@@ -1320,11 +1320,14 @@ Note that the space group symmetry has 26 symmetry elements as it includes addit
13201320
13211321.. code- block:: Python
13221322
1323- >> > g = Group(227 )
1324- >> > id , matrix = g.get_spg_representation()
1325- >> > id
1323+ g = Group(227 )
1324+ id , matrix = g.get_spg_representation()
1325+ print (id )
1326+ print (matrix)
1327+
1328+ ::
1329+
1326133013
1327- >> > matrix
13281331array([[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ],
13291332 [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ],
13301333 [0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ],
@@ -1345,7 +1348,7 @@ array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
13451348
13461349In the above example, the lattice id is 13 , corresponding to the cubic- F lattice.
13471350
1348- .. list- table:: Lattice Types and IDs
1351+ .. list- table:: The crystallographic lattice types ' classification.
13491352 :header- rows: 1
13501353 :widths: auto
13511354
@@ -1386,7 +1389,6 @@ The matrix representation is a 15*26 array, where the 15 rows represent the 15 p
13861389and the last 26 columns represent the presence of 26 symmetry elements.
13871390
13881391
1389-
13901392For the use of this function, please cite the following paper.
13911393
13921394::
0 commit comments