|
| 1 | +!> |
| 2 | +!! @file m_pressure_relaxation.fpp |
| 3 | +!! @brief Contains module m_pressure_relaxation |
| 4 | + |
| 5 | +#:include 'case.fpp' |
| 6 | +#:include 'macros.fpp' |
| 7 | + |
| 8 | +!> @brief The module contains the subroutines used to perform pressure relaxation |
| 9 | +!! for multi-component flows using the 6-equation model. This includes |
| 10 | +!! volume fraction correction, Newton-Raphson pressure equilibration, and |
| 11 | +!! internal energy correction to maintain thermodynamic consistency. |
| 12 | +module m_pressure_relaxation |
| 13 | + |
| 14 | + use m_derived_types !< Definitions of the derived types |
| 15 | + use m_global_parameters !< Definitions of the global parameters |
| 16 | + |
| 17 | + implicit none |
| 18 | + |
| 19 | + private; public :: s_pressure_relaxation_procedure, & |
| 20 | + s_initialize_pressure_relaxation_module, & |
| 21 | + s_finalize_pressure_relaxation_module |
| 22 | + |
| 23 | + real(wp), allocatable, dimension(:) :: gamma_min, pres_inf |
| 24 | + !$acc declare create(gamma_min, pres_inf) |
| 25 | + |
| 26 | + real(wp), allocatable, dimension(:, :) :: Res |
| 27 | + !$acc declare create(Res) |
| 28 | + |
| 29 | +contains |
| 30 | + |
| 31 | + !> Initialize the pressure relaxation module |
| 32 | + impure subroutine s_initialize_pressure_relaxation_module |
| 33 | + |
| 34 | + integer :: i, j |
| 35 | + |
| 36 | + @:ALLOCATE(gamma_min(1:num_fluids), pres_inf(1:num_fluids)) |
| 37 | + |
| 38 | + do i = 1, num_fluids |
| 39 | + gamma_min(i) = 1._wp/fluid_pp(i)%gamma + 1._wp |
| 40 | + pres_inf(i) = fluid_pp(i)%pi_inf/(1._wp + fluid_pp(i)%gamma) |
| 41 | + end do |
| 42 | + !$acc update device(gamma_min, pres_inf) |
| 43 | + |
| 44 | + if (viscous) then |
| 45 | + @:ALLOCATE(Res(1:2, 1:maxval(Re_size))) |
| 46 | + do i = 1, 2 |
| 47 | + do j = 1, Re_size(i) |
| 48 | + Res(i, j) = fluid_pp(Re_idx(i, j))%Re(i) |
| 49 | + end do |
| 50 | + end do |
| 51 | + !$acc update device(Res, Re_idx, Re_size) |
| 52 | + end if |
| 53 | + |
| 54 | + end subroutine s_initialize_pressure_relaxation_module |
| 55 | + |
| 56 | + !> Finalize the pressure relaxation module |
| 57 | + impure subroutine s_finalize_pressure_relaxation_module |
| 58 | + |
| 59 | + @:DEALLOCATE(gamma_min, pres_inf) |
| 60 | + if (viscous) then |
| 61 | + @:DEALLOCATE(Res) |
| 62 | + end if |
| 63 | + |
| 64 | + end subroutine s_finalize_pressure_relaxation_module |
| 65 | + |
| 66 | + !> The main pressure relaxation procedure |
| 67 | + !! @param q_cons_vf Cell-average conservative variables |
| 68 | + pure subroutine s_pressure_relaxation_procedure(q_cons_vf) |
| 69 | + |
| 70 | + type(scalar_field), dimension(sys_size), intent(inout) :: q_cons_vf |
| 71 | + integer :: j, k, l |
| 72 | + |
| 73 | + !$acc parallel loop collapse(3) gang vector default(present) |
| 74 | + do l = 0, p |
| 75 | + do k = 0, n |
| 76 | + do j = 0, m |
| 77 | + call s_relax_cell_pressure(q_cons_vf, j, k, l) |
| 78 | + end do |
| 79 | + end do |
| 80 | + end do |
| 81 | + |
| 82 | + end subroutine s_pressure_relaxation_procedure |
| 83 | + |
| 84 | + !> Process pressure relaxation for a single cell |
| 85 | + pure subroutine s_relax_cell_pressure(q_cons_vf, j, k, l) |
| 86 | + !$acc routine seq |
| 87 | + |
| 88 | + type(scalar_field), dimension(sys_size), intent(inout) :: q_cons_vf |
| 89 | + integer, intent(in) :: j, k, l |
| 90 | + |
| 91 | + ! Volume fraction correction |
| 92 | + if (mpp_lim) call s_correct_volume_fractions(q_cons_vf, j, k, l) |
| 93 | + |
| 94 | + ! Pressure equilibration |
| 95 | + if (s_needs_pressure_relaxation(q_cons_vf, j, k, l)) then |
| 96 | + call s_equilibrate_pressure(q_cons_vf, j, k, l) |
| 97 | + end if |
| 98 | + |
| 99 | + ! Internal energy correction |
| 100 | + call s_correct_internal_energies(q_cons_vf, j, k, l) |
| 101 | + |
| 102 | + end subroutine s_relax_cell_pressure |
| 103 | + |
| 104 | + !> Check if pressure relaxation is needed for this cell |
| 105 | + pure logical function s_needs_pressure_relaxation(q_cons_vf, j, k, l) |
| 106 | + !$acc routine seq |
| 107 | + |
| 108 | + type(scalar_field), dimension(sys_size), intent(in) :: q_cons_vf |
| 109 | + integer, intent(in) :: j, k, l |
| 110 | + integer :: i |
| 111 | + |
| 112 | + s_needs_pressure_relaxation = .true. |
| 113 | + !$acc loop seq |
| 114 | + do i = 1, num_fluids |
| 115 | + if (q_cons_vf(i + advxb - 1)%sf(j, k, l) > (1._wp - sgm_eps)) then |
| 116 | + s_needs_pressure_relaxation = .false. |
| 117 | + end if |
| 118 | + end do |
| 119 | + |
| 120 | + end function s_needs_pressure_relaxation |
| 121 | + |
| 122 | + !> Correct volume fractions to physical bounds |
| 123 | + pure subroutine s_correct_volume_fractions(q_cons_vf, j, k, l) |
| 124 | + !$acc routine seq |
| 125 | + |
| 126 | + type(scalar_field), dimension(sys_size), intent(inout) :: q_cons_vf |
| 127 | + integer, intent(in) :: j, k, l |
| 128 | + real(wp) :: sum_alpha |
| 129 | + integer :: i |
| 130 | + |
| 131 | + sum_alpha = 0._wp |
| 132 | + !$acc loop seq |
| 133 | + do i = 1, num_fluids |
| 134 | + if ((q_cons_vf(i + contxb - 1)%sf(j, k, l) < 0._wp) .or. & |
| 135 | + (q_cons_vf(i + advxb - 1)%sf(j, k, l) < 0._wp)) then |
| 136 | + q_cons_vf(i + contxb - 1)%sf(j, k, l) = 0._wp |
| 137 | + q_cons_vf(i + advxb - 1)%sf(j, k, l) = 0._wp |
| 138 | + q_cons_vf(i + intxb - 1)%sf(j, k, l) = 0._wp |
| 139 | + end if |
| 140 | + if (q_cons_vf(i + advxb - 1)%sf(j, k, l) > 1._wp) & |
| 141 | + q_cons_vf(i + advxb - 1)%sf(j, k, l) = 1._wp |
| 142 | + sum_alpha = sum_alpha + q_cons_vf(i + advxb - 1)%sf(j, k, l) |
| 143 | + end do |
| 144 | + |
| 145 | + !$acc loop seq |
| 146 | + do i = 1, num_fluids |
| 147 | + q_cons_vf(i + advxb - 1)%sf(j, k, l) = q_cons_vf(i + advxb - 1)%sf(j, k, l)/sum_alpha |
| 148 | + end do |
| 149 | + |
| 150 | + end subroutine s_correct_volume_fractions |
| 151 | + |
| 152 | + !> Main pressure equilibration using Newton-Raphson |
| 153 | + pure subroutine s_equilibrate_pressure(q_cons_vf, j, k, l) |
| 154 | + !$acc routine seq |
| 155 | + |
| 156 | + type(scalar_field), dimension(sys_size), intent(inout) :: q_cons_vf |
| 157 | + integer, intent(in) :: j, k, l |
| 158 | + |
| 159 | + real(wp) :: pres_relax, f_pres, df_pres |
| 160 | + real(wp), dimension(num_fluids) :: pres_K_init, rho_K_s |
| 161 | + integer, parameter :: MAX_ITER = 50 |
| 162 | + real(wp), parameter :: TOLERANCE = 1e-10_wp |
| 163 | + integer :: iter, i |
| 164 | + |
| 165 | + ! Initialize pressures |
| 166 | + pres_relax = 0._wp |
| 167 | + !$acc loop seq |
| 168 | + do i = 1, num_fluids |
| 169 | + if (q_cons_vf(i + advxb - 1)%sf(j, k, l) > sgm_eps) then |
| 170 | + pres_K_init(i) = (q_cons_vf(i + intxb - 1)%sf(j, k, l)/ & |
| 171 | + q_cons_vf(i + advxb - 1)%sf(j, k, l) - pi_infs(i))/gammas(i) |
| 172 | + if (pres_K_init(i) <= -(1._wp - 1e-8_wp)*pres_inf(i) + 1e-8_wp) & |
| 173 | + pres_K_init(i) = -(1._wp - 1e-8_wp)*pres_inf(i) + 1e-8_wp |
| 174 | + else |
| 175 | + pres_K_init(i) = 0._wp |
| 176 | + end if |
| 177 | + pres_relax = pres_relax + q_cons_vf(i + advxb - 1)%sf(j, k, l)*pres_K_init(i) |
| 178 | + end do |
| 179 | + |
| 180 | + ! Newton-Raphson iteration |
| 181 | + f_pres = 1e-9_wp |
| 182 | + df_pres = 1e9_wp |
| 183 | + !$acc loop seq |
| 184 | + do iter = 0, MAX_ITER - 1 |
| 185 | + if (abs(f_pres) > TOLERANCE) then |
| 186 | + pres_relax = pres_relax - f_pres/df_pres |
| 187 | + |
| 188 | + ! Enforce pressure bounds |
| 189 | + do i = 1, num_fluids |
| 190 | + if (pres_relax <= -(1._wp - 1e-8_wp)*pres_inf(i) + 1e-8_wp) & |
| 191 | + pres_relax = -(1._wp - 1e-8_wp)*pres_inf(i) + 1._wp |
| 192 | + end do |
| 193 | + |
| 194 | + ! Newton-Raphson step |
| 195 | + f_pres = -1._wp |
| 196 | + df_pres = 0._wp |
| 197 | + !$acc loop seq |
| 198 | + do i = 1, num_fluids |
| 199 | + if (q_cons_vf(i + advxb - 1)%sf(j, k, l) > sgm_eps) then |
| 200 | + rho_K_s(i) = q_cons_vf(i + contxb - 1)%sf(j, k, l)/ & |
| 201 | + max(q_cons_vf(i + advxb - 1)%sf(j, k, l), sgm_eps) & |
| 202 | + *((pres_relax + pres_inf(i))/(pres_K_init(i) + & |
| 203 | + pres_inf(i)))**(1._wp/gamma_min(i)) |
| 204 | + f_pres = f_pres + q_cons_vf(i + contxb - 1)%sf(j, k, l)/rho_K_s(i) |
| 205 | + df_pres = df_pres - q_cons_vf(i + contxb - 1)%sf(j, k, l) & |
| 206 | + /(gamma_min(i)*rho_K_s(i)*(pres_relax + pres_inf(i))) |
| 207 | + end if |
| 208 | + end do |
| 209 | + end if |
| 210 | + end do |
| 211 | + |
| 212 | + ! Update volume fractions |
| 213 | + !$acc loop seq |
| 214 | + do i = 1, num_fluids |
| 215 | + if (q_cons_vf(i + advxb - 1)%sf(j, k, l) > sgm_eps) & |
| 216 | + q_cons_vf(i + advxb - 1)%sf(j, k, l) = q_cons_vf(i + contxb - 1)%sf(j, k, l)/rho_K_s(i) |
| 217 | + end do |
| 218 | + |
| 219 | + end subroutine s_equilibrate_pressure |
| 220 | + |
| 221 | + !> Correct internal energies using equilibrated pressure |
| 222 | + pure subroutine s_correct_internal_energies(q_cons_vf, j, k, l) |
| 223 | + !$acc routine seq |
| 224 | + |
| 225 | + type(scalar_field), dimension(sys_size), intent(inout) :: q_cons_vf |
| 226 | + integer, intent(in) :: j, k, l |
| 227 | + |
| 228 | + real(wp), dimension(num_fluids) :: alpha_rho, alpha |
| 229 | + real(wp) :: rho, dyn_pres, gamma, pi_inf, pres_relax, sum_alpha |
| 230 | + real(wp), dimension(2) :: Re |
| 231 | + integer :: i, q |
| 232 | + |
| 233 | + !$acc loop seq |
| 234 | + do i = 1, num_fluids |
| 235 | + alpha_rho(i) = q_cons_vf(i)%sf(j, k, l) |
| 236 | + alpha(i) = q_cons_vf(E_idx + i)%sf(j, k, l) |
| 237 | + end do |
| 238 | + |
| 239 | + ! Compute mixture properties (combined bubble and standard logic) |
| 240 | + rho = 0._wp |
| 241 | + gamma = 0._wp |
| 242 | + pi_inf = 0._wp |
| 243 | + |
| 244 | + if (bubbles_euler) then |
| 245 | + if (mpp_lim .and. (model_eqns == 2) .and. (num_fluids > 2)) then |
| 246 | + !$acc loop seq |
| 247 | + do i = 1, num_fluids |
| 248 | + rho = rho + alpha_rho(i) |
| 249 | + gamma = gamma + alpha(i)*gammas(i) |
| 250 | + pi_inf = pi_inf + alpha(i)*pi_infs(i) |
| 251 | + end do |
| 252 | + else if ((model_eqns == 2) .and. (num_fluids > 2)) then |
| 253 | + !$acc loop seq |
| 254 | + do i = 1, num_fluids - 1 |
| 255 | + rho = rho + alpha_rho(i) |
| 256 | + gamma = gamma + alpha(i)*gammas(i) |
| 257 | + pi_inf = pi_inf + alpha(i)*pi_infs(i) |
| 258 | + end do |
| 259 | + else |
| 260 | + rho = alpha_rho(1) |
| 261 | + gamma = gammas(1) |
| 262 | + pi_inf = pi_infs(1) |
| 263 | + end if |
| 264 | + else |
| 265 | + sum_alpha = 0._wp |
| 266 | + if (mpp_lim) then |
| 267 | + !$acc loop seq |
| 268 | + do i = 1, num_fluids |
| 269 | + alpha_rho(i) = max(0._wp, alpha_rho(i)) |
| 270 | + alpha(i) = min(max(0._wp, alpha(i)), 1._wp) |
| 271 | + sum_alpha = sum_alpha + alpha(i) |
| 272 | + end do |
| 273 | + alpha = alpha/max(sum_alpha, sgm_eps) |
| 274 | + end if |
| 275 | + |
| 276 | + !$acc loop seq |
| 277 | + do i = 1, num_fluids |
| 278 | + rho = rho + alpha_rho(i) |
| 279 | + gamma = gamma + alpha(i)*gammas(i) |
| 280 | + pi_inf = pi_inf + alpha(i)*pi_infs(i) |
| 281 | + end do |
| 282 | + |
| 283 | + if (viscous) then |
| 284 | + !$acc loop seq |
| 285 | + do i = 1, 2 |
| 286 | + Re(i) = dflt_real |
| 287 | + if (Re_size(i) > 0) Re(i) = 0._wp |
| 288 | + !$acc loop seq |
| 289 | + do q = 1, Re_size(i) |
| 290 | + Re(i) = alpha(Re_idx(i, q))/Res(i, q) + Re(i) |
| 291 | + end do |
| 292 | + Re(i) = 1._wp/max(Re(i), sgm_eps) |
| 293 | + end do |
| 294 | + end if |
| 295 | + end if |
| 296 | + |
| 297 | + ! Compute dynamic pressure and update internal energies |
| 298 | + dyn_pres = 0._wp |
| 299 | + !$acc loop seq |
| 300 | + do i = momxb, momxe |
| 301 | + dyn_pres = dyn_pres + 5e-1_wp*q_cons_vf(i)%sf(j, k, l)* & |
| 302 | + q_cons_vf(i)%sf(j, k, l)/max(rho, sgm_eps) |
| 303 | + end do |
| 304 | + |
| 305 | + pres_relax = (q_cons_vf(E_idx)%sf(j, k, l) - dyn_pres - pi_inf)/gamma |
| 306 | + |
| 307 | + !$acc loop seq |
| 308 | + do i = 1, num_fluids |
| 309 | + q_cons_vf(i + intxb - 1)%sf(j, k, l) = & |
| 310 | + q_cons_vf(i + advxb - 1)%sf(j, k, l)*(gammas(i)*pres_relax + pi_infs(i)) |
| 311 | + end do |
| 312 | + |
| 313 | + end subroutine s_correct_internal_energies |
| 314 | + |
| 315 | +end module m_pressure_relaxation |
0 commit comments