_pi)*factorial(l - m_order)/factorial(l + m_order));
517+
if (m_order == 0) then
518+
Y = prefactor*associated_legendre(x, l, m_order);
519+
elseif (m_order > 0) then
520+
Y = (-1._wp)**m_order*sqrt(2._wp)*prefactor*associated_legendre(x, l, m_order)*cos(m_order*phi);
521521
end if
522522
523523
end function spherical_harmonic_func
@@ -528,54 +528,54 @@ contains
528528
!! @param l is the degree
529529
!! @param m is the order
530530
!! @return P is the associated legendre polynomial evaluated at x
531-
pure recursive function associated_legendre(x, l, m) result(P)
531+
pure recursive function associated_legendre(x, l, m_order) result(result_P)
532532
533-
integer, intent(in) :: l, m
533+
integer, intent(in) :: l, m_order
534534
real(wp), intent(in) :: x
535-
real(wp) :: P
536-
537-
if (m <= 0 .and. l <= 0) then
538-
P = 1;
539-
elseif (l == 1 .and. m <= 0) then
540-
P = x;
541-
elseif (l == 1 .and. m == 1) then
542-
P = -(1 - x**2)**(1._wp/2._wp);
543-
elseif (m == l) then
544-
P = (-1)**l*double_factorial(2*l - 1)*(1 - x**2)**(l/2);
545-
elseif (m == l - 1) then
546-
P = x*(2*l - 1)*associated_legendre(x, l - 1, l - 1);
535+
real(wp) :: result_P
536+
537+
if (m_order <= 0 .and. l <= 0) then
538+
result_P = 1;
539+
elseif (l == 1 .and. m_order <= 0) then
540+
result_P = x;
541+
elseif (l == 1 .and. m_order == 1) then
542+
result_P = -(1 - x**2)**(1._wp/2._wp);
543+
elseif (m_order == l) then
544+
result_P = (-1)**l*double_factorial(2*l - 1)*(1 - x**2)**(l/2);
545+
elseif (m_order == l - 1) then
546+
result_P = x*(2*l - 1)*associated_legendre(x, l - 1, l - 1);
547547
else
548-
P = ((2*l - 1)*x*associated_legendre(x, l - 1, m) - (l + m - 1)*associated_legendre(x, l - 2, m))/(l - m);
548+
result_P = ((2*l - 1)*x*associated_legendre(x, l - 1, m_order) - (l + m_order - 1)*associated_legendre(x, l - 2, m_order))/(l - m_order);
549549
end if
550550
551551
end function associated_legendre
552552
553553
!> This function calculates the double factorial value of an integer
554-
!! @param n is the input integer
554+
!! @param n_in is the input integer
555555
!! @return R is the double factorial value of n
556-
pure elemental function double_factorial(n) result(R)
556+
pure elemental function double_factorial(n_in) result(R_result)
557557
558-
integer, intent(in) :: n
558+
integer, intent(in) :: n_in
559559
integer, parameter :: int64_kind = selected_int_kind(18) ! 18 bytes for 64-bit integer
560-
integer(kind=int64_kind) :: R
560+
integer(kind=int64_kind) :: R_result
561561
integer :: i
562562
563-
R = product((/(i, i=n, 1, -2)/))
563+
R_result = product((/(i, i=n_in, 1, -2)/))
564564
565565
end function double_factorial
566566
567567
!> The following function calculates the factorial value of an integer
568-
!! @param n is the input integer
568+
!! @param n_in is the input integer
569569
!! @return R is the factorial value of n
570-
pure elemental function factorial(n) result(R)
570+
pure elemental function factorial(n_in) result(R_result)
571571
572-
integer, intent(in) :: n
572+
integer, intent(in) :: n_in
573573
integer, parameter :: int64_kind = selected_int_kind(18) ! 18 bytes for 64-bit integer
574-
integer(kind=int64_kind) :: R
574+
integer(kind=int64_kind) :: R_result
575575
576576
integer :: i
577577
578-
R = product((/(i, i=n, 1, -1)/))
578+
R_result = product((/(i, i=n_in, 1, -1)/))
579579
580580
end function factorial
581581

0 commit comments

Comments
 (0)