You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: pymathics/graph/parametric.py
+24-22Lines changed: 24 additions & 22 deletions
Original file line number
Diff line number
Diff line change
@@ -34,8 +34,8 @@ class BalancedTree(_NetworkXBuiltin):
34
34
<dt>'BalancedTree[$r$, $h$]'
35
35
<dd>Returns the perfectly balanced $r$-ary tree of height $h$.
36
36
37
-
In this tree produced, all non-leaf nodes will have $r$ children and the height of
38
-
the path from root $r$ to any leaf will be $h$.
37
+
In this tree produced, all non-leaf nodes will have $r$ children and \
38
+
the height of the path from root $r$ to any leaf will be $h$.
39
39
</dl>
40
40
41
41
>> BalancedTree[2, 3]
@@ -82,8 +82,8 @@ class BarbellGraph(_NetworkXBuiltin):
82
82
<dd>Barbell Graph: two complete graphs connected by a path.
83
83
</dl>
84
84
85
-
## >> BarbellGraph[4, 1]
86
-
## = -Graph-
85
+
>> BarbellGraph[4, 1]
86
+
= -Graph-
87
87
88
88
"""
89
89
@@ -132,11 +132,14 @@ class BinomialTree(_NetworkXBuiltin):
132
132
133
133
The binomial tree of order $n$ with root $R$ is defined as:
134
134
135
-
If $k$=0, $B[k]$ = $B[0]$ = {$R$}. i.e., the binomial tree of order zero consists of a single node, $R$.
135
+
If $k$=0, $B[k]$ = $B[0]$ = {$R$}. i.e., the binomial tree of order \
136
+
zero consists of a single node, $R$.
136
137
137
-
If $k>0$, B[k] = {$R$, $B[0$], $B[1]$ .. $B[k]$, i.e., the binomial tree of order $k$>0 comprises the root $R$, and $k$ binomial subtrees, $B[0] to $B[k].
138
+
If $k>0$, B[k] = {$R$, $B[0$], $B[1]$ .. $B[k]$, i.e., the binomial tree \
139
+
of order $k$>0 comprises the root $R$, and $k$ binomial subtrees, \
140
+
$B[0] to $B[k].
138
141
139
-
Binomial trees the underlying datastructre in Binomial Heaps.
142
+
Binomial trees are the underlying datastructre in Binomial Heaps.
140
143
</dl>
141
144
142
145
>> BinomialTree[3]
@@ -171,15 +174,11 @@ class CompleteGraph(_NetworkXBuiltin):
171
174
"""
172
175
<dl>
173
176
<dt>'CompleteGraph[$n$]'
174
-
<dd>Returns the complete graph with $n$ vertices, $K_n$
177
+
<dd>Returns the complete graph with $n$ vertices, $K_n$.
175
178
</dl>
176
179
177
180
>> CompleteGraph[8]
178
181
= -Graph-
179
-
180
-
#> CompleteGraph[0]
181
-
: Expected a positive integer at position 1 in CompleteGraph[0].
0 commit comments