26
26
" <td align=\" center\" ><a target=\" _blank\" href=\" http://introtodeeplearning.com\" >\n " ,
27
27
" <img src=\" https://i.ibb.co/Jr88sn2/mit.png\" style=\" padding-bottom:5px;\" />\n " ,
28
28
" Visit MIT Deep Learning</a></td>\n " ,
29
- " <td align=\" center\" ><a target=\" _blank\" href=\" https://colab.research.google.com/github/aamini/introtodeeplearning/blob/master /lab2/solutions/Part1_MNIST_Solution.ipynb\" >\n " ,
29
+ " <td align=\" center\" ><a target=\" _blank\" href=\" https://colab.research.google.com/github/aamini/introtodeeplearning/blob/2023 /lab2/solutions/Part1_MNIST_Solution.ipynb\" >\n " ,
30
30
" <img src=\" https://i.ibb.co/2P3SLwK/colab.png\" style=\" padding-bottom:5px;\" />Run in Google Colab</a></td>\n " ,
31
- " <td align=\" center\" ><a target=\" _blank\" href=\" https://github.com/aamini/introtodeeplearning/blob/master /lab2/solutions/Part1_MNIST_Solution.ipynb\" >\n " ,
31
+ " <td align=\" center\" ><a target=\" _blank\" href=\" https://github.com/aamini/introtodeeplearning/blob/2023 /lab2/solutions/Part1_MNIST_Solution.ipynb\" >\n " ,
32
32
" <img src=\" https://i.ibb.co/xfJbPmL/github.png\" height=\" 70px\" style=\" padding-bottom:5px;\" />View Source on GitHub</a></td>\n " ,
33
33
" </table>\n " ,
34
34
" \n " ,
41
41
"id" : " gKA_J7bdP33T"
42
42
},
43
43
"source" : [
44
- " # Copyright 2022 MIT 6.S191 Introduction to Deep Learning. All Rights Reserved.\n " ,
44
+ " # Copyright 2023 MIT Introduction to Deep Learning. All Rights Reserved.\n " ,
45
45
" # \n " ,
46
46
" # Licensed under the MIT License. You may not use this file except in compliance\n " ,
47
- " # with the License. Use and/or modification of this code outside of 6.S191 must \n " ,
48
- " # reference:\n " ,
47
+ " # with the License. Use and/or modification of this code outside of MIT Introduction \n " ,
48
+ " # to Deep Learning must reference:\n " ,
49
49
" #\n " ,
50
- " # © MIT 6.S191: Introduction to Deep Learning\n " ,
50
+ " # © MIT Introduction to Deep Learning\n " ,
51
51
" # http://introtodeeplearning.com\n " ,
52
52
" #"
53
53
],
690
690
" \n " ,
691
691
" #'''TODO: compute the categorical cross entropy loss\n " ,
692
692
" loss_value = tf.keras.backend.sparse_categorical_crossentropy(labels, logits)\n " ,
693
- " # loss_value = tf.keras.backend.sparse_categorical_crossentropy() # TODO\n " ,
693
+ " # loss_value = tf.keras.backend.sparse_categorical_crossentropy('''TODO''', '''TODO''' ) # TODO\n " ,
694
694
" \n " ,
695
695
" loss_history.append(loss_value.numpy().mean()) # append the loss to the loss_history record\n " ,
696
696
" plotter.plot(loss_history.get())\n " ,
716
716
]
717
717
}
718
718
]
719
- }
719
+ }
0 commit comments