|
| 1 | +import gdown |
| 2 | +import subprocess |
| 3 | +from pathlib import Path |
| 4 | +import requests |
| 5 | +import zipfile |
| 6 | +import shutil |
| 7 | +import argparse |
| 8 | +from git import Repo |
| 9 | +import os |
| 10 | + |
| 11 | + |
| 12 | +def setup_word_dataset(dataset_dir): |
| 13 | + dataset_dir = Path(dataset_dir) / "ScribbleBench" |
| 14 | + archive_dir = dataset_dir / "archives" |
| 15 | + raw_dir = dataset_dir / "raw" |
| 16 | + preprocessed_dir = dataset_dir |
| 17 | + archive_dir.mkdir(parents=True, exist_ok=True) |
| 18 | + raw_dir.mkdir(parents=True, exist_ok=True) |
| 19 | + preprocessed_dir.mkdir(parents=True, exist_ok=True) |
| 20 | + |
| 21 | + #################################################################################################################### |
| 22 | + #### Download WORD dataset (no GT labels) |
| 23 | + #################################################################################################################### |
| 24 | + |
| 25 | + print("Downloading WORD dataset (no GT labels)...") |
| 26 | + url = 'https://drive.google.com/file/d/19OWCXZGrimafREhXm8O8w2HBHZTfxEgU/view' |
| 27 | + gdown.download(url, str(archive_dir / "WORD-V0.1.0.zip"), fuzzy=True) |
| 28 | + |
| 29 | + #################################################################################################################### |
| 30 | + #### Unpack WORD dataset archive |
| 31 | + #################################################################################################################### |
| 32 | + |
| 33 | + print("Unpacking WORD dataset archive...") |
| 34 | + subprocess.run([ |
| 35 | + "7z", "x", archive_dir / "WORD-V0.1.0.zip", |
| 36 | + f"-pword@uestc", |
| 37 | + f"-o{raw_dir / "WORD"}" |
| 38 | + ], check=True) |
| 39 | + |
| 40 | + #################################################################################################################### |
| 41 | + #### Download WORD GT labels |
| 42 | + #################################################################################################################### |
| 43 | + |
| 44 | + print("Downloading WORD GT labels...") |
| 45 | + url = "https://github.com/HiLab-git/WORD/raw/main/WORD_V0.1.0_labelsTs.zip" |
| 46 | + response = requests.get(url) |
| 47 | + response.raise_for_status() # Raise an error on bad status |
| 48 | + with open(archive_dir / "WORD_V0.1.0_labelsTs.zip", "wb") as f: |
| 49 | + f.write(response.content) |
| 50 | + |
| 51 | + #################################################################################################################### |
| 52 | + #### Unpack WORD labels archive |
| 53 | + #################################################################################################################### |
| 54 | + |
| 55 | + print("Unpacking WORD labels archive...") |
| 56 | + with zipfile.ZipFile(archive_dir / "WORD_V0.1.0_labelsTs.zip", 'r') as zip_ref: |
| 57 | + zip_ref.extractall(raw_dir / "WORD" / "WORD-V0.1.0") |
| 58 | + |
| 59 | + #################################################################################################################### |
| 60 | + #### Preprocess WORD dataset |
| 61 | + #################################################################################################################### |
| 62 | + |
| 63 | + print("Preprocessing WORD dataset...") |
| 64 | + word_raw_dir = raw_dir / "WORD" / "WORD-V0.1.0" |
| 65 | + word_preprocessed_dir = preprocessed_dir / "WORD" |
| 66 | + word_raw_dir = Path(word_raw_dir) |
| 67 | + word_preprocessed_dir = Path(word_preprocessed_dir) |
| 68 | + |
| 69 | + (word_preprocessed_dir / "imagesTr").mkdir(parents=True, exist_ok=True) |
| 70 | + (word_preprocessed_dir / "imagesTs").mkdir(parents=True, exist_ok=True) |
| 71 | + (word_preprocessed_dir / "labelsTr").mkdir(parents=True, exist_ok=True) |
| 72 | + (word_preprocessed_dir / "labelsTs").mkdir(parents=True, exist_ok=True) |
| 73 | + |
| 74 | + names = [path.name[:-7] for path in (word_raw_dir / "imagesTr").rglob("*.nii.gz")] |
| 75 | + for name in names: |
| 76 | + shutil.move(word_raw_dir / "imagesTr" / f"{name}.nii.gz", word_preprocessed_dir / "imagesTr" / f"{name}_0000.nii.gz") |
| 77 | + |
| 78 | + names = [path.name[:-7] for path in (word_raw_dir / "imagesVal").rglob("*.nii.gz")] |
| 79 | + for name in names: |
| 80 | + shutil.move(word_raw_dir / "imagesVal" / f"{name}.nii.gz", word_preprocessed_dir / "imagesTr" / f"{name}_0000.nii.gz") |
| 81 | + |
| 82 | + names = [path.name[:-7] for path in (word_raw_dir / "imagesTs").rglob("*.nii.gz")] |
| 83 | + for name in names: |
| 84 | + shutil.move(word_raw_dir / "imagesTs" / f"{name}.nii.gz", word_preprocessed_dir / "imagesTs" / f"{name}_0000.nii.gz") |
| 85 | + |
| 86 | + |
| 87 | + names = [path.name[:-7] for path in (word_raw_dir / "labelsTr").rglob("*.nii.gz")] |
| 88 | + for name in names: |
| 89 | + shutil.move(word_raw_dir / "labelsTr" / f"{name}.nii.gz", word_preprocessed_dir / "labelsTr" / f"{name}.nii.gz") |
| 90 | + |
| 91 | + names = [path.name[:-7] for path in (word_raw_dir / "labelsVal").rglob("*.nii.gz")] |
| 92 | + for name in names: |
| 93 | + shutil.move(word_raw_dir / "labelsVal" / f"{name}.nii.gz", word_preprocessed_dir / "labelsTr" / f"{name}.nii.gz") |
| 94 | + |
| 95 | + names = [path.name[:-7] for path in (word_raw_dir / "labelsTs").rglob("*.nii.gz")] |
| 96 | + for name in names: |
| 97 | + shutil.move(word_raw_dir / "labelsTs" / f"{name}.nii.gz", word_preprocessed_dir / "labelsTs" / f"{name}.nii.gz") |
| 98 | + |
| 99 | + |
| 100 | + shutil.move(word_raw_dir / "dataset.json", word_preprocessed_dir / "dataset.json") |
| 101 | + |
| 102 | + #################################################################################################################### |
| 103 | + #### Delete archive and raw dataset files |
| 104 | + #################################################################################################################### |
| 105 | + |
| 106 | + print("Deleting archive and raw dataset files...") |
| 107 | + shutil.rmtree(archive_dir, ignore_errors=True) |
| 108 | + shutil.rmtree(raw_dir, ignore_errors=True) |
| 109 | + |
| 110 | + print("Finished setting up WORD dataset.") |
| 111 | + |
| 112 | + |
| 113 | +def setup_mscmr_dataset(dataset_dir): |
| 114 | + dataset_dir = Path(dataset_dir) / "ScribbleBench" |
| 115 | + archive_dir = dataset_dir / "archive" |
| 116 | + raw_dir = dataset_dir / "raw" |
| 117 | + preprocessed_dir = dataset_dir |
| 118 | + mscmr_preprocessed_dir = preprocessed_dir / "MSCMR" |
| 119 | + archive_dir.mkdir(parents=True, exist_ok=True) |
| 120 | + raw_dir.mkdir(parents=True, exist_ok=True) |
| 121 | + preprocessed_dir.mkdir(parents=True, exist_ok=True) |
| 122 | + mscmr_preprocessed_dir.mkdir(parents=True, exist_ok=True) |
| 123 | + |
| 124 | + #################################################################################################################### |
| 125 | + #### Download MSCMR dataset |
| 126 | + #################################################################################################################### |
| 127 | + |
| 128 | + print("Downloading MSCMR dataset...") |
| 129 | + repo_url = "https://github.com/BWGZK/CycleMix.git" |
| 130 | + repo_dir = raw_dir / "CycleMix" |
| 131 | + |
| 132 | + Repo.clone_from(repo_url, repo_dir) |
| 133 | + |
| 134 | + train_labels_url = "https://syncandshare.desy.de/index.php/s/j2t8g8P8LHb9Xfk/download/labelsTr.zip" |
| 135 | + response = requests.get(train_labels_url) |
| 136 | + response.raise_for_status() # Raise an error on bad status |
| 137 | + with open(archive_dir / "labelsTr.zip", "wb") as f: |
| 138 | + f.write(response.content) |
| 139 | + |
| 140 | + #################################################################################################################### |
| 141 | + #### Unpack MSCMR labels archive |
| 142 | + #################################################################################################################### |
| 143 | + |
| 144 | + print("Unpacking MSCMR labels archive...") |
| 145 | + with zipfile.ZipFile(archive_dir / "labelsTr.zip", 'r') as zip_ref: |
| 146 | + zip_ref.extractall(mscmr_preprocessed_dir) |
| 147 | + |
| 148 | + #################################################################################################################### |
| 149 | + #### Preprocess WORD dataset |
| 150 | + #################################################################################################################### |
| 151 | + |
| 152 | + print("Preprocessing MSCMR dataset...") |
| 153 | + mscmr_raw_dir = repo_dir / "MSCMR_dataset" |
| 154 | + |
| 155 | + (mscmr_preprocessed_dir / "imagesTr").mkdir(parents=True, exist_ok=True) |
| 156 | + (mscmr_preprocessed_dir / "imagesTs").mkdir(parents=True, exist_ok=True) |
| 157 | + (mscmr_preprocessed_dir / "labelsTr").mkdir(parents=True, exist_ok=True) |
| 158 | + (mscmr_preprocessed_dir / "labelsTs").mkdir(parents=True, exist_ok=True) |
| 159 | + |
| 160 | + names = [path.name[:-7] for path in (mscmr_raw_dir / "train" / "images").rglob("*.nii.gz")] |
| 161 | + for name in names: |
| 162 | + shutil.move(mscmr_raw_dir / "train" / "images" / f"{name}.nii.gz", mscmr_preprocessed_dir / "imagesTr" / f"{name}_0000.nii.gz") |
| 163 | + |
| 164 | + names = [path.name[:-7] for path in (mscmr_raw_dir / "val" / "images").rglob("*.nii.gz")] |
| 165 | + for name in names: |
| 166 | + shutil.move(mscmr_raw_dir / "val" / "images" / f"{name}.nii.gz", mscmr_preprocessed_dir / "imagesTr" / f"{name}_0000.nii.gz") |
| 167 | + |
| 168 | + names = [path.name[:-7] for path in (mscmr_raw_dir / "TestSet" / "images").rglob("*.nii.gz")] |
| 169 | + for name in names: |
| 170 | + shutil.move(mscmr_raw_dir / "TestSet" / "images" / f"{name}.nii.gz", mscmr_preprocessed_dir / "imagesTs" / f"{name}_0000.nii.gz") |
| 171 | + |
| 172 | + names = [path.name[:-7] for path in (mscmr_raw_dir / "TestSet" / "labels").rglob("*.nii.gz")] |
| 173 | + for name in names: |
| 174 | + shutil.move(mscmr_raw_dir / "TestSet" / "labels" / f"{name}.nii.gz", mscmr_preprocessed_dir / "labelsTs" / f"{name}_0000.nii.gz") |
| 175 | + |
| 176 | + # These two images have no dense GT so it is not possible to generate scribbles for them |
| 177 | + os.remove(mscmr_preprocessed_dir / "imagesTr" / "subject2_DE_0000.nii.gz") |
| 178 | + os.remove(mscmr_preprocessed_dir / "imagesTr" / "subject4_DE_0000.nii.gz") |
| 179 | + |
| 180 | + dataset_json_url = "https://syncandshare.desy.de/index.php/s/9gdZ33WL2nPXpGC/download/dataset.json" |
| 181 | + response = requests.get(dataset_json_url) |
| 182 | + response.raise_for_status() # Raise an error on bad status |
| 183 | + with open(mscmr_preprocessed_dir / "dataset.json", "wb") as f: |
| 184 | + f.write(response.content) |
| 185 | + |
| 186 | + #################################################################################################################### |
| 187 | + #### Delete archive and raw dataset files |
| 188 | + #################################################################################################################### |
| 189 | + |
| 190 | + print("Deleting archive and raw dataset files...") |
| 191 | + shutil.rmtree(archive_dir, ignore_errors=True) |
| 192 | + shutil.rmtree(raw_dir, ignore_errors=True) |
| 193 | + |
| 194 | + print("Finished setting up MSCMR dataset.") |
| 195 | + |
| 196 | + |
| 197 | +if __name__ == '__main__': |
| 198 | + parser = argparse.ArgumentParser() |
| 199 | + parser.add_argument('-d', "--dataset_dir", required=True, type=str, help="Path to the dir used for setting up ScribbleBench.") |
| 200 | + parser.add_argument('--word', required=False, default=False, action="store_true", help="Download and preprocess the WORD dataset for ScribbleBench.") |
| 201 | + parser.add_argument('--mscmr', required=False, default=False, action="store_true", help="Download and preprocess the MSCMR dataset for ScribbleBench.") |
| 202 | + args = parser.parse_args() |
| 203 | + |
| 204 | + if args.word: |
| 205 | + setup_word_dataset(args.dataset_dir) |
| 206 | + if args.word: |
| 207 | + setup_mscmr_dataset(args.dataset_dir) |
0 commit comments