@@ -308,24 +308,21 @@ Node
308308 Text
309309 By multiplying a chain complex by successive powers of an ideal we obtain a filtered complex.
310310 Example
311- B = QQ [a..d]
312- J = ideal vars B
313- C = res monomialCurveIdeal (B ,{1,3,4})
314- K = filteredComplex(J,C,4 )
311+ S = QQ [a..d]
312+ J = ideal vars S
313+ C = res monomialCurveIdeal (S ,{1,3,4})
314+ K = filteredComplex(J,C,2 )
315315 Text
316316 Here are higher some pages of the associated spectral sequence :
317317 Example
318- e = prune spectralSequence K
319- e^2
320- -- e^3
321- -- e^3 .dd
322- -- e^4
323- -- e^4 .dd
324- assert (all (keys support e^0, j -> isIsomorphism homologyIsomorphism(e,j#0,j#1,0)))
325- assert (all (keys support e^1, j -> isIsomorphism homologyIsomorphism(e,j#0,j#1,1)))
326- assert (all (keys support e^2, j -> isIsomorphism homologyIsomorphism(e,j#0,j#1,2)))
327- assert (all (keys support e^3, j -> isIsomorphism homologyIsomorphism(e,j#0,j#1,3)))
328- assert (all (keys support e^4, j -> isIsomorphism homologyIsomorphism(e,j#0,j#1,4)))
318+ E = prune spectralSequence K
319+ E^2
320+ E^3
321+ assert all (keys support E^0, j -> isIsomorphism homologyIsomorphism(E, j#0, j#1, 0 ))
322+ assert all (keys support E^1, j -> isIsomorphism homologyIsomorphism(E, j#0, j#1, 1 ))
323+ assert all (keys support E^2, j -> isIsomorphism homologyIsomorphism(E, j#0, j#1, 2 ))
324+ assert all (keys support E^3, j -> isIsomorphism homologyIsomorphism(E, j#0, j#1, 3 ))
325+ assert all (keys support E^4, j -> isIsomorphism homologyIsomorphism(E, j#0, j#1, 4 ))
329326
330327Node
331328 Key
@@ -627,13 +624,14 @@ doc ///
627624 B = QQ [a..d];
628625 J = ideal vars B;
629626 C = res monomialCurveIdeal (B,{1,3,4});
630- K = filteredComplex(J,C,4 );
627+ K = filteredComplex(J,C,2 );
631628 E = spectralSequence K
632629 Text
633- To view pages or maps we proceed as follows (note we suppress the output of the E^0. dd command to prevent excessive output) .
630+ To view pages or maps we proceed as follows.
634631 Example
635- E^0
636- E^0 .dd ;
632+ E^2
633+ support E^2 .dd
634+ E^2 .dd _{0,1}
637635 E^infinity
638636 SeeAlso
639637 SpectralSequence
@@ -661,14 +659,10 @@ doc ///
661659 Description
662660 Text
663661 Returns the k-th page of the spectral sequence .
664-
665- Consider the filtered complex $K$ below, obtained by multiplying the minimal free resolution of
666- the rational quartic space curve by successive powers of the irrelevant ideal .
667662 Example
668- B = QQ [a..d];
669- J = ideal vars B;
670- C = res monomialCurveIdeal (B,{1,3,4});
671- K = filteredComplex(J,C,4);
663+ S = QQ [a..d];
664+ C = koszulComplex vars S
665+ K = filteredComplex C
672666 Text
673667 Let $E$ be the spectral sequence determined by $K$.
674668 Example
@@ -767,10 +761,10 @@ doc ///
767761 obtained by multiplying the minimal free resolution of the rational
768762 quartic space curve by successive powers of the irrelevant ideal .
769763 Example
770- B = QQ [a..d];
771- J = ideal vars B ;
772- C = res monomialCurveIdeal (B, {1,3,4});
773- K = filteredComplex(J,C,4 );
764+ S = QQ [a..d];
765+ J = ideal vars S ;
766+ C = res monomialCurveIdeal (S, {1,3,4});
767+ K = filteredComplex(J,C,2 );
774768 Text
775769 Compare some pages of the non-pruned version of the spectral sequence with that of the pruned version .
776770 Example
@@ -832,10 +826,10 @@ doc ///
832826 As a specific example consider the filtered complex $K$ below, obtained by multiplying the minimal free resolution of
833827 the rational quartic space curve by successive powers of the irrelevant ideal .
834828 Example
835- B = QQ [a..d];
836- J = ideal vars B ;
837- C = res monomialCurveIdeal (B ,{1,3,4});
838- K = filteredComplex(J,C,4 );
829+ S = QQ [a..d];
830+ J = ideal vars S ;
831+ C = res monomialCurveIdeal (S ,{1,3,4});
832+ K = filteredComplex(J,C,2 );
839833 Text
840834 The infinity page of the resulting spectral sequence is computed below.
841835 Example
@@ -929,8 +923,8 @@ doc ///
929923 > " hilbertPolynomial(Page)"
930924 > " SpectralSequencePage ^ List"
931925 Caveat
932- The isomorphisms $4$ and $4$' are not explicitly
933- part of the data type, although they can be obtained by using the command @TO " homologyIsomorphism" @.
926+ The isomorphisms above are not explicitly part of the data type,
927+ but they can be obtained by using the command @TO " homologyIsomorphism" @.
934928 SeeAlso
935929 SpectralSequence
936930 SpectralSequencePageMap
@@ -955,10 +949,10 @@ doc ///
955949 Consider the filtered complex $K$ below, obtained by multiplying the minimal free resolution of
956950 the rational quartic space curve by successive powers of the irrelevant ideal .
957951 Example
958- B = QQ [a..d];
959- J = ideal vars B ;
960- C = res monomialCurveIdeal (B, {1,3,4});
961- K = filteredComplex(J,C,4 );
952+ S = QQ [a..d];
953+ J = ideal vars S ;
954+ C = res monomialCurveIdeal (S, {1,3,4});
955+ K = filteredComplex(J,C,2 );
962956 Text
963957 Let $E$ be the spectral sequence determined by $K$.
964958 Example
@@ -967,7 +961,7 @@ doc ///
967961 We now compute some pages.
968962 Example
969963 E^0
970- E^1
964+ E^2
971965 E^infinity
972966///
973967
@@ -988,15 +982,18 @@ doc ///
988982 Text
989983 This is the primitive spectral sequence page constructor.
990984 Example
991- B = QQ [a..d];
992- J = ideal vars B ;
993- C = res monomialCurveIdeal (B ,{1,3,4});
994- K = filteredComplex(J,C,4 );
985+ S = QQ [a..d];
986+ J = ideal vars S ;
987+ C = res monomialCurveIdeal (S ,{1,3,4});
988+ K = filteredComplex(J,C,2 );
995989 E = spectralSequence K
996990 Text
997- To view pages and or maps we proceed, for example, as follows
991+ To view pages or maps we proceed as follows.
998992 Example
999- E^0
993+ E^2
994+ support E^2 .dd
995+ E^2 .dd _{0,1}
996+ E^infinity
1000997 SeeAlso
1001998 spectralSequence
1002999 (spectralSequence, FilteredComplex)
@@ -1053,18 +1050,11 @@ doc ///
10531050 Description
10541051 Text
10551052 Returns the pruning maps which are cached in the process of pruning the spectral sequence page.
1056-
1057- As a specific example consider the filtered complex $K$ below, obtained by multiplying the minimal free resolution of
1058- the rational quartic space curve by successive powers of the irrelevant ideal .
10591053 Example
1060- B = QQ [a..d];
1061- J = ideal vars B;
1062- C = res monomialCurveIdeal (B,{1,3,4});
1063- K = filteredComplex(J,C,4);
1064- Text
1065- We compute an example of a pruning map below.
1066- Example
1067- E = prune spectralSequence K;
1054+ S = QQ [a..d];
1055+ C = koszulComplex vars S
1056+ K = filteredComplex C
1057+ E = prune spectralSequence K
10681058 pruningMaps E^2
10691059 SeeAlso
10701060 (prune , SpectralSequence)
@@ -1084,25 +1074,25 @@ doc ///
10841074 L:List
10851075 E:SpectralSequencePage
10861076 Outputs
1087- B: Matrix -- Note!! The output should actually be a page!!
1077+ B:Page
10881078 Description
10891079 Text
1090- Returns generators for the requested (multi)degree of the spectral sequence page. It is designed to extend
1091- the function @TO " basis" @ which can be applied to modules, for instance .
1080+ Returns generators for the requested (multi)degree of the spectral sequence page.
1081+ It is designed to extend the function @TO " basis" @ which can be applied to modules, for instance .
10921082
10931083 As a specific example consider the filtered complex $K$ below, obtained by multiplying the minimal free resolution of
10941084 the rational quartic space curve by successive powers of the irrelevant ideal .
10951085 Example
1096- B = QQ [a..d];
1097- J = ideal vars B ;
1098- C = res monomialCurveIdeal (B, {1,3,4});
1099- K = filteredComplex(J,C,4 );
1086+ S = QQ [a..d];
1087+ J = ideal vars S ;
1088+ C = res monomialCurveIdeal (S, {1,3,4});
1089+ K = filteredComplex(J,C,2 );
11001090 Text
11011091 We compute the degree $0$ piece of the $E^3$ page below.
11021092 Example
11031093 E = prune spectralSequence K;
11041094 E^3
1105- basis (0,E^3)
1095+ basis (0, E^3)
11061096 SeeAlso
11071097 basis
11081098///
@@ -1125,15 +1115,17 @@ doc ///
11251115 As a specific example consider the filtered complex $K$ below, obtained by multiplying the minimal free resolution of
11261116 the rational quartic space curve by successive powers of the irrelevant ideal .
11271117 Example
1128- B = QQ [a..d];
1129- J = ideal vars B ;
1130- C = res monomialCurveIdeal (B, {1,3,4});
1131- K = filteredComplex(J,C,4 );
1118+ S = QQ [a..d];
1119+ J = ideal vars S ;
1120+ C = res monomialCurveIdeal (S, {1,3,4});
1121+ K = filteredComplex(J,C,2 );
11321122 Text
11331123 We compute the degree $0$ piece of the $E^3$ page below.
11341124 Example
11351125 E = prune spectralSequence K;
1136- hilbertPolynomial (E^3)
1126+ hilbertPolynomial (E^0)
1127+ hilbertPolynomial (E^1)
1128+ hilbertPolynomial (E^infinity )
11371129///
11381130
11391131doc ///
@@ -1158,10 +1150,10 @@ doc ///
11581150 As a specific example consider the filtered complex $K$ below, obtained by multiplying the minimal free resolution of
11591151 the rational quartic space curve by successive powers of the irrelevant ideal .
11601152 Example
1161- B = QQ [a..d];
1162- J = ideal vars B ;
1163- C = res monomialCurveIdeal (B, {1,3,4});
1164- K = filteredComplex(J,C,4 );
1153+ S = QQ [a..d];
1154+ J = ideal vars S ;
1155+ C = res monomialCurveIdeal (S, {1,3,4});
1156+ K = filteredComplex(J,C,2 );
11651157 Text
11661158 Compare some pruned and non-prunded pages the spectral sequence $E$ below.
11671159 Example
@@ -1243,15 +1235,17 @@ doc ///
12431235 As a specific example consider the filtered complex $K$ below, obtained by multiplying the minimal free resolution of
12441236 the rational quartic space curve by successive powers of the irrelevant ideal .
12451237 Example
1246- B = QQ [a..d];
1247- J = ideal vars B ;
1248- C = res monomialCurveIdeal (B, {1,3,4});
1249- K = filteredComplex(J,C,4 );
1238+ S = QQ [a..d];
1239+ J = ideal vars S ;
1240+ C = res monomialCurveIdeal (S, {1,3,4});
1241+ K = filteredComplex(J,C,2 );
12501242 Text
12511243 We compute an example of a pruning map below.
12521244 Example
12531245 E = prune spectralSequence K;
1254- pruningMaps E^2
1246+ D = E^2 .dd
1247+ support D
1248+ D_{0,1}
12551249 SeeAlso
12561250 Page
12571251 SpectralSequencePageMap
@@ -1326,10 +1320,10 @@ doc ///
13261320 Text
13271321 The notation @TT " P.dd_{p,q}" @ returns the map with source the homological {p,q} term on a spectral sequence page.
13281322 Example
1329- B = QQ [a..d];
1330- J = ideal vars B ;
1331- C = res monomialCurveIdeal (B, {1,2,3});
1332- K = filteredComplex(J,C,4 );
1323+ S = QQ [a..d];
1324+ J = ideal vars S ;
1325+ C = res monomialCurveIdeal (S, {1,2,3});
1326+ K = filteredComplex(J,C,2 );
13331327 Text
13341328 We compute a map on the third page of the spectral sequence associated to $K$.
13351329 Example
0 commit comments