@@ -568,6 +568,9 @@ SpectralSequence _ ZZ := SpectralSequencePage => (E,r) -> ( E^r )
568568minimalPresentation SpectralSequence := prune SpectralSequence := SpectralSequence => opts -> E -> (
569569 spectralSequence(E.filteredComplex, Prune => true ))
570570
571+ filteredComplex SpectralSequence := FilteredComplex => opts -> E -> E.filteredComplex
572+ complex SpectralSequence := Complex => {} >> opts -> E -> complex E.filteredComplex
573+
571574-- ------------------------------------------------------------------------------
572575-- spectral sequence pages
573576-- ------------------------------------------------------------------------------
@@ -736,20 +739,15 @@ SpectralSequencePageMap ^ List := Matrix => (d,i)-> (d_(-i))
736739
737740-- auxiliary spectral sequence stuff.
738741
739- filteredComplex SpectralSequence := FilteredComplex => opts -> E -> E.filteredComplex
740- complex SpectralSequence := Complex => {} >> opts -> E -> complex E.filteredComplex
741-
742742-- given a morphism f: A --> B
743743-- compute the connecting map
744744-- HH_{n+1}( coker f) --> HH_n (im f)
745745
746746connectingMorphism = method ()
747-
748- connectingMorphism(ComplexMap,ZZ ) := (a,n) -> (
749- K := filteredComplex ({a}) ;
750- e := spectralSequence K ;
751- e^1 .dd_{1, n}
752- )
747+ connectingMorphism(ComplexMap, ZZ ) := (a, n) -> (
748+ K := filteredComplex ({a});
749+ e := spectralSequence K;
750+ e^1 .dd_{1, n})
753751
754752hilbertPolynomial SpectralSequencePage := Page => o -> E -> (
755753 P := new Page;
@@ -769,36 +767,27 @@ basis(List, SpectralSequencePage) := opts -> (deg, E) -> (
769767 P := new Page;
770768 apply (spots E.dd , i -> P#i = basis (deg,E_i));
771769 P)
772- --
773- --
774- --
775770
776771edgeComplex = method ()
777- edgeComplex( SpectralSequence) := (E) -> (
772+ edgeComplex SpectralSequence := E -> (
778773 if E.Prune then error " not currently implemented for pruned spectral sequences" ;
779774 M := select (spots E^2 .dd , i -> E^2_i != 0 );
780775 l := min apply (M, i -> i#0);
781776 m := min apply (M, i -> i#1);
782777 C := complex E;
783778 if M != {} then (
784- complex {inducedMap (E^2_{l + 1 , m}, HH_(l + m + 1 ) C, id_(C_(l + m + 1 ))),
785- inducedMap (HH_(l + m + 1 ) C, E^2_{l,m + 1 }, id_(C_(l + m + 1 ))),
786- E^2 .dd_{l + 2 ,m}, inducedMap (E^2_{l + 2 , m}, HH_(l + m + 2 ) C, id_(C_(l + m + 2 )))})
779+ complex {inducedMap (E^2_{l + 1 , m}, HH_(l + m + 1 ) C, id_(C_(l + m + 1 ))),
780+ inducedMap (HH_(l + m + 1 ) C, E^2_{l,m + 1 }, id_(C_(l + m + 1 ))),
781+ E^2 .dd_{l + 2 ,m}, inducedMap (E^2_{l + 2 , m}, HH_(l + m + 2 ) C, id_(C_(l + m + 2 )))})
787782 else complex C.ring )
788783
789-
790784filteredHomologyObject = method ()
791-
792- filteredHomologyObject(ZZ , ZZ ,FilteredComplex) := (p,n,K) -> (
793- image (inducedMap (HH_n K_infinity, HH_n K_p, id_(K_infinity _n)))
794- )
795-
785+ filteredHomologyObject(ZZ , ZZ , FilteredComplex) := (p,n,K) -> (
786+ image inducedMap (HH_n K_infinity, HH_n K_p, id_(K_infinity _n)))
796787
797788associatedGradedHomologyObject = method ()
798-
799- associatedGradedHomologyObject(ZZ ,ZZ ,FilteredComplex) := (p,n,K) -> (
800- filteredHomologyObject(p,n,K) / filteredHomologyObject(p-1,n,K)
801- )
789+ associatedGradedHomologyObject(ZZ , ZZ , FilteredComplex) := (p,n,K) -> (
790+ filteredHomologyObject(p,n,K) / filteredHomologyObject(p-1,n,K))
802791
803792-- -
804793-- Documentation and tests
0 commit comments