You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -438,6 +439,8 @@ Practically, `weno_eps` $<10^{-6}$ is used.
438
439
-`riemann_solver` specifies the choice of the Riemann solver that is used in simulation by an integer from 1 through 3.
439
440
`riemann_solver = 1`, `2`, and `3` correspond to HLL, HLLC, and Exact Riemann solver, respectively ([Toro, 2013](references.md#Toro13)).
440
441
442
+
-`low_Mach` specifies the choice of the low Mach number correction scheme for the HLLC Riemann solver. `low_Mach = 0` is default value and does not apply any correction scheme. `low_Mach = 1` and `2` apply the anti-dissipation pressure correction method ([Chen et al., 2022](references.md#Chen22)) and the improved velocity reconstruction method ([Thornber et al., 2008](reference.md#Thornber08)). This feature requires `riemann_solver = 2` and `model_eqns = 2`.
443
+
441
444
-`avg_state` specifies the choice of the method to compute averaged variables at the cell-boundaries from the left and the right states in the Riemann solver by an integer of 1 or 2.
442
445
`avg_state = 1` and `2` correspond to Roe- and arithmetic averages, respectively.
Copy file name to clipboardExpand all lines: docs/documentation/references.md
+4Lines changed: 4 additions & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -10,6 +10,8 @@
10
10
11
11
- <aid="Bryngelson19">Bryngelson, S. H., Schmidmayer, K., Coralic, V., Meng, J. C., Maeda, K., and Colonius, T. (2019). Mfc: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver. arXiv preprint arXiv:1907.10512.</a>
12
12
13
+
- <aid="Chen22">Chen, S. S., Li, J. P., Li, Z., Yuan, W., & Gao, Z. H. (2022). Anti-dissipation pressure correction under low Mach numbers for Godunov-type schemes. Journal of Computational Physics, 456, 111027. </a>
14
+
13
15
- <aid="Childs12">Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller, M., Harrison, C., Weber, G. H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel, E. W., Camp, D., R¨ubel, O., Durant, M., Favre, J. M., and Navr´atil, P. (2012). VisIt: An End-User Tool For Visualizing and Analyzing Very Large Data. In High Performance Visualization–Enabling Extreme-Scale Scientific Insight, pages 357–372.</a>
14
16
15
17
- <aid="Coralic15">Coralic, V. (2015). Simulation of shock-induced bubble collapse with application to vascular injury in shockwave lithotripsy. PhD thesis, California Institute of Technology.</a>
@@ -42,6 +44,8 @@
42
44
43
45
- <aid="Thompson90">Thompson, K. W. (1990). Time-dependent boundary conditions for hyperbolic systems, ii. Journal of computational physics, 89(2):439–461.</a>
44
46
47
+
- <aid="Thornber08">Thornber, B., Mosedale, A., Drikakis, D., Youngs, D., & Williams, R. J. (2008). An improved reconstruction method for compressible flows with low Mach number features. Journal of computational Physics, 227(10), 4873-4894.</a>
48
+
45
49
- <aid="Titarev04">Titarev, V. A. and Toro, E. F. (2004). Finite-volume weno schemes for three-dimensional conservation laws. Journal of Computational Physics, 201(1):238–260.</a>
46
50
47
51
- <aid="Tiwari13">Tiwari, A., Freund, J. B., and Pantano, C. (2013). A diffuse interface model with immiscibility preservation. Journal of computational physics, 252:290–309.</a>
0 commit comments