@@ -35,7 +35,7 @@ class BalancedTree(_NetworkXBuiltin):
3535 https://reference.wolfram.com/language/ref/BalancedTree.html</url>
3636
3737 <dl>
38- <dt>'BalancedTree[$r$, $h$]'
38+ <dt>'BalancedTree' [$r$, $h$]
3939 <dd>Returns the perfectly balanced $r$-ary tree of height $h$.
4040
4141 In this tree produced, all non-leaf nodes will have $r$ children and \
@@ -90,7 +90,7 @@ class BarbellGraph(_NetworkXBuiltin):
9090 https://mathworld.wolfram.com/BarbellGraph.html</url>)
9191
9292 <dl>
93- <dt>'BarbellGraph[$m1 $, $m2$]'
93+ <dt>'BarbellGraph'[$m_1 $, $m_2$]
9494 <dd>Barbell Graph: two complete graphs connected by a path.
9595 </dl>
9696
@@ -148,7 +148,7 @@ class BinomialTree(_NetworkXBuiltin):
148148 :WMA:https://reference.wolfram.com/language/ref/BinomialTree.html</url>)
149149
150150 <dl>
151- <dt>'BinomialTree[$n$]'
151+ <dt>'BinomialTree' [$n$]
152152 <dd>Returns the Binomial Tree of order $n$.
153153
154154 The binomial tree of order $n$ with root $R$ is defined as:
@@ -206,7 +206,7 @@ class CompleteGraph(_NetworkXBuiltin):
206206 https://reference.wolfram.com/language/ref/CompleteGraph.html</url>)
207207
208208 <dl>
209- <dt>'CompleteGraph[$n$]'
209+ <dt>'CompleteGraph' [$n$]
210210 <dd>Returns the complete graph with $n$ vertices, $K_n$.
211211 </dl>
212212
@@ -244,7 +244,7 @@ class CompleteKaryTree(_NetworkXBuiltin):
244244 https://reference.wolfram.com/language/ref/CompleteKaryTree.html</url>)
245245
246246 <dl>
247- <dt>'CompleteKaryTree[$n$, $k$]'
247+ <dt>'CompleteKaryTree' [$n$, $k$]
248248 <dd>Creates a complete $k$-ary tree of $n$ levels.
249249 </dl>
250250
@@ -295,7 +295,7 @@ class CycleGraph(_NetworkXBuiltin):
295295 https://reference.wolfram.com/language/ref/CycleGraph.html</url>)
296296
297297 <dl>
298- <dt>'CycleGraph[$n$]'
298+ <dt>'CycleGraph' [$n$]
299299 <dd>Returns the cycle graph with $n$ vertices $C_n$.
300300 </dl>
301301
@@ -324,7 +324,7 @@ class GraphAtlas(_NetworkXBuiltin):
324324 </url>
325325
326326 <dl>
327- <dt>'GraphAtlas[$n$]'
327+ <dt>'GraphAtlas' [$n$]
328328 <dd>Returns graph number $i$ from the NetworkX's Graph \
329329 Atlas. There are about 1200 of them and get large as $i$ \
330330 increases.
@@ -368,7 +368,7 @@ class HknHararyGraph(_NetworkXBuiltin):
368368 https://reference.wolfram.com/language/ref/HknHararyGraph.html</url>
369369
370370 <dl>
371- <dt>'HknHararyGraph[$k$, $n$]'
371+ <dt>'HknHararyGraph' [$k$, $n$]
372372 <dd>Returns the Harary graph with given node connectivity and node number.
373373
374374 This second generator gives the Harary graph that minimizes the \
@@ -405,7 +405,7 @@ class HmnHararyGraph(_NetworkXBuiltin):
405405 https://reference.wolfram.com/language/ref/HmnHararyGraph.html</url>
406406
407407 <dl>
408- <dt>'HmnHararyGraph[$m$, $n$]'
408+ <dt>'HmnHararyGraph' [$m$, $n$]
409409 <dd>Returns the Harary graph with given numbers of nodes and edges.
410410
411411 This generator gives the Harary graph that maximizes the node \
@@ -461,12 +461,12 @@ class KaryTree(_NetworkXBuiltin):
461461
462462
463463 <dl>
464- <dt>'KaryTree[$r$, $n$]'
464+ <dt>'KaryTree' [$r$, $n$]
465465 <dd>Creates binary tree of $n$ vertices.
466466 </dl>
467467
468468 <dl>
469- <dt>'KaryTree[$n$, $k$]'
469+ <dt>'KaryTree' [$n$, $k$]
470470 <dd>Creates $k$-ary tree with $n$ vertices.
471471 </dl>
472472
@@ -509,7 +509,7 @@ class LadderGraph(_NetworkXBuiltin):
509509 /generated/networkx.generators.classic.ladder_graph.html</url>)
510510
511511 <dl>
512- <dt>'LadderGraph[$n$]'
512+ <dt>'LadderGraph' [$n$]
513513 <dd>Returns the Ladder graph of length $n$.
514514 </dl>
515515
@@ -549,7 +549,7 @@ class PathGraph(_NetworkXBuiltin):
549549 </url> (<url>:WMA:https://reference.wolfram.com/language/ref/PathGraph.html
550550 </url>)
551551 <dl>
552- <dt>'PathGraph[{$v_1$, $v_2$, ...}]'
552+ <dt>'PathGraph' [{$v_1$, $v_2$, ...}]
553553 <dd>Returns a Graph with a path with vertices $v_i$ and \
554554 edges between $v-i$ and $v_i+1$ .
555555 </dl>
@@ -584,7 +584,7 @@ class RandomTree(_NetworkXBuiltin):
584584 https://reference.wolfram.com/language/ref/RandomTree.html</url>
585585
586586 <dl>
587- <dt>'RandomTree[$n$]'
587+ <dt>'RandomTree' [$n$]
588588 <dd>Returns a uniformly random tree on $n$ nodes.
589589 </dl>
590590
@@ -630,7 +630,7 @@ class StarGraph(_NetworkXBuiltin):
630630 https://reference.wolfram.com/language/ref/StarGraph.html
631631 </url>)
632632 <dl>
633- <dt>'StarGraph[$n$]'
633+ <dt>'StarGraph' [$n$]
634634 <dd>Returns a star graph with $n$ vertices.
635635 </dl>
636636
0 commit comments