Skip to content

Commit 23a10af

Browse files
author
MFC Action
committed
Docs @ b49ff72
1 parent 84fb499 commit 23a10af

23 files changed

+208
-205
lines changed

documentation/md_examples.html

Lines changed: 96 additions & 93 deletions
Original file line numberDiff line numberDiff line change
@@ -137,183 +137,186 @@
137137
<div class="contents">
138138
<div class="textblock"><p><a class="anchor" id="autotoc_md29"></a></p>
139139
<h1><a class="anchor" id="autotoc_md30"></a>
140-
2D Riemann Test (2D)</h1>
141-
<p>Reference: Chamarthi, A., &amp; Hoffmann, N., &amp; Nishikawa, H., &amp; Frankel S. (2023). Implicit gradients based conservative numerical scheme for compressible flows. arXiv:2110.05461</p>
140+
Isentropic vortex problem (2D)</h1>
141+
<p>Reference: Coralic, V., &amp; Colonius, T. (2014). Finite-volume Weno scheme for viscous compressible multicomponent flows. Journal of Computational Physics, 274, 95–121. <a href="https://doi.org/10.1016/j.jcp.2014.06.003">https://doi.org/10.1016/j.jcp.2014.06.003</a></p>
142142
<h2><a class="anchor" id="autotoc_md31"></a>
143-
Density Initial Condition</h2>
143+
Density</h2>
144144
<div class="image">
145-
<img src="alpha_rho1_initial-2D_riemann_test-example.png" alt=""/>
145+
<img src="alpha_rho1-2D_isentropicvortex-example.png" alt=""/>
146146
<div class="caption">
147147
Density</div></div>
148148
<h2><a class="anchor" id="autotoc_md32"></a>
149-
Density Final Condition</h2>
149+
Density Norms</h2>
150150
<div class="image">
151-
<img src="alpha_rho1_final-2D_riemann_test-example.png" alt=""/>
151+
<img src="density_norms-2D_isentropicvortex-example.png" alt=""/>
152152
<div class="caption">
153153
Density Norms</div></div>
154154
<h1><a class="anchor" id="autotoc_md33"></a>
155-
Titarev-Toro problem (1D)</h1>
156-
<p>Reference: V. A. Titarev, E. F. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, Journal of Computational Physics 201 (1) (2004) 238–260.</p>
155+
Lid-Driven Cavity Problem (2D)</h1>
156+
<p>Reference: Bezgin, D. A., &amp; Buhendwa A. B., &amp; Adams N. A. (2022). JAX-FLUIDS: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows. arXiv:2203.13760</p>
157+
<p>Reference: Ghia, U., &amp; Ghia, K. N., &amp; Shin, C. T. (1982). High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411</p>
158+
<p>Video: <a href="https://youtube.com/shorts/JEP28scZrBM?feature=share">https://youtube.com/shorts/JEP28scZrBM?feature=share</a></p>
157159
<h2><a class="anchor" id="autotoc_md34"></a>
158-
Initial Condition</h2>
160+
Final Condition</h2>
159161
<div class="image">
160-
<img src="initial-1D_titarevtorro-example.png" alt=""/>
162+
<img src="final_condition-2D_lid_driven_cavity-example.png" alt=""/>
161163
<div class="caption">
162-
Initial Condition</div></div>
164+
Final Condition</div></div>
163165
<h2><a class="anchor" id="autotoc_md35"></a>
164-
Result</h2>
166+
Centerline Velocities</h2>
165167
<div class="image">
166-
<img src="result-1D_titarevtorro-example.png" alt=""/>
168+
<img src="centerline_velocities-2D_lid_driven_cavity-example.png" alt=""/>
167169
<div class="caption">
168-
Result</div></div>
170+
Centerline Velocities</div></div>
169171
<h1><a class="anchor" id="autotoc_md36"></a>
170-
2D IBM CFL dt (2D)</h1>
171-
<h2><a class="anchor" id="autotoc_md37"></a>
172-
Result</h2>
173-
<div class="image">
174-
<img src="result-2D_ibm_cfl_dt-example.png" alt=""/>
175-
<div class="caption">
176-
Result</div></div>
177-
<h1><a class="anchor" id="autotoc_md38"></a>
178172
Shu-Osher problem (1D)</h1>
179173
<p>Reference: C. W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics 77 (2) (1988) 439–471. doi:10.1016/0021-9991(88)90177-5.</p>
180-
<h2><a class="anchor" id="autotoc_md39"></a>
174+
<h2><a class="anchor" id="autotoc_md37"></a>
181175
Initial Condition</h2>
182176
<div class="image">
183177
<img src="initial-1D_shuosher_old-example.png" alt=""/>
184178
<div class="caption">
185179
Initial Condition</div></div>
186-
<h2><a class="anchor" id="autotoc_md40"></a>
180+
<h2><a class="anchor" id="autotoc_md38"></a>
187181
Result</h2>
188182
<div class="image">
189183
<img src="result-1D_shuosher_old-example.png" alt=""/>
190184
<div class="caption">
191185
Result</div></div>
192-
<h1><a class="anchor" id="autotoc_md41"></a>
193-
Isentropic vortex problem (2D)</h1>
194-
<p>Reference: Coralic, V., &amp; Colonius, T. (2014). Finite-volume Weno scheme for viscous compressible multicomponent flows. Journal of Computational Physics, 274, 95–121. <a href="https://doi.org/10.1016/j.jcp.2014.06.003">https://doi.org/10.1016/j.jcp.2014.06.003</a></p>
195-
<h2><a class="anchor" id="autotoc_md42"></a>
196-
Density</h2>
197-
<div class="image">
198-
<img src="alpha_rho1-2D_isentropicvortex-example.png" alt=""/>
199-
<div class="caption">
200-
Density</div></div>
201-
<h2><a class="anchor" id="autotoc_md43"></a>
202-
Density Norms</h2>
186+
<h1><a class="anchor" id="autotoc_md39"></a>
187+
Rayleigh-Taylor Instability (2D)</h1>
188+
<h2><a class="anchor" id="autotoc_md40"></a>
189+
Final Condition</h2>
203190
<div class="image">
204-
<img src="density_norms-2D_isentropicvortex-example.png" alt=""/>
191+
<img src="final_condition-2D_rayleigh_taylor-example.png" alt=""/>
205192
<div class="caption">
206-
Density Norms</div></div>
207-
<h1><a class="anchor" id="autotoc_md44"></a>
208-
Lax shock tube problem (1D)</h1>
209-
<p>Reference: P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Communications on pure and applied mathematics 7 (1) (1954) 159–193.</p>
193+
Final Condition</div></div>
194+
<h2><a class="anchor" id="autotoc_md41"></a>
195+
Centerline Velocities</h2>
196+
<p><img src="linear_theory.jpg" alt="Linear Theory Comparison" class="inline"/></p>
197+
<h1><a class="anchor" id="autotoc_md42"></a>
198+
Taylor-Green Vortex (3D)</h1>
199+
<p>Reference: Hillewaert, K. (2013). TestCase C3.5 - DNS of the transition of the Taylor-Green vortex, Re=1600 - Introduction and result summary. 2nd International Workshop on high-order methods for CFD.</p>
200+
<h2><a class="anchor" id="autotoc_md43"></a>
201+
Final Condition</h2>
202+
<p>This figure shows the isosurface with zero q-criterion. <img src="result-3D_TaylorGreenVortex-example.png" alt="" class="inline" title="Density"/> </p>
203+
<h1><a class="anchor" id="autotoc_md44"></a>
204+
Titarev-Toro problem (1D)</h1>
205+
<p>Reference: V. A. Titarev, E. F. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, Journal of Computational Physics 201 (1) (2004) 238–260.</p>
210206
<h2><a class="anchor" id="autotoc_md45"></a>
211207
Initial Condition</h2>
212208
<div class="image">
213-
<img src="initial-1D_laxshocktube-example.png" alt=""/>
209+
<img src="initial-1D_titarevtorro-example.png" alt=""/>
214210
<div class="caption">
215211
Initial Condition</div></div>
216212
<h2><a class="anchor" id="autotoc_md46"></a>
217213
Result</h2>
218214
<div class="image">
219-
<img src="result-1D_laxshocktube-example.png" alt=""/>
215+
<img src="result-1D_titarevtorro-example.png" alt=""/>
220216
<div class="caption">
221217
Result</div></div>
222218
<h1><a class="anchor" id="autotoc_md47"></a>
223-
IBM Bow Shock (3D)</h1>
224-
<h2><a class="anchor" id="autotoc_md48"></a>
225-
Final Condition</h2>
226-
<div class="image">
227-
<img src="result-3D_ibm_bowshock-example.png" alt=""/>
228-
<div class="caption">
229-
Density</div></div>
230-
<h1><a class="anchor" id="autotoc_md49"></a>
231219
Strong- &amp; Weak-scaling</h1>
232220
<p>The <a href="case.py"><b>Scaling</b></a> case can exercise both weak- and strong-scaling. It adjusts itself depending on the number of requested ranks.</p>
233221
<p>This directory also contains a collection of scripts used to test strong-scaling on OLCF Frontier. They required modifying MFC to collect some metrics but are meant to serve as a reference to users wishing to run similar experiments.</p>
234-
<h2><a class="anchor" id="autotoc_md50"></a>
222+
<h2><a class="anchor" id="autotoc_md48"></a>
235223
Weak Scaling</h2>
236224
<p>Pass <code>--scaling weak</code>. The <code>--memory</code> option controls (approximately) how much memory each rank should use, in Gigabytes. The number of cells in each dimension is then adjusted according to the number of requested ranks and an approximation for the relation between cell count and memory usage. The problem size increases linearly with the number of ranks.</p>
237-
<h2><a class="anchor" id="autotoc_md51"></a>
225+
<h2><a class="anchor" id="autotoc_md49"></a>
238226
Strong Scaling</h2>
239227
<p>Pass <code>--scaling strong</code>. The <code>--memory</code> option controls (approximately) how much memory should be used in total during simulation, across all ranks, in Gigabytes. The problem size remains constant as the number of ranks increases.</p>
240-
<h2><a class="anchor" id="autotoc_md52"></a>
228+
<h2><a class="anchor" id="autotoc_md50"></a>
241229
Example</h2>
242230
<p>For example, to run a weak-scaling test that uses ~4GB of GPU memory per rank on 8 2-rank nodes with case optimization, one could:</p>
243231
<div class="fragment"><div class="line">./mfc.sh run examples/scaling/case.py -t pre_process simulation \</div>
244232
<div class="line"> -e batch -p mypartition -N 8 -n 2 -w &quot;01:00:00&quot; -# &quot;MFC Weak Scaling&quot; \</div>
245233
<div class="line"> --case-optimization -j 32 -- --scaling weak --memory 4</div>
246-
</div><!-- fragment --><h1><a class="anchor" id="autotoc_md53"></a>
247-
Shock Droplet (2D)</h1>
248-
<p>Reference: Panchal et. al., A Seven-Equation Diffused Interface Method for Resolved Multiphase Flows, JCP, 475 (2023)</p>
249-
<h2><a class="anchor" id="autotoc_md54"></a>
250-
Initial Condition</h2>
234+
</div><!-- fragment --><h1><a class="anchor" id="autotoc_md51"></a>
235+
2D Riemann Test (2D)</h1>
236+
<p>Reference: Chamarthi, A., &amp; Hoffmann, N., &amp; Nishikawa, H., &amp; Frankel S. (2023). Implicit gradients based conservative numerical scheme for compressible flows. arXiv:2110.05461</p>
237+
<h2><a class="anchor" id="autotoc_md52"></a>
238+
Density Initial Condition</h2>
251239
<div class="image">
252-
<img src="initial-2D_shockdroplet-example.png" alt=""/>
240+
<img src="alpha_rho1_initial-2D_riemann_test-example.png" alt=""/>
253241
<div class="caption">
254-
Initial Condition</div></div>
255-
<h2><a class="anchor" id="autotoc_md55"></a>
256-
Result</h2>
257-
<p><img src="result-2D_shockdroplet-example.png" alt="" class="inline" title="Result"/> </p>
258-
<h1><a class="anchor" id="autotoc_md56"></a>
259-
Rayleigh-Taylor Instability (2D)</h1>
242+
Density</div></div>
243+
<h2><a class="anchor" id="autotoc_md53"></a>
244+
Density Final Condition</h2>
245+
<div class="image">
246+
<img src="alpha_rho1_final-2D_riemann_test-example.png" alt=""/>
247+
<div class="caption">
248+
Density Norms</div></div>
249+
<h1><a class="anchor" id="autotoc_md54"></a>
250+
IBM Bow Shock (3D)</h1>
251+
<h2><a class="anchor" id="autotoc_md55"></a>
252+
Final Condition</h2>
253+
<div class="image">
254+
<img src="result-3D_ibm_bowshock-example.png" alt=""/>
255+
<div class="caption">
256+
Density</div></div>
257+
<h1><a class="anchor" id="autotoc_md56"></a>
258+
Rayleigh-Taylor Instability (3D)</h1>
260259
<h2><a class="anchor" id="autotoc_md57"></a>
261260
Final Condition</h2>
262261
<div class="image">
263-
<img src="final_condition-2D_rayleigh_taylor-example.png" alt=""/>
262+
<img src="final_condition-3D_rayleigh_taylor-example.png" alt=""/>
264263
<div class="caption">
265264
Final Condition</div></div>
266265
<h2><a class="anchor" id="autotoc_md58"></a>
267266
Centerline Velocities</h2>
268-
<p><img src="linear_theory.jpg" alt="Linear Theory Comparison" class="inline"/></p>
269-
<h1><a class="anchor" id="autotoc_md59"></a>
270-
2D Hardcodied IC Example</h1>
267+
<div class="image">
268+
<img src="linear_theory-3D_rayleigh_taylor-example.png" alt=""/>
269+
<div class="caption">
270+
Linear Theory Comparison</div></div>
271+
<h1><a class="anchor" id="autotoc_md59"></a>
272+
2D IBM CFL dt (2D)</h1>
271273
<h2><a class="anchor" id="autotoc_md60"></a>
274+
Result</h2>
275+
<div class="image">
276+
<img src="result-2D_ibm_cfl_dt-example.png" alt=""/>
277+
<div class="caption">
278+
Result</div></div>
279+
<h1><a class="anchor" id="autotoc_md61"></a>
280+
2D Hardcodied IC Example</h1>
281+
<h2><a class="anchor" id="autotoc_md62"></a>
272282
Initial Condition</h2>
273283
<div class="image">
274284
<img src="initial-2D_hardcodied_ic-example.png" alt=""/>
275285
<div class="caption">
276286
Initial Condition</div></div>
277-
<h2><a class="anchor" id="autotoc_md61"></a>
287+
<h2><a class="anchor" id="autotoc_md63"></a>
278288
Result</h2>
279289
<p><img src="result-2D_hardcodied_ic-example.png" alt="" class="inline" title="Result"/> </p>
280-
<h1><a class="anchor" id="autotoc_md62"></a>
281-
Taylor-Green Vortex (3D)</h1>
282-
<p>Reference: Hillewaert, K. (2013). TestCase C3.5 - DNS of the transition of the Taylor-Green vortex, Re=1600 - Introduction and result summary. 2nd International Workshop on high-order methods for CFD.</p>
283-
<h2><a class="anchor" id="autotoc_md63"></a>
284-
Final Condition</h2>
285-
<p>This figure shows the isosurface with zero q-criterion. <img src="result-3D_TaylorGreenVortex-example.png" alt="" class="inline" title="Density"/> </p>
286290
<h1><a class="anchor" id="autotoc_md64"></a>
287-
Lid-Driven Cavity Problem (2D)</h1>
288-
<p>Reference: Bezgin, D. A., &amp; Buhendwa A. B., &amp; Adams N. A. (2022). JAX-FLUIDS: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows. arXiv:2203.13760</p>
289-
<p>Reference: Ghia, U., &amp; Ghia, K. N., &amp; Shin, C. T. (1982). High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411</p>
290-
<p>Video: <a href="https://youtube.com/shorts/JEP28scZrBM?feature=share">https://youtube.com/shorts/JEP28scZrBM?feature=share</a></p>
291+
Lax shock tube problem (1D)</h1>
292+
<p>Reference: P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Communications on pure and applied mathematics 7 (1) (1954) 159–193.</p>
291293
<h2><a class="anchor" id="autotoc_md65"></a>
292-
Final Condition</h2>
294+
Initial Condition</h2>
293295
<div class="image">
294-
<img src="final_condition-2D_lid_driven_cavity-example.png" alt=""/>
296+
<img src="initial-1D_laxshocktube-example.png" alt=""/>
295297
<div class="caption">
296-
Final Condition</div></div>
298+
Initial Condition</div></div>
297299
<h2><a class="anchor" id="autotoc_md66"></a>
298-
Centerline Velocities</h2>
300+
Result</h2>
299301
<div class="image">
300-
<img src="centerline_velocities-2D_lid_driven_cavity-example.png" alt=""/>
302+
<img src="result-1D_laxshocktube-example.png" alt=""/>
301303
<div class="caption">
302-
Centerline Velocities</div></div>
304+
Result</div></div>
303305
<h1><a class="anchor" id="autotoc_md67"></a>
304-
Rayleigh-Taylor Instability (3D)</h1>
306+
Shock Droplet (2D)</h1>
307+
<p>Reference: Panchal et. al., A Seven-Equation Diffused Interface Method for Resolved Multiphase Flows, JCP, 475 (2023)</p>
305308
<h2><a class="anchor" id="autotoc_md68"></a>
306-
Final Condition</h2>
309+
Initial Condition</h2>
307310
<div class="image">
308-
<img src="final_condition-3D_rayleigh_taylor-example.png" alt=""/>
311+
<img src="initial-2D_shockdroplet-example.png" alt=""/>
309312
<div class="caption">
310-
Final Condition</div></div>
313+
Initial Condition</div></div>
311314
<h2><a class="anchor" id="autotoc_md69"></a>
312-
Centerline Velocities</h2>
315+
Result</h2>
313316
<div class="image">
314-
<img src="linear_theory-3D_rayleigh_taylor-example.png" alt=""/>
317+
<img src="result-2D_shockdroplet-example.png" alt=""/>
315318
<div class="caption">
316-
Linear Theory Comparison</div></div>
319+
Result</div></div>
317320
</div></div><!-- contents -->
318321
</div><!-- PageDoc -->
319322
</div><!-- doc-content -->

0 commit comments

Comments
 (0)