You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<tdclass="markdownTableBodyRight"><code>acoustic(i)%loc(j)</code></td><tdclass="markdownTableBodyCenter">Real </td><tdclass="markdownTableBodyLeft">$j$-th coordinate of the point that defines the acoustic source location </td></tr>
<tdclass="markdownTableBodyRight"><code>acoustic(i)%element_polygon_ratio</code></td><tdclass="markdownTableBodyCenter">Real </td><tdclass="markdownTableBodyLeft">3D Transducer array - Ratio of polygon side length to transducer element radius </td></tr>
679
679
<trclass="markdownTableRowOdd">
680
-
<tdclass="markdownTableBodyRight"><code>acoustic(i)%rotate_angle</code></td><tdclass="markdownTableBodyCenter">Real </td><tdclass="markdownTableBodyLeft">3D Transducer array - Rotation angle of the transducer array (optional; default = 0) </td></tr>
680
+
<tdclass="markdownTableBodyRight"><code>acoustic(i)%rotate_angle</code></td><tdclass="markdownTableBodyCenter">Real </td><tdclass="markdownTableBodyLeft">3D Transducer array - Rotation angle of the transducer array (optional; default = 0) </td></tr>
681
+
<trclass="markdownTableRowEven">
682
+
<tdclass="markdownTableBodyRight"><code>acoustic(i)%bb_num_freq</code></td><tdclass="markdownTableBodyCenter">integer </td><tdclass="markdownTableBodyLeft">Number of frequencies in broadband wave </td></tr>
683
+
<trclass="markdownTableRowOdd">
684
+
<tdclass="markdownTableBodyRight"><code>acoustic(i)%bb_bandwidth</code></td><tdclass="markdownTableBodyCenter">Real </td><tdclass="markdownTableBodyLeft">The bandwidth of each frequency in the broadband wave </td></tr>
685
+
<trclass="markdownTableRowEven">
686
+
<tdclass="markdownTableBodyRight"><code>acoustic(i)%bb_lowest_freq</code></td><tdclass="markdownTableBodyCenter">Real </td><tdclass="markdownTableBodyLeft">The lower frequency bound of the broadband wave </td></tr>
681
687
</table>
682
688
<p>Details of the transducer acoustic source model can be found in <ahref="references.md#Maeda17">Maeda and Colonius (2017)</a>.</p>
<li><code>%support</code> specifies the choice of the geometry of acoustic source distribution. See table <aclass="el" href="#acoustic-supports">Acoustic Supports</a> for details.</li>
687
693
<li><code>%dipole</code> changes the default monopole (one-sided) source to a dipole source. It is only available for planar waves.</li>
688
694
<li><code>%loc(j)</code> specifies the location of the acoustic source in the $j$-th coordinate direction. For planer support, the location defines midpoint of the source plane. For transducer arrays, the location defines the center of the transducer or transducer array (not the focal point; for 3D it's the tip of the spherical cap, for 2D it's the tip of the arc).</li>
689
-
<li><code>%pulse</code> specifies the acoustic wave form. <code>%pulse = 1</code>, <code>2</code>, and <code>3</code> correspond to sinusoidal wave, Gaussian wave, and square wave, respectively.</li>
695
+
<li><code>%pulse</code> specifies the acoustic wave form. <code>%pulse = 1</code>, <code>2</code>, <code>3</code>and <code>4</code> correspond to sinusoidal wave, Gaussian wave, square wave and broadband wave, respectively. The implementation of the broadband wave is based on <ahref="references.md#Tam05">Tam (2005)</a></li>
690
696
<li><code>%npulse</code> specifies the number of cycles of the acoustic wave generated. Only applies to <code>%pulse = 1 and 3</code> (sine and square waves), and must be an integer for non-planar waves.</li>
691
697
<li><code>%mag</code> specifies the peak amplitude of the acoustic wave.</li>
692
698
<li><code>%frequency</code> and <code>%wavelength</code> specify the frequency and wavelength of the acoustic wave, respectively. These parameters are exclusive and exactly one of them must be specified for <code>%pulse = 1</code> or <code>3</code> (sine or square waves). They are related by the speed of sound in the medium: <code>frequency = speed_of_sound / wavelength</code>.</li>
<li><code>%element_spacing_angle</code> specifies the spacing angle between adjacent transducers in radians. The total aperture (<code>%aperture</code>) is set, so each transducer element is smaller if <code>%element_spacing_angle</code> is larger.</li>
703
709
<li><code>%element_polygon_ratio</code> specifies the ratio of the polygon side length to the aperture diameter of each transducer element in a circular 3D transducer array. The polygon side length is calculated by using the total aperture (<code>%aperture</code>) as the circumcircle diameter and <code>%num_elements</code> as the number of sides of the polygon. The ratio is used to specify the aperture size of each transducer element in the array as a ratio of the total aperture.</li>
704
710
<li><code>%rotate_angle</code> specifies the rotation angle of the 3D circular transducer array along the x-axis (principal axis). It is optional and defaults to 0.</li>
711
+
<li><code>%bb_num_freq</code> specifies the number discretized frequencies in the broadband acoustic wave. If <code>%bb_num_freq</code> is 1, the acoustic wave will be a discrete tone (i.e. single frequency sine wave).</li>
712
+
<li><code>%bb_bandwidth</code> specifies the bandwidth of the discretized frequencies.</li>
713
+
<li><code>%bb_lowest_freq</code> specifies the lower frequency bound of the broadband acoustic wave. The upper frequency bound will be calculated as <code>%bb_lowest_freq + %bb_num_freq * %bb_bandwidth</code>. The wave is no longer broadband below the lower bound and above the upper bound.</li>
Copy file name to clipboardExpand all lines: documentation/md_references.html
+3Lines changed: 3 additions & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -197,6 +197,9 @@
197
197
<li><aclass="anchor" id="Suresh97"></a>Suresh, A. and Huynh, H. (1997). Accurate monotonicity-preserving schemes with runge–kutta time stepping. Journal of Computational Physics, 136(1):83–99.</li>
198
198
</ul>
199
199
<ul>
200
+
<li><aclass="anchor" id="Tam05"></a>Tam, C. K., Ju, H., Jones, M. G., Watson, W. R., and Parrott, T. L. (2005). A computational and experimental study of slit resonators. Journal of Sound and Vibration, 284(3-5), 947-984.</li>
201
+
</ul>
202
+
<ul>
200
203
<li><aclass="anchor" id="Thompson87"></a>Thompson, K. W. (1987). Time dependent boundary conditions for hyperbolic systems. Journal of computational physics, 68(1):1–24.</li>
<trclass="memdesc:a3a243a8d9d072460385568d352ab338c"><tdclass="mdescLeft"> </td><tdclass="mdescRight">value of vcfl_dt when viscosity is off for computing adaptive timestep size <br/></td></tr>
<trclass="memdesc:a12e49665abc8df12f5d31790ad170ce3"><tdclass="mdescLeft"> </td><tdclass="mdescRight">The constant to scale the spectral level at the lower frequency bound. <br/></td></tr>
<trclass="memdesc:a4ed795abc33229c6dc7a0202337608e5"><tdclass="mdescLeft"> </td><tdclass="mdescRight">The spectral level constant to correct the magnitude at each frqeuency to ensure the source is overall broadband. <br/></td></tr>
<trclass="memdesc:a3a243a8d9d072460385568d352ab338c"><tdclass="mdescLeft"> </td><tdclass="mdescRight">value of vcfl_dt when viscosity is off for computing adaptive timestep size <br/></td></tr>
<trclass="memdesc:a12e49665abc8df12f5d31790ad170ce3"><tdclass="mdescLeft"> </td><tdclass="mdescRight">The constant to scale the spectral level at the lower frequency bound. <br/></td></tr>
<trclass="memdesc:a4ed795abc33229c6dc7a0202337608e5"><tdclass="mdescLeft"> </td><tdclass="mdescRight">The spectral level constant to correct the magnitude at each frqeuency to ensure the source is overall broadband. <br/></td></tr>
0 commit comments