@@ -1389,57 +1389,6 @@ assert ( genera R == {1,2} )
13891389assert ( eulers R == {0,3} )
13901390
13911391
1392- --
1393- M = matrix {{1.0,1.0},{0.0,1.0}}
1394- eigenvalues M
1395- eigenvectors M
1396-
1397- M0 = matrix {{1_RR,-1},{1,1}};
1398- M = M0++ M0;
1399- (D, P) = eigenvectors M
1400- assert ( 1 e-10 > norm (M* P - P * diagonalMatrix (D)))
1401-
1402- M = matrix {{1.0, 2 .0}, {2.0, 1 .0}}
1403- eigenvectors (M, Hermitian =>true )
1404-
1405- M = matrix {{1.0, 2 .0}, {5.0, 7 .0}}
1406- (eigvals, eigvecs) = eigenvectors M
1407- -- here we use "norm" on vectors!
1408- assert ( 1 e-10 > norm ( M * eigvecs_0 - eigvals_0 * eigvecs_0 ) )
1409- assert ( 1 e-10 > norm ( M * eigvecs_1 - eigvals_1 * eigvecs_1 ) )
1410-
1411- printingPrecision = 2
1412-
1413- m = map (CC ^10, CC ^10, (i,j) -> i^2 + j^3* ii )
1414- (eigvals, eigvecs) = eigenvectors m
1415- max (abs \ eigvals) / min (abs \ eigvals)
1416- scan (#eigvals, i -> assert ( 1 e-10 > norm ( m * eigvecs_i - eigvals_i * eigvecs_i )))
1417-
1418- -- some ill-conditioned matrices
1419-
1420- m = map (CC ^10, CC ^10, (i,j) -> (i+ 1)^(j+ 1))
1421- (eigvals, eigvecs) = eigenvectors m
1422- max (abs \ eigvals) / min (abs \ eigvals)
1423- apply (#eigvals, i -> norm ( m * eigvecs_i - eigvals_i * eigvecs_i ))
1424- scan (#eigvals, i -> assert ( 1 e-4 > norm ( m * eigvecs_i - eigvals_i * eigvecs_i )))
1425-
1426- m = map (RR ^10, RR ^10, (i,j) -> (i+ 1)^(j+ 1))
1427- (eigvals, eigvecs) = eigenvectors m
1428- max (abs \ eigvals) / min (abs \ eigvals)
1429- apply (#eigvals, i -> norm ( m * eigvecs_i - eigvals_i * eigvecs_i ))
1430- scan (#eigvals, i -> assert ( 1 e-4 > norm ( m * eigvecs_i - eigvals_i * eigvecs_i )))
1431-
1432-
1433-
1434- --
1435- m = map (CC ^10, CC ^10, (i,j) -> i^2 + j^3* ii )
1436- eigenvalues m
1437- m = map (CC ^10, CC ^10, (i,j) -> (i+ 1)^(j+ 1))
1438- eigenvalues m
1439- m = map (RR ^10, RR ^10, (i,j) -> (i+ 1)^(j+ 1))
1440- eigenvalues m
1441-
1442-
14431392--
14441393 R=ZZ/101 [a..d]
14451394 C=resolution cokernel vars R
0 commit comments