@@ -23,57 +23,22 @@ def _compare_jacobian(f, x):
23
23
return res
24
24
25
25
26
- """
27
- _models = [
28
- nnj.Sequential(
29
- nnj.Linear(_in_features, 2), nnj.Softplus(beta=100, threshold=5), nnj.Linear(2, 4), nnj.Tanh()
30
- ),
31
- nnj.Sequential(nnj.RBF(_in_features, 30), nnj.Linear(30, 2)),
32
- nnj.Sequential(nnj.Linear(_in_features, 4), nnj.Norm2()),
33
- nnj.Sequential(nnj.Linear(_in_features, 50), nnj.ReLU(), nnj.Linear(50, 100), nnj.Softplus()),
34
- nnj.Sequential(nnj.Linear(_in_features, 256)),
35
- nnj.Sequential(nnj.Softplus(), nnj.Linear(_in_features, 3), nnj.Softplus()),
36
- nnj.Sequential(nnj.Softplus(), nnj.Sigmoid(), nnj.Linear(_in_features, 3)),
37
- nnj.Sequential(nnj.Softplus(), nnj.Sigmoid()),
38
- nnj.Sequential(nnj.Linear(_in_features, 3), nnj.OneMinusX()),
39
- nnj.Sequential(
40
- nnj.PosLinear(_in_features, 2), nnj.Softplus(beta=100, threshold=5), nnj.PosLinear(2, 4), nnj.Tanh()
41
- ),
42
- nnj.Sequential(nnj.PosLinear(_in_features, 5), nnj.Reciprocal(b=1.0)),
43
- nnj.Sequential(nnj.ReLU(), nnj.ELU(), nnj.LeakyReLU(), nnj.Sigmoid(), nnj.Softplus(), nnj.Tanh()),
44
- nnj.Sequential(nnj.ReLU()),
45
- nnj.Sequential(nnj.ELU()),
46
- nnj.Sequential(nnj.LeakyReLU()),
47
- nnj.Sequential(nnj.Sigmoid()),
48
- nnj.Sequential(nnj.Softplus()),
49
- nnj.Sequential(nnj.Tanh()),
50
- nnj.Sequential(nnj.Hardshrink()),
51
- nnj.Sequential(nnj.Hardtanh()),
52
- nnj.Sequential(nnj.ResidualBlock(nnj.Linear(_in_features, 50), nnj.ReLU())),
53
- nnj.Sequential(nnj.BatchNorm1d(_in_features)),
54
- nnj.Sequential(
55
- nnj.BatchNorm1d(_in_features),
56
- nnj.ResidualBlock(nnj.Linear(_in_features, 25), nnj.Softplus()),
57
- nnj.BatchNorm1d(25),
58
- nnj.ResidualBlock(nnj.Linear(25, 25), nnj.Softplus()),
59
- ),
60
- ]
61
- """
62
-
63
-
64
-
65
26
@pytest .mark .parametrize ("model, input" ,
66
27
[
67
- (nnj .Sequential (nnj .Linear (_features , 2 )), _linear_input ),
68
- (nnj .Sequential (nnj .Linear (_features , 2 ), nnj .Sigmoid ()), _linear_input ),
28
+ (nnj .Sequential (nnj .Identity (), nnj .Identity ()), _linear_input ),
29
+ (nnj .Linear (_features , 2 ), _linear_input ),
30
+ (nnj .PosLinear (_features , 2 ), _linear_input ),
31
+ (nnj .Sequential (nnj .Linear (_features , 2 ), nnj .Sigmoid (), nnj .ArcTanh ()), _linear_input ),
69
32
(nnj .Sequential (nnj .Linear (_features , 5 ), nnj .Sigmoid (), nnj .Linear (5 , 2 )), _linear_input ),
70
33
(nnj .Sequential (
71
34
nnj .Linear (_features , 2 ), nnj .Softplus (beta = 100 , threshold = 5 ), nnj .Linear (2 , 4 ), nnj .Tanh ()
72
35
), _linear_input ),
73
- (nnj .Sequential (nnj .Linear (_features , 2 ), nnj .Sigmoid (), nnj .ReLU ()), _linear_input ),
74
- (nnj .Sequential (nnj .Conv1d (_features , 2 , 5 )), _1d_conv_input ),
75
- (nnj .Sequential (nnj .Conv2d (_features , 2 , 5 )), _2d_conv_input ),
76
- (nnj .Sequential (nnj .Conv3d (_features , 2 , 5 )), _3d_conv_input ),
36
+ (nnj .Sequential (
37
+ nnj .ELU (), nnj .Linear (_features , 2 ), nnj .Sigmoid (), nnj .ReLU (), nnj .Hardshrink (), nnj .LeakyReLU ()
38
+ ), _linear_input ),
39
+ (nnj .Sequential (nnj .Conv1d (_features , 2 , 5 ), nnj .ConvTranspose1d (2 , _features , 5 )), _1d_conv_input ),
40
+ (nnj .Sequential (nnj .Conv2d (_features , 2 , 5 ), nnj .ConvTranspose2d (2 , _features , 5 )), _2d_conv_input ),
41
+ (nnj .Sequential (nnj .Conv3d (_features , 2 , 5 ), nnj .ConvTranspose3d (2 , _features , 5 )), _3d_conv_input ),
77
42
(nnj .Sequential (
78
43
nnj .Linear (_features , 8 ), nnj .Sigmoid (), nnj .Reshape (2 , 4 ), nnj .Conv1d (2 , 1 , 2 ),
79
44
),_linear_input ),
@@ -91,7 +56,10 @@ def _compare_jacobian(f, x):
91
56
),_2d_conv_input ),
92
57
(nnj .Sequential (
93
58
nnj .Conv3d (_features , 2 , 3 ), nnj .Flatten (), nnj .Linear (8 * 8 * 8 * 2 , 5 ), nnj .ReLU (),
94
- ),_3d_conv_input )
59
+ ),_3d_conv_input ),
60
+ (nnj .Sequential (
61
+ nnj .Conv2d (_features , 2 , 3 ), nnj .Hardtanh (), nnj .Upsample (scale_factor = 2 )
62
+ ), _2d_conv_input )
95
63
]
96
64
)
97
65
class TestJacobian :
0 commit comments