Skip to content

Commit 7d4e2d0

Browse files
committed
Fix position of table describing algorithms
1 parent b246255 commit 7d4e2d0

File tree

3 files changed

+46
-48
lines changed

3 files changed

+46
-48
lines changed

publication/jats/paper.jats

Lines changed: 31 additions & 33 deletions
Original file line numberDiff line numberDiff line change
@@ -121,9 +121,9 @@ a Creative Commons Attribution 4.0 International License (CC BY
121121
</sec>
122122
<sec id="statement-of-need">
123123
<title>Statement of need</title>
124-
<p>Network analysis is central to social sciences, biology, and fraud
125-
detection, where understanding relationships is essential.
126-
Probabilistic generative models
124+
<p>Network analysis is central to disciplines such as social sciences,
125+
biology, and fraud detection, where understanding relationships is
126+
essential. Probabilistic generative models
127127
(<xref alt="Contisciani et al., 2020" rid="ref-contisciani2020community" ref-type="bibr">Contisciani
128128
et al., 2020</xref>,
129129
<xref alt="2022" rid="ref-contisciani2022community" ref-type="bibr">2022</xref>;
@@ -159,7 +159,34 @@ a Creative Commons Attribution 4.0 International License (CC BY
159159
<list list-type="bullet">
160160
<list-item>
161161
<p><bold>Diverse Network Models</bold>: Integration of generative
162-
models for various network types and goals:</p>
162+
models for various network types and goals (see table below).</p>
163+
</list-item>
164+
<list-item>
165+
<p><bold>Synthetic Network Generation</bold>: Ability to generate
166+
synthetic networks that closely resemble real ones for further
167+
analyses (e.g., testing hypotheses).</p>
168+
</list-item>
169+
<list-item>
170+
<p><bold>Simplified Parameter Selection</bold>: A cross-validation
171+
module to optimize key parameters, providing performance results
172+
in a clear dataframe.</p>
173+
</list-item>
174+
<list-item>
175+
<p><bold>Rich Set of Metrics for Analysis</bold>: Advanced metrics
176+
(e.g., F1 scores, Jaccard index) for link and covariate prediction
177+
performance.</p>
178+
</list-item>
179+
<list-item>
180+
<p><bold>Powerful Visualization Tools</bold>: Functions for
181+
plotting community memberships and performance metrics.</p>
182+
</list-item>
183+
<list-item>
184+
<p><bold>User-Friendly Command-Line Interface</bold>: An intuitive
185+
interface for easy access.</p>
186+
</list-item>
187+
<list-item>
188+
<p><bold>Extensible and Modular Codebase</bold>: Future
189+
integration of additional models possible.</p>
163190
</list-item>
164191
</list>
165192
<table-wrap>
@@ -238,35 +265,6 @@ a Creative Commons Attribution 4.0 International License (CC BY
238265
</tbody>
239266
</table>
240267
</table-wrap>
241-
<list list-type="bullet">
242-
<list-item>
243-
<p><bold>Synthetic Network Generation</bold>: Ability to generate
244-
synthetic networks that closely resemble real ones for further
245-
analyses (e.g., testing hypotheses).</p>
246-
</list-item>
247-
<list-item>
248-
<p><bold>Simplified Parameter Selection</bold>: A cross-validation
249-
module to optimize key parameters, providing performance results
250-
in a clear dataframe.</p>
251-
</list-item>
252-
<list-item>
253-
<p><bold>Rich Set of Metrics for Analysis</bold>: Advanced metrics
254-
(e.g., F1 scores, Jaccard index) for link and covariate prediction
255-
performance.</p>
256-
</list-item>
257-
<list-item>
258-
<p><bold>Powerful Visualization Tools</bold>: Functions for
259-
plotting community memberships and performance metrics.</p>
260-
</list-item>
261-
<list-item>
262-
<p><bold>User-Friendly Command-Line Interface</bold>: An intuitive
263-
interface for easy access.</p>
264-
</list-item>
265-
<list-item>
266-
<p><bold>Extensible and Modular Codebase</bold>: Future
267-
integration of additional models possible.</p>
268-
</list-item>
269-
</list>
270268
<p>The <bold>Usage</bold> section below illustrates these features
271269
with a real-world example.</p>
272270
</sec>

publication/paper.md

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -43,8 +43,7 @@ to analyze and model complex network data. The package integrates code implement
4343

4444
# Statement of need
4545

46-
Network analysis is central to social sciences, biology, and fraud detection, where
47-
understanding relationships is essential. Probabilistic generative models
46+
Network analysis is central to disciplines such as social sciences, biology, and fraud detection, where understanding relationships is essential. Probabilistic generative models
4847
[@safdari2021generative; @contisciani2022community; @safdari2022anomaly; @safdari2022reciprocity; @contisciani2020community
4948
] reveal hidden patterns, detect communities, identify anomalies, and generate synthetic data. Their broader use is limited by fragmented implementations that hinder comparisons and reproducibility.
5049
ProbINet addresses this gap by unifying recent approaches in a single framework, improving accessibility and usability across disciplines.
@@ -57,19 +56,7 @@ ProbINet offers a feature-rich framework to perform inference on networks using
5756
generative models. Key features include:
5857

5958
- **Diverse Network Models**: Integration of generative models for various network types
60-
and goals:
61-
62-
| **Algorithm's Name**&nbsp; | **Description** | **Network Properties** |
63-
|----------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
64-
| **CRep** | Models directed networks with communities and reciprocity [@safdari2021generative]. | Directed, Weighted, Communities, Reciprocity |
65-
| | | |
66-
| **JointCRep** | Captures community structure and reciprocity with a joint edge distribution [@contisciani2022community]. | Directed, Communities, Reciprocity |
67-
| | | |
68-
| **DynCRep** | Extends CRep for dynamic networks [@safdari2022reciprocity]. | Directed, Weighted, Dynamic, Communities, Reciprocity |
69-
| | | |
70-
| **ACD** | Identifies anomalous edges and node community memberships in weighted networks [@safdari2022anomaly]. | Directed, Weighted, Communities, Anomalies |
71-
| | | |
72-
| **MTCOV** | Extracts overlapping communities in multilayer networks using topology and node attributes [@contisciani2020community]. | Weighted, Multilayer, Attributes, Communities |
59+
and goals (see table below).
7360

7461
- **Synthetic Network Generation**: Ability to generate synthetic networks that closely resemble real ones for further analyses (e.g., testing hypotheses).
7562

@@ -83,6 +70,19 @@ generative models. Key features include:
8370

8471
- **Extensible and Modular Codebase**: Future integration of additional models possible.
8572

73+
74+
| **Algorithm's Name**&nbsp; | **Description** | **Network Properties** |
75+
|----------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
76+
| **CRep** | Models directed networks with communities and reciprocity [@safdari2021generative]. | Directed, Weighted, Communities, Reciprocity |
77+
| | | |
78+
| **JointCRep** | Captures community structure and reciprocity with a joint edge distribution [@contisciani2022community]. | Directed, Communities, Reciprocity |
79+
| | | |
80+
| **DynCRep** | Extends CRep for dynamic networks [@safdari2022reciprocity]. | Directed, Weighted, Dynamic, Communities, Reciprocity |
81+
| | | |
82+
| **ACD** | Identifies anomalous edges and node community memberships in weighted networks [@safdari2022anomaly]. | Directed, Weighted, Communities, Anomalies |
83+
| | | |
84+
| **MTCOV** | Extracts overlapping communities in multilayer networks using topology and node attributes [@contisciani2020community]. | Weighted, Multilayer, Attributes, Communities |
85+
8686
The **Usage** section below illustrates these features with a real-world example.
8787

8888
# Usage

publication/paper.pdf

-16 Bytes
Binary file not shown.

0 commit comments

Comments
 (0)