@@ -64,18 +64,18 @@ def __init__(self, data_path, batch_size, training=True):
64
64
pos_train_inds = train_inds [self .labels [train_inds , 0 ] == 1.0 ]
65
65
neg_train_inds = train_inds [self .labels [train_inds , 0 ] != 1.0 ]
66
66
if training :
67
- self .pos_train_inds = pos_train_inds [: int (0.7 * len (pos_train_inds ))]
68
- self .neg_train_inds = neg_train_inds [: int (0.7 * len (neg_train_inds ))]
67
+ self .pos_train_inds = pos_train_inds [: int (0.8 * len (pos_train_inds ))]
68
+ self .neg_train_inds = neg_train_inds [: int (0.8 * len (neg_train_inds ))]
69
69
else :
70
- self .pos_train_inds = pos_train_inds [- 1 * int (0.3 * len (pos_train_inds )) :]
71
- self .neg_train_inds = neg_train_inds [- 1 * int (0.3 * len (neg_train_inds )) :]
70
+ self .pos_train_inds = pos_train_inds [- 1 * int (0.2 * len (pos_train_inds )) :]
71
+ self .neg_train_inds = neg_train_inds [- 1 * int (0.2 * len (neg_train_inds )) :]
72
72
73
73
np .random .shuffle (self .pos_train_inds )
74
74
np .random .shuffle (self .neg_train_inds )
75
75
76
76
self .train_inds = np .concatenate ((self .pos_train_inds , self .neg_train_inds ))
77
77
self .batch_size = batch_size
78
- self .p_pos = np .ones (self .pos_train_inds .shape )/ len (self .pos_train_inds )
78
+ self .p_pos = np .ones (self .pos_train_inds .shape ) / len (self .pos_train_inds )
79
79
80
80
def get_train_size (self ):
81
81
return self .pos_train_inds .shape [0 ] + self .neg_train_inds .shape [0 ]
@@ -150,16 +150,23 @@ def plot_percentile(imgs, fname=None):
150
150
if fname :
151
151
plt .savefig (fname )
152
152
153
+
153
154
def plot_accuracy_vs_risk (sorted_images , sorted_uncertainty , sorted_preds , plot_title ):
154
155
num_percentile_intervals = 10
155
156
num_samples = len (sorted_images ) // num_percentile_intervals
156
157
all_imgs = []
157
158
all_unc = []
158
159
all_acc = []
159
160
for percentile in range (num_percentile_intervals ):
160
- cur_imgs = sorted_images [percentile * num_samples : (percentile + 1 ) * num_samples ]
161
- cur_unc = sorted_uncertainty [percentile * num_samples : (percentile + 1 ) * num_samples ]
162
- cur_predictions = tf .nn .sigmoid (sorted_preds [percentile * num_samples : (percentile + 1 ) * num_samples ])
161
+ cur_imgs = sorted_images [
162
+ percentile * num_samples : (percentile + 1 ) * num_samples
163
+ ]
164
+ cur_unc = sorted_uncertainty [
165
+ percentile * num_samples : (percentile + 1 ) * num_samples
166
+ ]
167
+ cur_predictions = tf .nn .sigmoid (
168
+ sorted_preds [percentile * num_samples : (percentile + 1 ) * num_samples ]
169
+ )
163
170
avged_imgs = tf .reduce_mean (cur_imgs , axis = 0 )
164
171
all_imgs .append (avged_imgs )
165
172
all_unc .append (tf .reduce_mean (cur_unc ))
0 commit comments