Skip to content

Commit 2d913ca

Browse files
committed
Docs: Update README to include full course structure and links
Updates the README file with a comprehensive list of all lessons in the "Audio Signal Processing for Machine Learning" series, including links to videos, slides, and notebooks.
1 parent 50b40b0 commit 2d913ca

File tree

1 file changed

+131
-1
lines changed

1 file changed

+131
-1
lines changed

README.md

Lines changed: 131 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,2 +1,132 @@
11
# AudioSignalProcessingForML
2-
Code and slides of my YouTube series called "Audio Signal Proessing for Machine Learning"
2+
3+
Code and slides of my YouTube series called "[Audio Signal Proessing for Machine Learning](https://www.youtube.com/playlist?list=PL-wATfeyAMNqIee7cH3q1bh4QJFAaeNv0)"
4+
5+
This repository is a comprehensive collection of resources, code, and explanations for understanding and implementing audio signal processing techniques, with a focus on applications in machine learning. It serves as a learning guide, starting from the fundamentals of sound and waveforms and progressing to advanced feature extraction methods.
6+
7+
## Course Structure
8+
9+
### Foundational Concepts
10+
11+
1. **Overview:** _[Video][1yt] | [Slides][1sl]_
12+
2. **Sound and waveforms:** _[Video][2yt] | [Slides][2sl]_
13+
3. **Intensity, loudness, and timbre:** _[Video][3yt] | [Slides][3sl] | [Notebook][3nb]_
14+
4. **Understanding audio signals:** _[Video][4yt] | [Slides][4sl]_
15+
16+
---
17+
18+
### Feature Extraction Theory
19+
20+
5. **Types of audio features for ML:** _[Video][5yt] | [Slides][5sl]_
21+
6. **How to extract audio features:** _[Video][6yt] | [Slides][6sl]_
22+
7. **Time-domain audio features:** _[Video][7yt] | [Slides][7sl]_
23+
24+
---
25+
26+
### Time-Domain Implementation
27+
28+
8. **Implementing the amplitude envelope:** _[Video][8yt] | [Notebook][8nb]_
29+
9. **RMS energy and zero-crossing rate:** _[Video][9yt] | [Notebook][9nb]_
30+
31+
---
32+
33+
### Frequency-Domain Concepts
34+
35+
10. **Fourier Transform: The Intuition:** _[Video][10yt] | [Slides][10sl]_
36+
11. **Complex numbers for audio signal processing:** _[Video][11yt] | [Slides][11sl]_
37+
12. **Defining the Fourier transform using complex numbers:** _[Video][12yt] | [Slides][12sl] | [Notebook][12nb]_
38+
13. **Discrete Fourier Transform:** _[Video][13yt] | [Slides][13sl]_
39+
40+
---
41+
42+
### Frequency-Domain Implementation
43+
44+
14. **Extracting the Discrete Fourier Transform:** _[Video][14yt] | [Notebook][14nb]_
45+
15. **Short-Time Fourier Transform explained easily:** _[Video][15yt] | [Slides][15sl]_
46+
16. **Extracting Spectrograms from Audio with Python:** _[Video][16yt] | [Notebook][16nb]_
47+
17. **Mel Spectrogram Explained Easily:** _[Video][17yt] | [Slides][17sl]_
48+
18. **Extracting Mel Spectrograms with Python:** _[Video][18yt] | [Notebook][18nb]_
49+
19. **MFCCs Explained Easily:** _[Video][19yt] | [Slides][19sl]_
50+
20. **Extracting MFCCs with Python:** _[Video][20yt] | [Notebook][20nb]_
51+
21. **Frequency-Domain Audio Features:** _[Video][21yt] | [Slides][21sl]_
52+
22. **Implementing Band Energy Ratio from Scratch with Python:** _[Video][22yt] | [Notebook][22nb]_
53+
23. **Spectral centroid and bandwidth:** _[Video][23yt] | [Notebook][23nb]_
54+
55+
---
56+
57+
### Audio examples
58+
59+
* [**`audio_resources/`**](<audio_resources/>): A collection of .wav files used for the examples in the notebooks.
60+
61+
<!-- Reference links for every chapter:
62+
YouTube videos (#yt), PDF-file slides (#sl) and Jupyter Notebooks (#nb) -->
63+
[1yt]: https://www.youtube.com/watch?v=iCwMQJnKk2c
64+
[1sl]: <1- Overview/Audio Signal Processing for Machine Learning.pdf>
65+
66+
[2yt]: https://www.youtube.com/watch?v=bnHHVo3j124
67+
[2sl]: <2- Sound and waveforms/2- Sound and waveforms.pdf>
68+
69+
[3yt]: https://www.youtube.com/watch?v=Jkoysm1fHUw
70+
[3sl]: <3- Intensity, loudness, and timbre/Intensity, loudness, and timbre.pdf>
71+
[3nb]: <3- Intensity, loudness, and timbre/intensity_and_timbre.ipynb>
72+
73+
[4yt]: https://www.youtube.com/watch?v=daB9naGBVv4
74+
[4sl]: <4- Understanding audio signals/Understanding audio signals.pdf>
75+
76+
[5yt]: https://www.youtube.com/watch?v=ZZ9u1vUtcIA
77+
[5sl]: <5- Types of audio features for ML/Types of Audio Features for ML.pdf>
78+
79+
[6yt]: https://www.youtube.com/watch?v=8A-W1xk7qs8
80+
[6sl]: <6- How to extract audio features/How to extract audio features.pdf>
81+
82+
[7yt]: https://www.youtube.com/watch?v=SRrQ_v-OOSg
83+
[7sl]: <7- Time-domain audio features/Time-domain audio features.pdf>
84+
85+
[8yt]: https://www.youtube.com/watch?v=rlypsap6Wow
86+
[8nb]: <8- Implementing the amplitude envelope/Implementing the amplitude envelope.ipynb>
87+
88+
[9yt]: https://www.youtube.com/watch?v=EycaSbIRx-0
89+
[9nb]: <9- RMS energy and zero-crossing rate/RMS Energy and Zero-Crossing Rate.ipynb>
90+
91+
[10yt]: https://www.youtube.com/watch?v=XQ45IgG6rJ4
92+
[10sl]: <10 - Fourier Transform: The Intuition/Demystifying the Fourier Transform The Intuition.pdf>
93+
94+
[11yt]: https://www.youtube.com/watch?v=DgF4m0AWCgA
95+
[11sl]: <11 - Complex numbers for audio signal processing/Complex numbers.pdf>
96+
97+
[12yt]: https://www.youtube.com/watch?v=KxRmbtJWUzI
98+
[12sl]: <12- Defining the Fourier transform using complex numbers/Defining the Fourier Transform Using Complex Numbers.pdf>
99+
[12nb]: <12- Defining the Fourier transform using complex numbers/Defining the Fourier Transform Using Complex Numbers.ipynb>
100+
101+
[13yt]: https://www.youtube.com/watch?v=ZUi_jdOyxIQ
102+
[13sl]: <13- Discrete Fourier Transform/Discrete Fourier Transform.pdf>
103+
104+
[14yt]: https://www.youtube.com/watch?v=R-5uxKTRjzM
105+
[14nb]: <14- Extracting the Discrete Fourier Transform/Visualising the Power Spectrum.ipynb>
106+
107+
[15yt]: https://www.youtube.com/watch?v=-Yxj3yfvY-4
108+
[15sl]: <15 - Short-Time Fourier Transform explained easily/Short-Time Fourier Transform Explained Easily.pdf>
109+
110+
[16yt]: https://www.youtube.com/watch?v=3gzI4Z2OFgY
111+
[16nb]: <16 - Extracting Spectrograms from Audio with Python/Extracting Spectrograms from Audio with Python.ipynb>
112+
113+
[17yt]: https://www.youtube.com/watch?v=9GHCiiDLHQ4
114+
[17sl]: <17 - Mel Spectrogram Explained Easily/Mel Spectrograms Explained Easily.pdf>
115+
116+
[18yt]: https://www.youtube.com/watch?v=TdnVE5m3o_0
117+
[18nb]: <18 - Extracting Mel Spectrograms with Python/Extracting Mel Spectrograms.ipynb>
118+
119+
[19yt]: https://www.youtube.com/watch?v=4_SH2nfbQZ8
120+
[19sl]: <19- MFCCs Explained Easily/Mel-Frequency Cepstral Coefficients Explained Easily.pdf>
121+
122+
[20yt]: https://www.youtube.com/watch?v=WJI-17MNpdE
123+
[20nb]: <20- Extracting MFCCs with Python/Extracting MFCCs.ipynb>
124+
125+
[21yt]: https://www.youtube.com/watch?v=3-bjAoAxQ9o
126+
[21sl]: <21 - Frequency-Domain Audio Features/Frequency-domain audio features.pdf>
127+
128+
[22yt]: https://www.youtube.com/watch?v=8UJ8ZDR7yUs
129+
[22nb]: <22 - Implementing Band Energy Ratio from Scratch with Python/Implementing band energy ratio from scratch.ipynb>
130+
131+
[23yt]: https://www.youtube.com/watch?v=j6NTatoi928
132+
[23nb]: <23- Spectral centroid and bandwidth/Spectral centroid and bandwidth.ipynb>

0 commit comments

Comments
 (0)