diff --git a/clever_challenge.ipynb b/clever_challenge.ipynb
new file mode 100644
index 0000000..d760817
--- /dev/null
+++ b/clever_challenge.ipynb
@@ -0,0 +1,5169 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "name": "clever-challenge.ipynb",
+ "version": "0.3.2",
+ "provenance": [],
+ "collapsed_sections": [
+ "AnuHgcPYmQRW",
+ "bLPjatkUmhkh",
+ "384J2g1i3lKY",
+ "-a8zqhzzeW-o",
+ "EfqXsdkENBvQ",
+ "lVqgPYkdeiJu",
+ "C6a0XgUlfTMC",
+ "MFtRS6hLM4ko",
+ "hWJsJOa5M6Yp",
+ "DAJVtMgLOMny"
+ ]
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ },
+ "accelerator": "GPU"
+ },
+ "cells": [
+ {
+ "metadata": {
+ "id": "a_gOOWakb7qk",
+ "colab_type": "code",
+ "outputId": "72c7025a-7595-496d-99fb-405d4a247173",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 119
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "!git clone https://github.com/MathieuNls/clever-challenge.git"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "Cloning into 'clever-challenge'...\n",
+ "remote: Enumerating objects: 30, done.\u001b[K\n",
+ "remote: Counting objects: 3% (1/30) \u001b[K\rremote: Counting objects: 6% (2/30) \u001b[K\rremote: Counting objects: 10% (3/30) \u001b[K\rremote: Counting objects: 13% (4/30) \u001b[K\rremote: Counting objects: 16% (5/30) \u001b[K\rremote: Counting objects: 20% (6/30) \u001b[K\rremote: Counting objects: 23% (7/30) \u001b[K\rremote: Counting objects: 26% (8/30) \u001b[K\rremote: Counting objects: 30% (9/30) \u001b[K\rremote: Counting objects: 33% (10/30) \u001b[K\rremote: Counting objects: 36% (11/30) \u001b[K\rremote: Counting objects: 40% (12/30) \u001b[K\rremote: Counting objects: 43% (13/30) \u001b[K\rremote: Counting objects: 46% (14/30) \u001b[K\rremote: Counting objects: 50% (15/30) \u001b[K\rremote: Counting objects: 53% (16/30) \u001b[K\rremote: Counting objects: 56% (17/30) \u001b[K\rremote: Counting objects: 60% (18/30) \u001b[K\rremote: Counting objects: 63% (19/30) \u001b[K\rremote: Counting objects: 66% (20/30) \u001b[K\rremote: Counting objects: 70% (21/30) \u001b[K\rremote: Counting objects: 73% (22/30) \u001b[K\rremote: Counting objects: 76% (23/30) \u001b[K\rremote: Counting objects: 80% (24/30) \u001b[K\rremote: Counting objects: 83% (25/30) \u001b[K\rremote: Counting objects: 86% (26/30) \u001b[K\rremote: Counting objects: 90% (27/30) \u001b[K\rremote: Counting objects: 93% (28/30) \u001b[K\rremote: Counting objects: 96% (29/30) \u001b[K\rremote: Counting objects: 100% (30/30) \u001b[K\rremote: Counting objects: 100% (30/30), done.\u001b[K\n",
+ "remote: Compressing objects: 100% (26/26), done.\u001b[K\n",
+ "remote: Total 82 (delta 11), reused 18 (delta 4), pack-reused 52\u001b[K\n",
+ "Unpacking objects: 100% (82/82), done.\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "r-q8nO-bXigo",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "import numpy as np\n",
+ "import lightgbm as lgb\n",
+ "pd.set_option('display.max_columns',50)"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "YWQfvIbud0zy",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "# Peek sample and res"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "ZlyoQwajXvwN",
+ "colab_type": "code",
+ "outputId": "a6060635-ad2e-42f4-cea7-fab14a96b343",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1989
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "pd.read_csv('clever-challenge/seq/sample.csv')"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " event_id | \n",
+ " timestamp | \n",
+ " class | \n",
+ " f1 | \n",
+ " f2 | \n",
+ " f3 | \n",
+ " f3.1 | \n",
+ " f4 | \n",
+ " f5 | \n",
+ " f6 | \n",
+ " f7 | \n",
+ " f8 | \n",
+ " f9 | \n",
+ " f10 | \n",
+ " f11 | \n",
+ " f12 | \n",
+ " f13 | \n",
+ " f14 | \n",
+ " f15 | \n",
+ " f16 | \n",
+ " f17 | \n",
+ " f18 | \n",
+ " f19 | \n",
+ " f20 | \n",
+ " f21 | \n",
+ " f22 | \n",
+ " f23 | \n",
+ " f24 | \n",
+ " f25 | \n",
+ " f26 | \n",
+ " f27 | \n",
+ " f28 | \n",
+ " f29 | \n",
+ " f30 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 811067 | \n",
+ " 1479737872 | \n",
+ " 1 | \n",
+ " 9 | \n",
+ " 16257 | \n",
+ " 172188 | \n",
+ " 10.287316 | \n",
+ " 45344815 | \n",
+ " 0 | \n",
+ " 0.000000 | \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 9230 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 811068 | \n",
+ " 1480609381 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3.000000 | \n",
+ " 2 | \n",
+ " 10.086910 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 9231 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 811069 | \n",
+ " 1480670042 | \n",
+ " 1 | \n",
+ " 7 | \n",
+ " 1731 | \n",
+ " 10212 | \n",
+ " 7.460379 | \n",
+ " 2000330 | \n",
+ " 84524 | \n",
+ " 157.627693 | \n",
+ " 1 | \n",
+ " 2.579979 | \n",
+ " 2442 | \n",
+ " 172188 | \n",
+ " 0 | \n",
+ " 172076 | \n",
+ " 9230 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 811070 | \n",
+ " 1480673885 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 4 | \n",
+ " 12 | \n",
+ " 1.665603 | \n",
+ " 353 | \n",
+ " 0 | \n",
+ " 0.000000 | \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 9232 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 811071 | \n",
+ " 1480673919 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 4 | \n",
+ " 22 | \n",
+ " 0.919741 | \n",
+ " 6263 | \n",
+ " 4346 | \n",
+ " 684.409091 | \n",
+ " 2 | \n",
+ " 10.341428 | \n",
+ " 21 | \n",
+ " 12 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 9232 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 5 | \n",
+ " 811072 | \n",
+ " 1480692926 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 0.793341 | \n",
+ " 31 | \n",
+ " 33 | \n",
+ " 1277.000000 | \n",
+ " 2 | \n",
+ " 11.053866 | \n",
+ " 3 | \n",
+ " 34 | \n",
+ " 0 | \n",
+ " 17 | \n",
+ " 9232 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 6 | \n",
+ " 811073 | \n",
+ " 1480697906 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 20 | \n",
+ " 10 | \n",
+ " 1103.000000 | \n",
+ " 2 | \n",
+ " 11.111505 | \n",
+ " 1 | \n",
+ " 37 | \n",
+ " 0 | \n",
+ " 20 | \n",
+ " 9232 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 7 | \n",
+ " 811074 | \n",
+ " 1481216829 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 0.070304 | \n",
+ " 119 | \n",
+ " 108 | \n",
+ " 952.500000 | \n",
+ " 2 | \n",
+ " 17.117558 | \n",
+ " 2 | \n",
+ " 38 | \n",
+ " 0 | \n",
+ " 21 | \n",
+ " 9232 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 8 | \n",
+ " 811075 | \n",
+ " 1481290988 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 9 | \n",
+ " 1.330891 | \n",
+ " 260 | \n",
+ " 185 | \n",
+ " 670.111111 | \n",
+ " 2 | \n",
+ " 17.975880 | \n",
+ " 9 | \n",
+ " 40 | \n",
+ " 0 | \n",
+ " 23 | \n",
+ " 9232 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 9 | \n",
+ " 811076 | \n",
+ " 1481549433 | \n",
+ " 1 | \n",
+ " 6 | \n",
+ " 788 | \n",
+ " 6801 | \n",
+ " 7.347146 | \n",
+ " 491555 | \n",
+ " 44374 | \n",
+ " 195.737686 | \n",
+ " 1 | \n",
+ " 6.827746 | \n",
+ " 2226 | \n",
+ " 182400 | \n",
+ " 0 | \n",
+ " 182282 | \n",
+ " 9230 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 10 | \n",
+ " 811077 | \n",
+ " 1481634992 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 11 | \n",
+ " 1.533789 | \n",
+ " 880 | \n",
+ " 873 | \n",
+ " 763.090909 | \n",
+ " 2 | \n",
+ " 21.957407 | \n",
+ " 11 | \n",
+ " 49 | \n",
+ " 0 | \n",
+ " 32 | \n",
+ " 9232 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 11 | \n",
+ " 811078 | \n",
+ " 1481641096 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 31 | \n",
+ " 31 | \n",
+ " 3141.000000 | \n",
+ " 2 | \n",
+ " 22.028056 | \n",
+ " 1 | \n",
+ " 60 | \n",
+ " 0 | \n",
+ " 43 | \n",
+ " 9232 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 12 | \n",
+ " 811079 | \n",
+ " 1481641945 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 0.623655 | \n",
+ " 19 | \n",
+ " 19 | \n",
+ " 1499.000000 | \n",
+ " 2 | \n",
+ " 22.037882 | \n",
+ " 2 | \n",
+ " 61 | \n",
+ " 0 | \n",
+ " 44 | \n",
+ " 9232 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 13 | \n",
+ " 811080 | \n",
+ " 1481707904 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 1244.000000 | \n",
+ " 2 | \n",
+ " 22.801296 | \n",
+ " 1 | \n",
+ " 63 | \n",
+ " 0 | \n",
+ " 5 | \n",
+ " 9232 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 14 | \n",
+ " 811081 | \n",
+ " 1481707933 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0.000000 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0.000000 | \n",
+ " 0 | \n",
+ " 0.000000 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 9232 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 15 | \n",
+ " 811082 | \n",
+ " 1481707972 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 571.000000 | \n",
+ " 2 | \n",
+ " 22.802083 | \n",
+ " 1 | \n",
+ " 64 | \n",
+ " 0 | \n",
+ " 46 | \n",
+ " 9232 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 16 | \n",
+ " 811083 | \n",
+ " 1481735108 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 6 | \n",
+ " 1.075495 | \n",
+ " 77 | \n",
+ " 25 | \n",
+ " 565.333333 | \n",
+ " 2 | \n",
+ " 23.116157 | \n",
+ " 6 | \n",
+ " 65 | \n",
+ " 0 | \n",
+ " 47 | \n",
+ " 9232 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 17 | \n",
+ " 811084 | \n",
+ " 1483525216 | \n",
+ " 1 | \n",
+ " 6 | \n",
+ " 762 | \n",
+ " 2894 | \n",
+ " 5.270264 | \n",
+ " 142829 | \n",
+ " 120956 | \n",
+ " 603.984105 | \n",
+ " 1 | \n",
+ " 40.837052 | \n",
+ " 2711 | \n",
+ " 189201 | \n",
+ " 0 | \n",
+ " 189083 | \n",
+ " 9230 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18 | \n",
+ " 811085 | \n",
+ " 1483528788 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 16 | \n",
+ " 25 | \n",
+ " 1.155885 | \n",
+ " 14 | \n",
+ " 6083 | \n",
+ " 434.760000 | \n",
+ " 2 | \n",
+ " 31.590967 | \n",
+ " 18 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 9233 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 19 | \n",
+ " 811086 | \n",
+ " 1484125083 | \n",
+ " 1 | \n",
+ " 6 | \n",
+ " 608 | \n",
+ " 3792 | \n",
+ " 6.004499 | \n",
+ " 36401 | \n",
+ " 51295 | \n",
+ " 295.827268 | \n",
+ " 1 | \n",
+ " 25.219946 | \n",
+ " 1894 | \n",
+ " 192095 | \n",
+ " 0 | \n",
+ " 191977 | \n",
+ " 9230 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 20 | \n",
+ " 811087 | \n",
+ " 1484558712 | \n",
+ " 1 | \n",
+ " 5 | \n",
+ " 105 | \n",
+ " 498 | \n",
+ " 4.925736 | \n",
+ " 89143 | \n",
+ " 29140 | \n",
+ " 247.351406 | \n",
+ " 2 | \n",
+ " 16.021961 | \n",
+ " 143 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 9234 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 21 | \n",
+ " 811088 | \n",
+ " 1484650601 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 561.000000 | \n",
+ " 1 | \n",
+ " 1.063530 | \n",
+ " 1 | \n",
+ " 498 | \n",
+ " 0 | \n",
+ " 36 | \n",
+ " 9234 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 22 | \n",
+ " 811089 | \n",
+ " 1484658668 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 46.000000 | \n",
+ " 1 | \n",
+ " 56.953657 | \n",
+ " 1 | \n",
+ " 195887 | \n",
+ " 0 | \n",
+ " 124521 | \n",
+ " 9230 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 23 | \n",
+ " 811090 | \n",
+ " 1484728664 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 5 | \n",
+ " 137 | \n",
+ " 0.693147 | \n",
+ " 0 | \n",
+ " 20 | \n",
+ " 0.145985 | \n",
+ " 2 | \n",
+ " 57.763796 | \n",
+ " 137 | \n",
+ " 499 | \n",
+ " 0 | \n",
+ " 95 | \n",
+ " 9234 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 24 | \n",
+ " 811091 | \n",
+ " 1484730023 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 15 | \n",
+ " 117 | \n",
+ " 4.060632 | \n",
+ " 9 | \n",
+ " 24884 | \n",
+ " 214.034188 | \n",
+ " 2 | \n",
+ " 57.779525 | \n",
+ " 117 | \n",
+ " 636 | \n",
+ " 0 | \n",
+ " 37 | \n",
+ " 9234 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 25 | \n",
+ " 811092 | \n",
+ " 1484738472 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 9 | \n",
+ " 30 | \n",
+ " 3.024751 | \n",
+ " 32 | \n",
+ " 3780 | \n",
+ " 151.833333 | \n",
+ " 3 | \n",
+ " 56.017423 | \n",
+ " 30 | \n",
+ " 753 | \n",
+ " 0 | \n",
+ " 520 | \n",
+ " 9234 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 26 | \n",
+ " 811093 | \n",
+ " 1484821986 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 9 | \n",
+ " 13 | \n",
+ " 2.100050 | \n",
+ " 9 | \n",
+ " 400 | \n",
+ " 237.461538 | \n",
+ " 2 | \n",
+ " 54.551854 | \n",
+ " 13 | \n",
+ " 783 | \n",
+ " 0 | \n",
+ " 368 | \n",
+ " 9234 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 27 | \n",
+ " 811094 | \n",
+ " 1484823356 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 49 | \n",
+ " 50 | \n",
+ " 3.361060 | \n",
+ " 0 | \n",
+ " 12453 | \n",
+ " 249.060000 | \n",
+ " 2 | \n",
+ " 58.859769 | \n",
+ " 50 | \n",
+ " 796 | \n",
+ " 0 | \n",
+ " 341 | \n",
+ " 9234 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 28 | \n",
+ " 811095 | \n",
+ " 1484824389 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 17 | \n",
+ " 20 | \n",
+ " 2.532379 | \n",
+ " 0 | \n",
+ " 10417 | \n",
+ " 520.350000 | \n",
+ " 2 | \n",
+ " 50.040966 | \n",
+ " 17 | \n",
+ " 846 | \n",
+ " 0 | \n",
+ " 222 | \n",
+ " 9234 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 29 | \n",
+ " 811096 | \n",
+ " 1484830002 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 0.735071 | \n",
+ " 2 | \n",
+ " 41 | \n",
+ " 1190.750000 | \n",
+ " 2 | \n",
+ " 31.038310 | \n",
+ " 4 | \n",
+ " 866 | \n",
+ " 0 | \n",
+ " 242 | \n",
+ " 9234 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 18387 | \n",
+ " 829454 | \n",
+ " 1541503013 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 0.686962 | \n",
+ " 6 | \n",
+ " 3 | \n",
+ " 195.500000 | \n",
+ " 4 | \n",
+ " 714.874317 | \n",
+ " 2 | \n",
+ " 80 | \n",
+ " 0 | \n",
+ " 69 | \n",
+ " 9760 | \n",
+ " 1 | \n",
+ " 5.0 | \n",
+ " 0 | \n",
+ " 5.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18388 | \n",
+ " 829455 | \n",
+ " 1541504284 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 0 | \n",
+ " 18 | \n",
+ " 18.000000 | \n",
+ " 2 | \n",
+ " 305.945590 | \n",
+ " 1 | \n",
+ " 7985 | \n",
+ " 0 | \n",
+ " 7964 | \n",
+ " 9884 | \n",
+ " 2 | \n",
+ " 5459.0 | \n",
+ " 0 | \n",
+ " 5104.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18389 | \n",
+ " 829456 | \n",
+ " 1541504374 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 38 | \n",
+ " 6 | \n",
+ " 6.000000 | \n",
+ " 1 | \n",
+ " 62.153785 | \n",
+ " 1 | \n",
+ " 7986 | \n",
+ " 0 | \n",
+ " 7965 | \n",
+ " 9884 | \n",
+ " 2 | \n",
+ " 5460.0 | \n",
+ " 0 | \n",
+ " 5105.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18390 | \n",
+ " 829457 | \n",
+ " 1541504480 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 5 | \n",
+ " 1.130563 | \n",
+ " 51 | \n",
+ " 31 | \n",
+ " 4144.600000 | \n",
+ " 50 | \n",
+ " 714.891296 | \n",
+ " 5 | \n",
+ " 1606 | \n",
+ " 0 | \n",
+ " 1413 | \n",
+ " 9602 | \n",
+ " 1 | \n",
+ " 40040.0 | \n",
+ " 0 | \n",
+ " 37184.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18391 | \n",
+ " 829458 | \n",
+ " 1541504662 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 9 | \n",
+ " 6 | \n",
+ " 205.000000 | \n",
+ " 3 | \n",
+ " 66.801887 | \n",
+ " 1 | \n",
+ " 322 | \n",
+ " 0 | \n",
+ " 322 | \n",
+ " 9517 | \n",
+ " 1 | \n",
+ " 73.0 | \n",
+ " 0 | \n",
+ " 68.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18392 | \n",
+ " 829459 | \n",
+ " 1541505006 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 0.350924 | \n",
+ " 120 | \n",
+ " 76 | \n",
+ " 346.666667 | \n",
+ " 2 | \n",
+ " 714.897384 | \n",
+ " 3 | \n",
+ " 930 | \n",
+ " 0 | \n",
+ " 736 | \n",
+ " 9321 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18393 | \n",
+ " 829460 | \n",
+ " 1541505124 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 0.206192 | \n",
+ " 18 | \n",
+ " 1 | \n",
+ " 183.000000 | \n",
+ " 8 | \n",
+ " 714.898750 | \n",
+ " 2 | \n",
+ " 137 | \n",
+ " 0 | \n",
+ " 130 | \n",
+ " 9822 | \n",
+ " 2 | \n",
+ " 280.0 | \n",
+ " 0 | \n",
+ " 273.5 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18394 | \n",
+ " 829461 | \n",
+ " 1541505497 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 1.151565 | \n",
+ " 69 | \n",
+ " 23 | \n",
+ " 2072.600000 | \n",
+ " 79 | \n",
+ " 564.382053 | \n",
+ " 5 | \n",
+ " 1611 | \n",
+ " 0 | \n",
+ " 1443 | \n",
+ " 9602 | \n",
+ " 1 | \n",
+ " 5282.0 | \n",
+ " 0 | \n",
+ " 5074.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18395 | \n",
+ " 829462 | \n",
+ " 1541508357 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 95.000000 | \n",
+ " 2 | \n",
+ " 383.009387 | \n",
+ " 1 | \n",
+ " 1151 | \n",
+ " 0 | \n",
+ " 93 | \n",
+ " 9392 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18396 | \n",
+ " 829463 | \n",
+ " 1541509416 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 1.098612 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 25.000000 | \n",
+ " 1 | \n",
+ " 301.079572 | \n",
+ " 3 | \n",
+ " 3182 | \n",
+ " 0 | \n",
+ " 2818 | \n",
+ " 9361 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18397 | \n",
+ " 829464 | \n",
+ " 1541509602 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 6 | \n",
+ " 19 | \n",
+ " 2.248572 | \n",
+ " 364 | \n",
+ " 46 | \n",
+ " 291.000000 | \n",
+ " 31 | \n",
+ " 497.858681 | \n",
+ " 17 | \n",
+ " 139 | \n",
+ " 0 | \n",
+ " 132 | \n",
+ " 9822 | \n",
+ " 3 | \n",
+ " 606.0 | \n",
+ " 0 | \n",
+ " 577.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18398 | \n",
+ " 829465 | \n",
+ " 1541509889 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 0.404963 | \n",
+ " 26 | \n",
+ " 24 | \n",
+ " 177.500000 | \n",
+ " 18 | \n",
+ " 297.898600 | \n",
+ " 2 | \n",
+ " 90655 | \n",
+ " 0 | \n",
+ " 90614 | \n",
+ " 9356 | \n",
+ " 2 | \n",
+ " 7451.5 | \n",
+ " 0 | \n",
+ " 7322.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18399 | \n",
+ " 829466 | \n",
+ " 1541511145 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 0.676720 | \n",
+ " 67 | \n",
+ " 41 | \n",
+ " 1013.666667 | \n",
+ " 19 | \n",
+ " 425.985845 | \n",
+ " 3 | \n",
+ " 2416 | \n",
+ " 0 | \n",
+ " 2413 | \n",
+ " 9343 | \n",
+ " 1 | \n",
+ " 1486.0 | \n",
+ " 0 | \n",
+ " 1477.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18400 | \n",
+ " 829467 | \n",
+ " 1541511246 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 0.500402 | \n",
+ " 3 | \n",
+ " 17 | \n",
+ " 277.000000 | \n",
+ " 6 | \n",
+ " 714.969606 | \n",
+ " 2 | \n",
+ " 3188 | \n",
+ " 0 | \n",
+ " 749 | \n",
+ " 9302 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18401 | \n",
+ " 829468 | \n",
+ " 1541511582 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 411.000000 | \n",
+ " 10 | \n",
+ " 425.990903 | \n",
+ " 1 | \n",
+ " 5295 | \n",
+ " 0 | \n",
+ " 5283 | \n",
+ " 156 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18402 | \n",
+ " 829469 | \n",
+ " 1541511667 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 6 | \n",
+ " 0 | \n",
+ " 63.000000 | \n",
+ " 2 | \n",
+ " 43.011910 | \n",
+ " 1 | \n",
+ " 2379 | \n",
+ " 0 | \n",
+ " 2372 | \n",
+ " 9313 | \n",
+ " 1 | \n",
+ " 470.0 | \n",
+ " 0 | \n",
+ " 470.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18403 | \n",
+ " 829470 | \n",
+ " 1541511767 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 6 | \n",
+ " 0 | \n",
+ " 0.000000 | \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 0 | \n",
+ " 433 | \n",
+ " 0 | \n",
+ " 221 | \n",
+ " 9941 | \n",
+ " 2 | \n",
+ " 1559.5 | \n",
+ " 0 | \n",
+ " 182.5 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18404 | \n",
+ " 829471 | \n",
+ " 1541511819 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 6 | \n",
+ " 3 | \n",
+ " 103.000000 | \n",
+ " 1 | \n",
+ " 41.004514 | \n",
+ " 1 | \n",
+ " 2859 | \n",
+ " 0 | \n",
+ " 2859 | \n",
+ " 9350 | \n",
+ " 1 | \n",
+ " 570.0 | \n",
+ " 0 | \n",
+ " 570.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18405 | \n",
+ " 829472 | \n",
+ " 1541512044 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 7 | \n",
+ " 13 | \n",
+ " 1.951913 | \n",
+ " 262 | \n",
+ " 104 | \n",
+ " 110.384615 | \n",
+ " 27 | \n",
+ " 141.837264 | \n",
+ " 13 | \n",
+ " 2437 | \n",
+ " 0 | \n",
+ " 2436 | \n",
+ " 9367 | \n",
+ " 2 | \n",
+ " 1295.0 | \n",
+ " 0 | \n",
+ " 1291.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18406 | \n",
+ " 829473 | \n",
+ " 1541512276 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0.000000 | \n",
+ " 16 | \n",
+ " 13 | \n",
+ " 59.000000 | \n",
+ " 8 | \n",
+ " 266.868345 | \n",
+ " 1 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 5 | \n",
+ " 9979 | \n",
+ " 2 | \n",
+ " 1229.5 | \n",
+ " 0 | \n",
+ " 1229.5 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18407 | \n",
+ " 829474 | \n",
+ " 1541512419 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 8 | \n",
+ " 1.259228 | \n",
+ " 180 | \n",
+ " 24 | \n",
+ " 64.625000 | \n",
+ " 33 | \n",
+ " 202.970451 | \n",
+ " 6 | \n",
+ " 8106 | \n",
+ " 0 | \n",
+ " 8046 | \n",
+ " 9351 | \n",
+ " 1 | \n",
+ " 2325.0 | \n",
+ " 0 | \n",
+ " 2322.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18408 | \n",
+ " 829475 | \n",
+ " 1541513218 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 0.808060 | \n",
+ " 17 | \n",
+ " 4 | \n",
+ " 38.000000 | \n",
+ " 11 | \n",
+ " 353.951752 | \n",
+ " 3 | \n",
+ " 2860 | \n",
+ " 0 | \n",
+ " 2860 | \n",
+ " 9350 | \n",
+ " 1 | \n",
+ " 1499.0 | \n",
+ " 0 | \n",
+ " 1489.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18409 | \n",
+ " 829476 | \n",
+ " 1541513379 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 7 | \n",
+ " 1.457736 | \n",
+ " 278 | \n",
+ " 72 | \n",
+ " 28.142857 | \n",
+ " 10 | \n",
+ " 184.880324 | \n",
+ " 5 | \n",
+ " 452 | \n",
+ " 0 | \n",
+ " 452 | \n",
+ " 9430 | \n",
+ " 2 | \n",
+ " 875.5 | \n",
+ " 0 | \n",
+ " 869.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18410 | \n",
+ " 829477 | \n",
+ " 1541513547 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 0.313932 | \n",
+ " 72 | \n",
+ " 44 | \n",
+ " 1243.666667 | \n",
+ " 12 | \n",
+ " 714.996238 | \n",
+ " 3 | \n",
+ " 248 | \n",
+ " 0 | \n",
+ " 248 | \n",
+ " 9490 | \n",
+ " 1 | \n",
+ " 40045.0 | \n",
+ " 0 | \n",
+ " 37189.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18411 | \n",
+ " 829478 | \n",
+ " 1541513562 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 0.685060 | \n",
+ " 54 | \n",
+ " 26 | \n",
+ " 773.666667 | \n",
+ " 2 | \n",
+ " 523.397944 | \n",
+ " 3 | \n",
+ " 5533 | \n",
+ " 0 | \n",
+ " 5298 | \n",
+ " 9241 | \n",
+ " 1 | \n",
+ " 474.0 | \n",
+ " 0 | \n",
+ " 326.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18412 | \n",
+ " 829479 | \n",
+ " 1541513703 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 6 | \n",
+ " 1.149620 | \n",
+ " 219 | \n",
+ " 100 | \n",
+ " 604.666667 | \n",
+ " 2 | \n",
+ " 714.998044 | \n",
+ " 6 | \n",
+ " 2430 | \n",
+ " 0 | \n",
+ " 1298 | \n",
+ " 9489 | \n",
+ " 1 | \n",
+ " 364.0 | \n",
+ " 0 | \n",
+ " 248.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18413 | \n",
+ " 829480 | \n",
+ " 1541513809 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 0.200000 | \n",
+ " 196 | \n",
+ " 2 | \n",
+ " 49.500000 | \n",
+ " 5 | \n",
+ " 237.149051 | \n",
+ " 2 | \n",
+ " 41 | \n",
+ " 0 | \n",
+ " 41 | \n",
+ " 435 | \n",
+ " 1 | \n",
+ " 620.0 | \n",
+ " 0 | \n",
+ " 619.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18414 | \n",
+ " 829481 | \n",
+ " 1541513853 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 5 | \n",
+ " 1.105769 | \n",
+ " 58 | \n",
+ " 36 | \n",
+ " 973.800000 | \n",
+ " 25 | \n",
+ " 272.355479 | \n",
+ " 5 | \n",
+ " 2380 | \n",
+ " 0 | \n",
+ " 2373 | \n",
+ " 9313 | \n",
+ " 1 | \n",
+ " 5502.0 | \n",
+ " 0 | \n",
+ " 5459.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18415 | \n",
+ " 829482 | \n",
+ " 1541514956 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 0.522172 | \n",
+ " 26 | \n",
+ " 1 | \n",
+ " 99.333333 | \n",
+ " 6 | \n",
+ " 206.805313 | \n",
+ " 3 | \n",
+ " 1230 | \n",
+ " 0 | \n",
+ " 1210 | \n",
+ " 9288 | \n",
+ " 1 | \n",
+ " 387.0 | \n",
+ " 0 | \n",
+ " 379.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 18416 | \n",
+ " 829483 | \n",
+ " 1541514997 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 0.693147 | \n",
+ " 20 | \n",
+ " 4 | \n",
+ " 105.000000 | \n",
+ " 4 | \n",
+ " 129.956354 | \n",
+ " 2 | \n",
+ " 2450 | \n",
+ " 0 | \n",
+ " 2449 | \n",
+ " 9367 | \n",
+ " 1 | \n",
+ " 676.0 | \n",
+ " 0 | \n",
+ " 274.0 | \n",
+ " 0.0 | \n",
+ " 0 | \n",
+ " 0.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
18417 rows × 34 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " event_id timestamp class f1 f2 f3 f3.1 f4 \\\n",
+ "0 811067 1479737872 1 9 16257 172188 10.287316 45344815 \n",
+ "1 811068 1480609381 0 1 1 1 0.000000 2 \n",
+ "2 811069 1480670042 1 7 1731 10212 7.460379 2000330 \n",
+ "3 811070 1480673885 0 1 4 12 1.665603 353 \n",
+ "4 811071 1480673919 0 2 4 22 0.919741 6263 \n",
+ "5 811072 1480692926 0 1 1 3 0.793341 31 \n",
+ "6 811073 1480697906 0 1 1 1 0.000000 20 \n",
+ "7 811074 1481216829 0 1 1 2 0.070304 119 \n",
+ "8 811075 1481290988 0 1 3 9 1.330891 260 \n",
+ "9 811076 1481549433 1 6 788 6801 7.347146 491555 \n",
+ "10 811077 1481634992 1 1 3 11 1.533789 880 \n",
+ "11 811078 1481641096 0 1 1 1 0.000000 31 \n",
+ "12 811079 1481641945 0 1 2 2 0.623655 19 \n",
+ "13 811080 1481707904 1 1 1 1 0.000000 3 \n",
+ "14 811081 1481707933 0 0 0 0 0.000000 0 \n",
+ "15 811082 1481707972 1 1 1 1 0.000000 1 \n",
+ "16 811083 1481735108 1 1 1 6 1.075495 77 \n",
+ "17 811084 1483525216 1 6 762 2894 5.270264 142829 \n",
+ "18 811085 1483528788 1 3 16 25 1.155885 14 \n",
+ "19 811086 1484125083 1 6 608 3792 6.004499 36401 \n",
+ "20 811087 1484558712 1 5 105 498 4.925736 89143 \n",
+ "21 811088 1484650601 0 1 1 1 0.000000 2 \n",
+ "22 811089 1484658668 0 1 1 1 0.000000 1 \n",
+ "23 811090 1484728664 0 1 5 137 0.693147 0 \n",
+ "24 811091 1484730023 1 1 15 117 4.060632 9 \n",
+ "25 811092 1484738472 1 3 9 30 3.024751 32 \n",
+ "26 811093 1484821986 0 2 9 13 2.100050 9 \n",
+ "27 811094 1484823356 0 1 49 50 3.361060 0 \n",
+ "28 811095 1484824389 0 2 17 20 2.532379 0 \n",
+ "29 811096 1484830002 0 2 3 4 0.735071 2 \n",
+ "... ... ... ... .. ... ... ... ... \n",
+ "18387 829454 1541503013 0 1 1 2 0.686962 6 \n",
+ "18388 829455 1541504284 0 1 1 1 0.000000 0 \n",
+ "18389 829456 1541504374 0 1 1 1 0.000000 38 \n",
+ "18390 829457 1541504480 0 1 2 5 1.130563 51 \n",
+ "18391 829458 1541504662 0 1 1 1 0.000000 9 \n",
+ "18392 829459 1541505006 0 1 1 3 0.350924 120 \n",
+ "18393 829460 1541505124 0 1 1 2 0.206192 18 \n",
+ "18394 829461 1541505497 0 2 4 5 1.151565 69 \n",
+ "18395 829462 1541508357 0 1 1 1 0.000000 1 \n",
+ "18396 829463 1541509416 0 1 3 3 1.098612 3 \n",
+ "18397 829464 1541509602 0 1 6 19 2.248572 364 \n",
+ "18398 829465 1541509889 0 1 1 2 0.404963 26 \n",
+ "18399 829466 1541511145 0 1 2 3 0.676720 67 \n",
+ "18400 829467 1541511246 0 1 1 2 0.500402 3 \n",
+ "18401 829468 1541511582 0 1 1 1 0.000000 1 \n",
+ "18402 829469 1541511667 0 1 1 1 0.000000 6 \n",
+ "18403 829470 1541511767 0 1 1 1 0.000000 6 \n",
+ "18404 829471 1541511819 0 1 1 1 0.000000 6 \n",
+ "18405 829472 1541512044 0 1 7 13 1.951913 262 \n",
+ "18406 829473 1541512276 0 1 1 1 0.000000 16 \n",
+ "18407 829474 1541512419 0 1 2 8 1.259228 180 \n",
+ "18408 829475 1541513218 0 1 2 3 0.808060 17 \n",
+ "18409 829476 1541513379 0 1 3 7 1.457736 278 \n",
+ "18410 829477 1541513547 0 1 2 3 0.313932 72 \n",
+ "18411 829478 1541513562 0 2 3 3 0.685060 54 \n",
+ "18412 829479 1541513703 0 1 1 6 1.149620 219 \n",
+ "18413 829480 1541513809 0 1 1 2 0.200000 196 \n",
+ "18414 829481 1541513853 0 1 3 5 1.105769 58 \n",
+ "18415 829482 1541514956 0 1 2 3 0.522172 26 \n",
+ "18416 829483 1541514997 0 1 1 2 0.693147 20 \n",
+ "\n",
+ " f5 f6 f7 f8 f9 f10 f11 f12 f13 \\\n",
+ "0 0 0.000000 1 0.000000 0 0 0 0 9230 \n",
+ "1 1 3.000000 2 10.086910 1 0 0 0 9231 \n",
+ "2 84524 157.627693 1 2.579979 2442 172188 0 172076 9230 \n",
+ "3 0 0.000000 1 0.000000 0 0 0 0 9232 \n",
+ "4 4346 684.409091 2 10.341428 21 12 0 0 9232 \n",
+ "5 33 1277.000000 2 11.053866 3 34 0 17 9232 \n",
+ "6 10 1103.000000 2 11.111505 1 37 0 20 9232 \n",
+ "7 108 952.500000 2 17.117558 2 38 0 21 9232 \n",
+ "8 185 670.111111 2 17.975880 9 40 0 23 9232 \n",
+ "9 44374 195.737686 1 6.827746 2226 182400 0 182282 9230 \n",
+ "10 873 763.090909 2 21.957407 11 49 0 32 9232 \n",
+ "11 31 3141.000000 2 22.028056 1 60 0 43 9232 \n",
+ "12 19 1499.000000 2 22.037882 2 61 0 44 9232 \n",
+ "13 2 1244.000000 2 22.801296 1 63 0 5 9232 \n",
+ "14 0 0.000000 0 0.000000 0 0 0 0 9232 \n",
+ "15 0 571.000000 2 22.802083 1 64 0 46 9232 \n",
+ "16 25 565.333333 2 23.116157 6 65 0 47 9232 \n",
+ "17 120956 603.984105 1 40.837052 2711 189201 0 189083 9230 \n",
+ "18 6083 434.760000 2 31.590967 18 0 0 0 9233 \n",
+ "19 51295 295.827268 1 25.219946 1894 192095 0 191977 9230 \n",
+ "20 29140 247.351406 2 16.021961 143 0 0 0 9234 \n",
+ "21 2 561.000000 1 1.063530 1 498 0 36 9234 \n",
+ "22 1 46.000000 1 56.953657 1 195887 0 124521 9230 \n",
+ "23 20 0.145985 2 57.763796 137 499 0 95 9234 \n",
+ "24 24884 214.034188 2 57.779525 117 636 0 37 9234 \n",
+ "25 3780 151.833333 3 56.017423 30 753 0 520 9234 \n",
+ "26 400 237.461538 2 54.551854 13 783 0 368 9234 \n",
+ "27 12453 249.060000 2 58.859769 50 796 0 341 9234 \n",
+ "28 10417 520.350000 2 50.040966 17 846 0 222 9234 \n",
+ "29 41 1190.750000 2 31.038310 4 866 0 242 9234 \n",
+ "... ... ... .. ... ... ... ... ... ... \n",
+ "18387 3 195.500000 4 714.874317 2 80 0 69 9760 \n",
+ "18388 18 18.000000 2 305.945590 1 7985 0 7964 9884 \n",
+ "18389 6 6.000000 1 62.153785 1 7986 0 7965 9884 \n",
+ "18390 31 4144.600000 50 714.891296 5 1606 0 1413 9602 \n",
+ "18391 6 205.000000 3 66.801887 1 322 0 322 9517 \n",
+ "18392 76 346.666667 2 714.897384 3 930 0 736 9321 \n",
+ "18393 1 183.000000 8 714.898750 2 137 0 130 9822 \n",
+ "18394 23 2072.600000 79 564.382053 5 1611 0 1443 9602 \n",
+ "18395 1 95.000000 2 383.009387 1 1151 0 93 9392 \n",
+ "18396 3 25.000000 1 301.079572 3 3182 0 2818 9361 \n",
+ "18397 46 291.000000 31 497.858681 17 139 0 132 9822 \n",
+ "18398 24 177.500000 18 297.898600 2 90655 0 90614 9356 \n",
+ "18399 41 1013.666667 19 425.985845 3 2416 0 2413 9343 \n",
+ "18400 17 277.000000 6 714.969606 2 3188 0 749 9302 \n",
+ "18401 0 411.000000 10 425.990903 1 5295 0 5283 156 \n",
+ "18402 0 63.000000 2 43.011910 1 2379 0 2372 9313 \n",
+ "18403 0 0.000000 1 0.000000 0 433 0 221 9941 \n",
+ "18404 3 103.000000 1 41.004514 1 2859 0 2859 9350 \n",
+ "18405 104 110.384615 27 141.837264 13 2437 0 2436 9367 \n",
+ "18406 13 59.000000 8 266.868345 1 5 0 5 9979 \n",
+ "18407 24 64.625000 33 202.970451 6 8106 0 8046 9351 \n",
+ "18408 4 38.000000 11 353.951752 3 2860 0 2860 9350 \n",
+ "18409 72 28.142857 10 184.880324 5 452 0 452 9430 \n",
+ "18410 44 1243.666667 12 714.996238 3 248 0 248 9490 \n",
+ "18411 26 773.666667 2 523.397944 3 5533 0 5298 9241 \n",
+ "18412 100 604.666667 2 714.998044 6 2430 0 1298 9489 \n",
+ "18413 2 49.500000 5 237.149051 2 41 0 41 435 \n",
+ "18414 36 973.800000 25 272.355479 5 2380 0 2373 9313 \n",
+ "18415 1 99.333333 6 206.805313 3 1230 0 1210 9288 \n",
+ "18416 4 105.000000 4 129.956354 2 2450 0 2449 9367 \n",
+ "\n",
+ " f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 \\\n",
+ "0 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "1 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "2 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "3 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "4 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "5 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "6 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "7 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "8 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "9 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "10 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "11 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "12 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "13 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "14 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "15 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "16 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "17 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "18 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "19 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "20 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "21 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "22 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "23 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "24 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "25 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "26 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "27 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "28 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "29 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "... ... ... ... ... ... ... ... ... ... ... ... ... \n",
+ "18387 1 5.0 0 5.0 0.0 0 0.0 1 0 0 0 0 \n",
+ "18388 2 5459.0 0 5104.0 0.0 0 0.0 2 0 0 0 0 \n",
+ "18389 2 5460.0 0 5105.0 0.0 0 0.0 2 0 0 0 0 \n",
+ "18390 1 40040.0 0 37184.0 0.0 0 0.0 1 0 0 0 0 \n",
+ "18391 1 73.0 0 68.0 0.0 0 0.0 1 0 0 0 0 \n",
+ "18392 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "18393 2 280.0 0 273.5 0.0 0 0.0 2 0 0 0 0 \n",
+ "18394 1 5282.0 0 5074.0 0.0 0 0.0 1 0 0 0 0 \n",
+ "18395 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "18396 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "18397 3 606.0 0 577.0 0.0 0 0.0 3 0 0 0 0 \n",
+ "18398 2 7451.5 0 7322.0 0.0 0 0.0 2 0 0 0 0 \n",
+ "18399 1 1486.0 0 1477.0 0.0 0 0.0 1 0 0 0 0 \n",
+ "18400 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "18401 0 0.0 0 0.0 0.0 0 0.0 0 0 0 0 0 \n",
+ "18402 1 470.0 0 470.0 0.0 0 0.0 1 0 0 0 0 \n",
+ "18403 2 1559.5 0 182.5 0.0 0 0.0 2 0 0 0 0 \n",
+ "18404 1 570.0 0 570.0 0.0 0 0.0 1 0 0 0 0 \n",
+ "18405 2 1295.0 0 1291.0 0.0 0 0.0 2 0 0 0 0 \n",
+ "18406 2 1229.5 0 1229.5 0.0 0 0.0 2 0 0 0 0 \n",
+ "18407 1 2325.0 0 2322.0 0.0 0 0.0 1 0 0 0 0 \n",
+ "18408 1 1499.0 0 1489.0 0.0 0 0.0 1 0 0 0 0 \n",
+ "18409 2 875.5 0 869.0 0.0 0 0.0 2 0 0 0 0 \n",
+ "18410 1 40045.0 0 37189.0 0.0 0 0.0 1 0 0 0 0 \n",
+ "18411 1 474.0 0 326.0 0.0 0 0.0 1 0 0 0 0 \n",
+ "18412 1 364.0 0 248.0 0.0 0 0.0 1 0 0 0 0 \n",
+ "18413 1 620.0 0 619.0 0.0 0 0.0 1 0 0 0 0 \n",
+ "18414 1 5502.0 0 5459.0 0.0 0 0.0 1 0 0 0 0 \n",
+ "18415 1 387.0 0 379.0 0.0 0 0.0 1 0 0 0 0 \n",
+ "18416 1 676.0 0 274.0 0.0 0 0.0 1 0 0 0 0 \n",
+ "\n",
+ " f26 f27 f28 f29 f30 \n",
+ "0 0 0 0 0 0 \n",
+ "1 0 0 0 0 0 \n",
+ "2 0 0 0 0 0 \n",
+ "3 0 0 0 0 0 \n",
+ "4 0 0 0 0 0 \n",
+ "5 0 0 0 0 0 \n",
+ "6 0 0 0 0 0 \n",
+ "7 0 0 0 0 0 \n",
+ "8 0 0 0 0 0 \n",
+ "9 0 0 0 0 0 \n",
+ "10 0 0 0 0 0 \n",
+ "11 0 0 0 0 0 \n",
+ "12 0 0 0 0 0 \n",
+ "13 0 0 0 0 0 \n",
+ "14 0 0 0 0 0 \n",
+ "15 0 0 0 0 0 \n",
+ "16 0 0 0 0 0 \n",
+ "17 0 0 0 0 0 \n",
+ "18 0 0 0 0 0 \n",
+ "19 0 0 0 0 0 \n",
+ "20 0 0 0 0 0 \n",
+ "21 0 0 0 0 0 \n",
+ "22 0 0 0 0 0 \n",
+ "23 0 0 0 0 0 \n",
+ "24 0 0 0 0 0 \n",
+ "25 0 0 0 0 0 \n",
+ "26 0 0 0 0 0 \n",
+ "27 0 0 0 0 0 \n",
+ "28 0 0 0 0 0 \n",
+ "29 0 0 0 0 0 \n",
+ "... ... ... ... ... ... \n",
+ "18387 0 0 0 0 0 \n",
+ "18388 0 0 0 0 0 \n",
+ "18389 0 0 0 0 0 \n",
+ "18390 0 0 0 0 0 \n",
+ "18391 0 0 0 0 0 \n",
+ "18392 0 0 0 0 0 \n",
+ "18393 0 0 0 0 0 \n",
+ "18394 0 0 0 0 0 \n",
+ "18395 0 0 0 0 0 \n",
+ "18396 0 0 0 0 0 \n",
+ "18397 0 0 0 0 0 \n",
+ "18398 0 0 0 0 0 \n",
+ "18399 0 0 0 0 0 \n",
+ "18400 0 0 0 0 0 \n",
+ "18401 0 0 0 0 0 \n",
+ "18402 0 0 0 0 0 \n",
+ "18403 0 0 0 0 0 \n",
+ "18404 0 0 0 0 0 \n",
+ "18405 0 0 0 0 0 \n",
+ "18406 0 0 0 0 0 \n",
+ "18407 0 0 0 0 0 \n",
+ "18408 0 0 0 0 0 \n",
+ "18409 0 0 0 0 0 \n",
+ "18410 0 0 0 0 0 \n",
+ "18411 0 0 0 0 0 \n",
+ "18412 0 0 0 0 0 \n",
+ "18413 0 0 0 0 0 \n",
+ "18414 0 0 0 0 0 \n",
+ "18415 0 0 0 0 0 \n",
+ "18416 0 0 0 0 0 \n",
+ "\n",
+ "[18417 rows x 34 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 113
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "avLRLE2qd4Eb",
+ "colab_type": "code",
+ "outputId": "66cf30be-71b5-4f5c-8d48-b28a67ef8aff",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 142
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "pd.read_csv('clever-challenge/seq/res.csv').head(3)"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " event_id | \n",
+ " res_id | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 811067 | \n",
+ " 15325277 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 811067 | \n",
+ " 15325278 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 811067 | \n",
+ " 15325279 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " event_id res_id\n",
+ "0 811067 15325277\n",
+ "1 811067 15325278\n",
+ "2 811067 15325279"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 145
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "Mr5CLK1nvzEu",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "# Preprocessing\n",
+ "\n",
+ "Some features are duplicate or useless."
+ ]
+ },
+ {
+ "metadata": {
+ "id": "saQ7SaDnaYru",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "sample = pd.read_csv('clever-challenge/seq/sample.csv')\n",
+ "res = pd.read_csv('clever-challenge/seq/res.csv')"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "ad0aPf0Vch1r",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "##f11, f16, f19, f22-f30 all 0"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "r4_azxYnaqOK",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "for col in sample.columns:\n",
+ " print(sample[col].value_counts())"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "iZIpFS8QuYKR",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "## f14, f21 are the same"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "kB2MbO-ht9z0",
+ "colab_type": "code",
+ "outputId": "5dfab69e-ed34-44d5-eb64-a10f8bfa6fd1",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 49
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "sample.loc[sample['f14']!=sample['f21']]"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " event_id | \n",
+ " timestamp | \n",
+ " class | \n",
+ " f1 | \n",
+ " f2 | \n",
+ " f3 | \n",
+ " f3.1 | \n",
+ " f4 | \n",
+ " f5 | \n",
+ " f6 | \n",
+ " f7 | \n",
+ " f8 | \n",
+ " f9 | \n",
+ " f10 | \n",
+ " f12 | \n",
+ " f13 | \n",
+ " f14 | \n",
+ " f15 | \n",
+ " f17 | \n",
+ " f18 | \n",
+ " f20 | \n",
+ " f21 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [event_id, timestamp, class, f1, f2, f3, f3.1, f4, f5, f6, f7, f8, f9, f10, f12, f13, f14, f15, f17, f18, f20, f21]\n",
+ "Index: []"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 136
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "8FFJqe2MhfF1",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "## drop useless cols"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "OYBOS4GOhhB8",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "sample = sample.drop(['f11','f16','f19'],axis=1).drop(sample.iloc[:,-10:], axis=1)"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "zNmL56Rtd9gE",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "# Numerical feature engineering\n",
+ "\n",
+ "I tried to plot features to find some strong correlation between `features` and `feature-event_id`."
+ ]
+ },
+ {
+ "metadata": {
+ "id": "Io4eWSPyefu6",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "## plot"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "AnuHgcPYmQRW",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "### correlation map"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "SIv3XSq4vLqd",
+ "colab_type": "code",
+ "outputId": "7ac1304a-9848-4761-9db0-f0f6c9028654",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 720
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "sample.corr()"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " event_id | \n",
+ " timestamp | \n",
+ " class | \n",
+ " f1 | \n",
+ " f2 | \n",
+ " f3 | \n",
+ " f3.1 | \n",
+ " f4 | \n",
+ " f5 | \n",
+ " f6 | \n",
+ " f7 | \n",
+ " f8 | \n",
+ " f9 | \n",
+ " f10 | \n",
+ " f12 | \n",
+ " f13 | \n",
+ " f14 | \n",
+ " f15 | \n",
+ " f17 | \n",
+ " f18 | \n",
+ " f20 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | event_id | \n",
+ " 1.000000 | \n",
+ " 0.968157 | \n",
+ " -0.062451 | \n",
+ " -0.065558 | \n",
+ " -0.032485 | \n",
+ " -0.028137 | \n",
+ " -0.058749 | \n",
+ " -0.019562 | \n",
+ " -0.030426 | \n",
+ " -0.035067 | \n",
+ " 0.232250 | \n",
+ " 0.290269 | \n",
+ " -0.047045 | \n",
+ " -0.076813 | \n",
+ " -0.037217 | \n",
+ " -0.021627 | \n",
+ " 0.235763 | \n",
+ " 0.026793 | \n",
+ " 0.034132 | \n",
+ " 0.012636 | \n",
+ " 0.022148 | \n",
+ "
\n",
+ " \n",
+ " | timestamp | \n",
+ " 0.968157 | \n",
+ " 1.000000 | \n",
+ " -0.022233 | \n",
+ " -0.088378 | \n",
+ " -0.047217 | \n",
+ " -0.042574 | \n",
+ " -0.046547 | \n",
+ " -0.034170 | \n",
+ " -0.033192 | \n",
+ " -0.024686 | \n",
+ " 0.246377 | \n",
+ " 0.297504 | \n",
+ " -0.050675 | \n",
+ " -0.092966 | \n",
+ " -0.031344 | \n",
+ " -0.025514 | \n",
+ " 0.267152 | \n",
+ " 0.051418 | \n",
+ " 0.055992 | \n",
+ " 0.018443 | \n",
+ " 0.026337 | \n",
+ "
\n",
+ " \n",
+ " | class | \n",
+ " -0.062451 | \n",
+ " -0.022233 | \n",
+ " 1.000000 | \n",
+ " 0.103035 | \n",
+ " 0.036736 | \n",
+ " 0.023801 | \n",
+ " 0.393084 | \n",
+ " 0.013668 | \n",
+ " -0.001843 | \n",
+ " -0.082280 | \n",
+ " 0.253569 | \n",
+ " -0.187449 | \n",
+ " 0.037823 | \n",
+ " -0.051034 | \n",
+ " -0.023714 | \n",
+ " 0.023735 | \n",
+ " 0.201738 | \n",
+ " 0.012187 | \n",
+ " 0.030515 | \n",
+ " -0.020873 | \n",
+ " -0.006312 | \n",
+ "
\n",
+ " \n",
+ " | f1 | \n",
+ " -0.065558 | \n",
+ " -0.088378 | \n",
+ " 0.103035 | \n",
+ " 1.000000 | \n",
+ " 0.278444 | \n",
+ " 0.240047 | \n",
+ " 0.320466 | \n",
+ " 0.185523 | \n",
+ " 0.145841 | \n",
+ " -0.043811 | \n",
+ " 0.134195 | \n",
+ " -0.026696 | \n",
+ " 0.200120 | \n",
+ " 0.082678 | \n",
+ " 0.165365 | \n",
+ " -0.006652 | \n",
+ " 0.011984 | \n",
+ " 0.053084 | \n",
+ " 0.063039 | \n",
+ " 0.050090 | \n",
+ " 0.103025 | \n",
+ "
\n",
+ " \n",
+ " | f2 | \n",
+ " -0.032485 | \n",
+ " -0.047217 | \n",
+ " 0.036736 | \n",
+ " 0.278444 | \n",
+ " 1.000000 | \n",
+ " 0.979283 | \n",
+ " 0.225155 | \n",
+ " 0.943013 | \n",
+ " 0.181663 | \n",
+ " -0.016100 | \n",
+ " 0.082983 | \n",
+ " -0.023617 | \n",
+ " 0.284463 | \n",
+ " 0.032855 | \n",
+ " 0.067072 | \n",
+ " -0.002088 | \n",
+ " -0.007397 | \n",
+ " 0.001227 | \n",
+ " 0.005025 | \n",
+ " -0.001991 | \n",
+ " -0.000715 | \n",
+ "
\n",
+ " \n",
+ " | f3 | \n",
+ " -0.028137 | \n",
+ " -0.042574 | \n",
+ " 0.023801 | \n",
+ " 0.240047 | \n",
+ " 0.979283 | \n",
+ " 1.000000 | \n",
+ " 0.188181 | \n",
+ " 0.963069 | \n",
+ " 0.184020 | \n",
+ " -0.014147 | \n",
+ " 0.049478 | \n",
+ " -0.020733 | \n",
+ " 0.285013 | \n",
+ " 0.016775 | \n",
+ " 0.035502 | \n",
+ " 0.000871 | \n",
+ " -0.013353 | \n",
+ " -0.002709 | \n",
+ " -0.001465 | \n",
+ " 0.000588 | \n",
+ " 0.001825 | \n",
+ "
\n",
+ " \n",
+ " | f3.1 | \n",
+ " -0.058749 | \n",
+ " -0.046547 | \n",
+ " 0.393084 | \n",
+ " 0.320466 | \n",
+ " 0.225155 | \n",
+ " 0.188181 | \n",
+ " 1.000000 | \n",
+ " 0.105682 | \n",
+ " 0.194054 | \n",
+ " -0.141896 | \n",
+ " 0.477435 | \n",
+ " -0.188952 | \n",
+ " 0.352916 | \n",
+ " 0.014966 | \n",
+ " 0.127463 | \n",
+ " -0.004959 | \n",
+ " 0.189225 | \n",
+ " 0.048139 | \n",
+ " 0.096023 | \n",
+ " -0.032018 | \n",
+ " -0.008706 | \n",
+ "
\n",
+ " \n",
+ " | f4 | \n",
+ " -0.019562 | \n",
+ " -0.034170 | \n",
+ " 0.013668 | \n",
+ " 0.185523 | \n",
+ " 0.943013 | \n",
+ " 0.963069 | \n",
+ " 0.105682 | \n",
+ " 1.000000 | \n",
+ " 0.031629 | \n",
+ " -0.008160 | \n",
+ " 0.004678 | \n",
+ " -0.015504 | \n",
+ " 0.050957 | \n",
+ " 0.001543 | \n",
+ " 0.006144 | \n",
+ " 0.001639 | \n",
+ " -0.010738 | \n",
+ " -0.004247 | \n",
+ " -0.003977 | \n",
+ " -0.001971 | \n",
+ " -0.001561 | \n",
+ "
\n",
+ " \n",
+ " | f5 | \n",
+ " -0.030426 | \n",
+ " -0.033192 | \n",
+ " -0.001843 | \n",
+ " 0.145841 | \n",
+ " 0.181663 | \n",
+ " 0.184020 | \n",
+ " 0.194054 | \n",
+ " 0.031629 | \n",
+ " 1.000000 | \n",
+ " -0.009168 | \n",
+ " 0.049926 | \n",
+ " 0.001852 | \n",
+ " 0.640374 | \n",
+ " 0.025972 | \n",
+ " 0.042421 | \n",
+ " -0.002654 | \n",
+ " -0.008462 | \n",
+ " 0.006095 | \n",
+ " -0.001708 | \n",
+ " 0.033504 | \n",
+ " 0.049373 | \n",
+ "
\n",
+ " \n",
+ " | f6 | \n",
+ " -0.035067 | \n",
+ " -0.024686 | \n",
+ " -0.082280 | \n",
+ " -0.043811 | \n",
+ " -0.016100 | \n",
+ " -0.014147 | \n",
+ " -0.141896 | \n",
+ " -0.008160 | \n",
+ " -0.009168 | \n",
+ " 1.000000 | \n",
+ " 0.201435 | \n",
+ " 0.334860 | \n",
+ " -0.023228 | \n",
+ " -0.024454 | \n",
+ " 0.004791 | \n",
+ " -0.025380 | \n",
+ " -0.057350 | \n",
+ " 0.020695 | \n",
+ " 0.031997 | \n",
+ " 0.007425 | \n",
+ " 0.010554 | \n",
+ "
\n",
+ " \n",
+ " | f7 | \n",
+ " 0.232250 | \n",
+ " 0.246377 | \n",
+ " 0.253569 | \n",
+ " 0.134195 | \n",
+ " 0.082983 | \n",
+ " 0.049478 | \n",
+ " 0.477435 | \n",
+ " 0.004678 | \n",
+ " 0.049926 | \n",
+ " 0.201435 | \n",
+ " 1.000000 | \n",
+ " 0.194756 | \n",
+ " 0.172287 | \n",
+ " -0.014927 | \n",
+ " 0.057905 | \n",
+ " -0.055994 | \n",
+ " 0.280279 | \n",
+ " 0.089456 | \n",
+ " 0.146130 | \n",
+ " -0.037019 | \n",
+ " -0.016423 | \n",
+ "
\n",
+ " \n",
+ " | f8 | \n",
+ " 0.290269 | \n",
+ " 0.297504 | \n",
+ " -0.187449 | \n",
+ " -0.026696 | \n",
+ " -0.023617 | \n",
+ " -0.020733 | \n",
+ " -0.188952 | \n",
+ " -0.015504 | \n",
+ " 0.001852 | \n",
+ " 0.334860 | \n",
+ " 0.194756 | \n",
+ " 1.000000 | \n",
+ " -0.018331 | \n",
+ " 0.083092 | \n",
+ " 0.086416 | \n",
+ " -0.050452 | \n",
+ " -0.072589 | \n",
+ " 0.091475 | \n",
+ " 0.066330 | \n",
+ " 0.055232 | \n",
+ " 0.058325 | \n",
+ "
\n",
+ " \n",
+ " | f9 | \n",
+ " -0.047045 | \n",
+ " -0.050675 | \n",
+ " 0.037823 | \n",
+ " 0.200120 | \n",
+ " 0.284463 | \n",
+ " 0.285013 | \n",
+ " 0.352916 | \n",
+ " 0.050957 | \n",
+ " 0.640374 | \n",
+ " -0.023228 | \n",
+ " 0.172287 | \n",
+ " -0.018331 | \n",
+ " 1.000000 | \n",
+ " 0.065812 | \n",
+ " 0.126321 | \n",
+ " -0.005492 | \n",
+ " -0.009626 | \n",
+ " 0.008644 | \n",
+ " 0.012398 | \n",
+ " 0.012233 | \n",
+ " 0.016064 | \n",
+ "
\n",
+ " \n",
+ " | f10 | \n",
+ " -0.076813 | \n",
+ " -0.092966 | \n",
+ " -0.051034 | \n",
+ " 0.082678 | \n",
+ " 0.032855 | \n",
+ " 0.016775 | \n",
+ " 0.014966 | \n",
+ " 0.001543 | \n",
+ " 0.025972 | \n",
+ " -0.024454 | \n",
+ " -0.014927 | \n",
+ " 0.083092 | \n",
+ " 0.065812 | \n",
+ " 1.000000 | \n",
+ " 0.624398 | \n",
+ " 0.024777 | \n",
+ " -0.117434 | \n",
+ " 0.043728 | \n",
+ " 0.034839 | \n",
+ " 0.016900 | \n",
+ " 0.025125 | \n",
+ "
\n",
+ " \n",
+ " | f12 | \n",
+ " -0.037217 | \n",
+ " -0.031344 | \n",
+ " -0.023714 | \n",
+ " 0.165365 | \n",
+ " 0.067072 | \n",
+ " 0.035502 | \n",
+ " 0.127463 | \n",
+ " 0.006144 | \n",
+ " 0.042421 | \n",
+ " 0.004791 | \n",
+ " 0.057905 | \n",
+ " 0.086416 | \n",
+ " 0.126321 | \n",
+ " 0.624398 | \n",
+ " 1.000000 | \n",
+ " 0.011721 | \n",
+ " -0.030797 | \n",
+ " 0.118661 | \n",
+ " 0.121775 | \n",
+ " 0.046162 | \n",
+ " 0.057437 | \n",
+ "
\n",
+ " \n",
+ " | f13 | \n",
+ " -0.021627 | \n",
+ " -0.025514 | \n",
+ " 0.023735 | \n",
+ " -0.006652 | \n",
+ " -0.002088 | \n",
+ " 0.000871 | \n",
+ " -0.004959 | \n",
+ " 0.001639 | \n",
+ " -0.002654 | \n",
+ " -0.025380 | \n",
+ " -0.055994 | \n",
+ " -0.050452 | \n",
+ " -0.005492 | \n",
+ " 0.024777 | \n",
+ " 0.011721 | \n",
+ " 1.000000 | \n",
+ " 0.019968 | \n",
+ " -0.017166 | \n",
+ " -0.014728 | \n",
+ " -0.008162 | \n",
+ " 0.002808 | \n",
+ "
\n",
+ " \n",
+ " | f14 | \n",
+ " 0.235763 | \n",
+ " 0.267152 | \n",
+ " 0.201738 | \n",
+ " 0.011984 | \n",
+ " -0.007397 | \n",
+ " -0.013353 | \n",
+ " 0.189225 | \n",
+ " -0.010738 | \n",
+ " -0.008462 | \n",
+ " -0.057350 | \n",
+ " 0.280279 | \n",
+ " -0.072589 | \n",
+ " -0.009626 | \n",
+ " -0.117434 | \n",
+ " -0.030797 | \n",
+ " 0.019968 | \n",
+ " 1.000000 | \n",
+ " 0.209327 | \n",
+ " 0.227772 | \n",
+ " 0.018598 | \n",
+ " 0.016364 | \n",
+ "
\n",
+ " \n",
+ " | f15 | \n",
+ " 0.026793 | \n",
+ " 0.051418 | \n",
+ " 0.012187 | \n",
+ " 0.053084 | \n",
+ " 0.001227 | \n",
+ " -0.002709 | \n",
+ " 0.048139 | \n",
+ " -0.004247 | \n",
+ " 0.006095 | \n",
+ " 0.020695 | \n",
+ " 0.089456 | \n",
+ " 0.091475 | \n",
+ " 0.008644 | \n",
+ " 0.043728 | \n",
+ " 0.118661 | \n",
+ " -0.017166 | \n",
+ " 0.209327 | \n",
+ " 1.000000 | \n",
+ " 0.821281 | \n",
+ " 0.403871 | \n",
+ " 0.282733 | \n",
+ "
\n",
+ " \n",
+ " | f17 | \n",
+ " 0.034132 | \n",
+ " 0.055992 | \n",
+ " 0.030515 | \n",
+ " 0.063039 | \n",
+ " 0.005025 | \n",
+ " -0.001465 | \n",
+ " 0.096023 | \n",
+ " -0.003977 | \n",
+ " -0.001708 | \n",
+ " 0.031997 | \n",
+ " 0.146130 | \n",
+ " 0.066330 | \n",
+ " 0.012398 | \n",
+ " 0.034839 | \n",
+ " 0.121775 | \n",
+ " -0.014728 | \n",
+ " 0.227772 | \n",
+ " 0.821281 | \n",
+ " 1.000000 | \n",
+ " 0.047092 | \n",
+ " 0.061814 | \n",
+ "
\n",
+ " \n",
+ " | f18 | \n",
+ " 0.012636 | \n",
+ " 0.018443 | \n",
+ " -0.020873 | \n",
+ " 0.050090 | \n",
+ " -0.001991 | \n",
+ " 0.000588 | \n",
+ " -0.032018 | \n",
+ " -0.001971 | \n",
+ " 0.033504 | \n",
+ " 0.007425 | \n",
+ " -0.037019 | \n",
+ " 0.055232 | \n",
+ " 0.012233 | \n",
+ " 0.016900 | \n",
+ " 0.046162 | \n",
+ " -0.008162 | \n",
+ " 0.018598 | \n",
+ " 0.403871 | \n",
+ " 0.047092 | \n",
+ " 1.000000 | \n",
+ " 0.755423 | \n",
+ "
\n",
+ " \n",
+ " | f20 | \n",
+ " 0.022148 | \n",
+ " 0.026337 | \n",
+ " -0.006312 | \n",
+ " 0.103025 | \n",
+ " -0.000715 | \n",
+ " 0.001825 | \n",
+ " -0.008706 | \n",
+ " -0.001561 | \n",
+ " 0.049373 | \n",
+ " 0.010554 | \n",
+ " -0.016423 | \n",
+ " 0.058325 | \n",
+ " 0.016064 | \n",
+ " 0.025125 | \n",
+ " 0.057437 | \n",
+ " 0.002808 | \n",
+ " 0.016364 | \n",
+ " 0.282733 | \n",
+ " 0.061814 | \n",
+ " 0.755423 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " event_id timestamp class f1 f2 f3 \\\n",
+ "event_id 1.000000 0.968157 -0.062451 -0.065558 -0.032485 -0.028137 \n",
+ "timestamp 0.968157 1.000000 -0.022233 -0.088378 -0.047217 -0.042574 \n",
+ "class -0.062451 -0.022233 1.000000 0.103035 0.036736 0.023801 \n",
+ "f1 -0.065558 -0.088378 0.103035 1.000000 0.278444 0.240047 \n",
+ "f2 -0.032485 -0.047217 0.036736 0.278444 1.000000 0.979283 \n",
+ "f3 -0.028137 -0.042574 0.023801 0.240047 0.979283 1.000000 \n",
+ "f3.1 -0.058749 -0.046547 0.393084 0.320466 0.225155 0.188181 \n",
+ "f4 -0.019562 -0.034170 0.013668 0.185523 0.943013 0.963069 \n",
+ "f5 -0.030426 -0.033192 -0.001843 0.145841 0.181663 0.184020 \n",
+ "f6 -0.035067 -0.024686 -0.082280 -0.043811 -0.016100 -0.014147 \n",
+ "f7 0.232250 0.246377 0.253569 0.134195 0.082983 0.049478 \n",
+ "f8 0.290269 0.297504 -0.187449 -0.026696 -0.023617 -0.020733 \n",
+ "f9 -0.047045 -0.050675 0.037823 0.200120 0.284463 0.285013 \n",
+ "f10 -0.076813 -0.092966 -0.051034 0.082678 0.032855 0.016775 \n",
+ "f12 -0.037217 -0.031344 -0.023714 0.165365 0.067072 0.035502 \n",
+ "f13 -0.021627 -0.025514 0.023735 -0.006652 -0.002088 0.000871 \n",
+ "f14 0.235763 0.267152 0.201738 0.011984 -0.007397 -0.013353 \n",
+ "f15 0.026793 0.051418 0.012187 0.053084 0.001227 -0.002709 \n",
+ "f17 0.034132 0.055992 0.030515 0.063039 0.005025 -0.001465 \n",
+ "f18 0.012636 0.018443 -0.020873 0.050090 -0.001991 0.000588 \n",
+ "f20 0.022148 0.026337 -0.006312 0.103025 -0.000715 0.001825 \n",
+ "\n",
+ " f3.1 f4 f5 f6 f7 f8 \\\n",
+ "event_id -0.058749 -0.019562 -0.030426 -0.035067 0.232250 0.290269 \n",
+ "timestamp -0.046547 -0.034170 -0.033192 -0.024686 0.246377 0.297504 \n",
+ "class 0.393084 0.013668 -0.001843 -0.082280 0.253569 -0.187449 \n",
+ "f1 0.320466 0.185523 0.145841 -0.043811 0.134195 -0.026696 \n",
+ "f2 0.225155 0.943013 0.181663 -0.016100 0.082983 -0.023617 \n",
+ "f3 0.188181 0.963069 0.184020 -0.014147 0.049478 -0.020733 \n",
+ "f3.1 1.000000 0.105682 0.194054 -0.141896 0.477435 -0.188952 \n",
+ "f4 0.105682 1.000000 0.031629 -0.008160 0.004678 -0.015504 \n",
+ "f5 0.194054 0.031629 1.000000 -0.009168 0.049926 0.001852 \n",
+ "f6 -0.141896 -0.008160 -0.009168 1.000000 0.201435 0.334860 \n",
+ "f7 0.477435 0.004678 0.049926 0.201435 1.000000 0.194756 \n",
+ "f8 -0.188952 -0.015504 0.001852 0.334860 0.194756 1.000000 \n",
+ "f9 0.352916 0.050957 0.640374 -0.023228 0.172287 -0.018331 \n",
+ "f10 0.014966 0.001543 0.025972 -0.024454 -0.014927 0.083092 \n",
+ "f12 0.127463 0.006144 0.042421 0.004791 0.057905 0.086416 \n",
+ "f13 -0.004959 0.001639 -0.002654 -0.025380 -0.055994 -0.050452 \n",
+ "f14 0.189225 -0.010738 -0.008462 -0.057350 0.280279 -0.072589 \n",
+ "f15 0.048139 -0.004247 0.006095 0.020695 0.089456 0.091475 \n",
+ "f17 0.096023 -0.003977 -0.001708 0.031997 0.146130 0.066330 \n",
+ "f18 -0.032018 -0.001971 0.033504 0.007425 -0.037019 0.055232 \n",
+ "f20 -0.008706 -0.001561 0.049373 0.010554 -0.016423 0.058325 \n",
+ "\n",
+ " f9 f10 f12 f13 f14 f15 \\\n",
+ "event_id -0.047045 -0.076813 -0.037217 -0.021627 0.235763 0.026793 \n",
+ "timestamp -0.050675 -0.092966 -0.031344 -0.025514 0.267152 0.051418 \n",
+ "class 0.037823 -0.051034 -0.023714 0.023735 0.201738 0.012187 \n",
+ "f1 0.200120 0.082678 0.165365 -0.006652 0.011984 0.053084 \n",
+ "f2 0.284463 0.032855 0.067072 -0.002088 -0.007397 0.001227 \n",
+ "f3 0.285013 0.016775 0.035502 0.000871 -0.013353 -0.002709 \n",
+ "f3.1 0.352916 0.014966 0.127463 -0.004959 0.189225 0.048139 \n",
+ "f4 0.050957 0.001543 0.006144 0.001639 -0.010738 -0.004247 \n",
+ "f5 0.640374 0.025972 0.042421 -0.002654 -0.008462 0.006095 \n",
+ "f6 -0.023228 -0.024454 0.004791 -0.025380 -0.057350 0.020695 \n",
+ "f7 0.172287 -0.014927 0.057905 -0.055994 0.280279 0.089456 \n",
+ "f8 -0.018331 0.083092 0.086416 -0.050452 -0.072589 0.091475 \n",
+ "f9 1.000000 0.065812 0.126321 -0.005492 -0.009626 0.008644 \n",
+ "f10 0.065812 1.000000 0.624398 0.024777 -0.117434 0.043728 \n",
+ "f12 0.126321 0.624398 1.000000 0.011721 -0.030797 0.118661 \n",
+ "f13 -0.005492 0.024777 0.011721 1.000000 0.019968 -0.017166 \n",
+ "f14 -0.009626 -0.117434 -0.030797 0.019968 1.000000 0.209327 \n",
+ "f15 0.008644 0.043728 0.118661 -0.017166 0.209327 1.000000 \n",
+ "f17 0.012398 0.034839 0.121775 -0.014728 0.227772 0.821281 \n",
+ "f18 0.012233 0.016900 0.046162 -0.008162 0.018598 0.403871 \n",
+ "f20 0.016064 0.025125 0.057437 0.002808 0.016364 0.282733 \n",
+ "\n",
+ " f17 f18 f20 \n",
+ "event_id 0.034132 0.012636 0.022148 \n",
+ "timestamp 0.055992 0.018443 0.026337 \n",
+ "class 0.030515 -0.020873 -0.006312 \n",
+ "f1 0.063039 0.050090 0.103025 \n",
+ "f2 0.005025 -0.001991 -0.000715 \n",
+ "f3 -0.001465 0.000588 0.001825 \n",
+ "f3.1 0.096023 -0.032018 -0.008706 \n",
+ "f4 -0.003977 -0.001971 -0.001561 \n",
+ "f5 -0.001708 0.033504 0.049373 \n",
+ "f6 0.031997 0.007425 0.010554 \n",
+ "f7 0.146130 -0.037019 -0.016423 \n",
+ "f8 0.066330 0.055232 0.058325 \n",
+ "f9 0.012398 0.012233 0.016064 \n",
+ "f10 0.034839 0.016900 0.025125 \n",
+ "f12 0.121775 0.046162 0.057437 \n",
+ "f13 -0.014728 -0.008162 0.002808 \n",
+ "f14 0.227772 0.018598 0.016364 \n",
+ "f15 0.821281 0.403871 0.282733 \n",
+ "f17 1.000000 0.047092 0.061814 \n",
+ "f18 0.047092 1.000000 0.755423 \n",
+ "f20 0.061814 0.755423 1.000000 "
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 143
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "V3X7uR7AlTaM",
+ "colab_type": "code",
+ "outputId": "c84f2055-4535-404e-cfc8-ec5010528b2c",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 629
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "plt.figure(figsize=(25,10))\n",
+ "sns.heatmap(sample.corr())"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 154
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABRsAAAI/CAYAAAD3IQ4eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3X2clXWdP/73OXPDPQYKSo43iPml\nUFTyZoW82Q1/munuahHIwqa5tSppv8wawAw1c7RNTaMsFX0ompLrWJb7VVrC21A2NVnwpqTdJsGb\nwRtulbk73z9c2QhUHK8zn3PzfD4e5+HMOYdzvS7PnJkz73ldnytXKBQKAQAAAADwPuVTBwAAAAAA\nKoNhIwAAAACQCcNGAAAAACATho0AAAAAQCYMGwEAAACATBg2AgAAAACZqE0doKedmts9dYTM9a+t\nvJnxjFeWpo6Qua5C6gTZq6/JpY5QFPkK3K22zsr7AuxVgV9/lfcsVeb3vv7/9evUETLX+Wpr6ghF\nsW6/v00dIXMdFfii6lWB72Ur8EdU9P79A6kjZK5zxMGpI2SvUHnfIyIiCjV1qSNkLlfoSh0hc736\nDUgdoST15Bzqh4X/7rFtvZPK+8kOAAAAACRh2AgAAAAAZKLqDqMGAAAAgJ5QiUtrvBvNRgAAAAAg\nE5qNAAAAAFAENbnqqzZqNgIAAAAAmdBsBAAAAIAisGYjAAAAAEA3aTYCAAAAQBFYs7FErFy5MpYs\nWfK2t7e2tsY3vvGNLa6/5JJLorm5uZjRAAAAAIC3UZLNxocffjg2bNgQo0eP3urtQ4YMiQsuuKCH\nUwEAAADAtqvGNRvf97Cxs7Mzzj333PjTn/4UHR0dcfTRR8eCBQvixhtvjIiI2bNnx8CBA2Ps2LFx\nwQUXRC6Xi379+sXFF18ca9asienTp8cuu+wSzzzzTHz4wx+Or3zlKzF79uyora2NYcOGxcc//vEt\ntvncc8/FmWeeGc3NzfGzn/0srr322thxxx2jd+/e8aEPfej97hIAAAAA0A3ve9j485//PIYMGRIX\nXXRRvPLKK/HZz3422tvbY82aNTFw4MD41a9+FVdddVV87WtfiwsuuCB23333uPnmm+Pmm2+O4447\nLpYtWxaXX355bL/99nHYYYdFY2NjHH/88TFo0KCtDhr/XKFQiMsvvzxuv/32GDhwYJxwwgnvd3cA\nAAAAIBPVuGbj+x42Pv744/Hoo4/GY489FhERGzdujCOOOCIeeOCB2H///aO+vj523HHHWLJkSZx7\n7rkREdHW1hb77LNPRETsuuuuMWTIkIiIGDp0aKxdu3abt/3qq69Gv379Yvvtt4+IiDFjxrzf3QEA\nAAAAuul9Dxvr6uri1FNPjWOPPXbTdY8//njcdNNN8eqrr8ZRRx0VERF9+vSJG2+8MXJ/NtF97rnn\noqamZrPHKxQK72n7+fz/nuPmvf5bAAAAACA77/ts1Pvuu28sWLAgIiJefvnluOyyy2K//faL5cuX\nx7333rtp2Dhy5Mi4//77IyLirrvuikWLFr3tY+Zyuejo6HjXbX/gAx+ItWvXxpo1a6K9vX1TuxIA\nAAAAUqvJ9dylVLzvYeMnPvGJ6Nu3b0yaNClOPfXU+OhHPxq5XC7233//WLduXXzwgx+MiIhzzjkn\nfvSjH8WUKVOiubk5PvzhD7/tY+6///5x7bXXxp133vnO4fP5+OIXvxhTpkyJM88808lhAAAAACCh\nXKHKjj0+Nbd76giZ61/7vmfGJWfGK0tTR8hcVwW+0upL6U8nGcpX4G61dVbeF2CvCvz6q7xnqTK/\n9/X/r1+njpC5zldbU0coinX7/W3qCJnrqMAXVa8KfC9bgT+iovfvH0gdIXOdIw5OHSF7FfrrfaGm\nLnWEzOUKXakjZK5XvwGpI5Sk8/rs2XPbev3ZHtvWO3nfazYW07x58+IXv/jFFtefddZZsf/++ydI\nBAAAAAC8nZIeNk6cODEmTpyYOgYAAAAAvGeV199/d9W4zwAAAABAEZR0sxEAAAAAylVNrgIX8n0X\nmo0AAAAAQCY0GwEAAACgCGqqr9io2QgAAAAAZEOzEQAAAACKoBrXbKy6YWP/2sorc67r6EodIXO9\nKrBnvLat8p6nCnyaIiKiUIH7VYnPVWchdQK2Rb4Cv/YK7e2pI2Su0NmZOgLbyPe+8lCJT1PhjQ2p\nI2Qu11l538+jUHm/c0RERL4mdYLsVepzBVGFw0YAAAAA6AmVWPx4N5VX8wMAAAAAktBsBAAAAIAi\nqMY1GzUbAQAAAIBMGDYCAAAAAJlwGDUAAAAAFIETxAAAAAAAdNO7NhvvueeeWL9+fQwYMCCOPPLI\nTDd+zz33xFFHHZXpYwIAAABAKXCCmL/w3HPPxV133RUnnHBC5oPGtx4bAAAAAKgM79hsvOCCC2LJ\nkiUxcuTI+PrXvx4f+tCH4sYbb4yampp48skn49RTT40HHnggnnrqqfja174W48ePj/nz58d1110X\ntbW1sffee8f06dNj5cqV8dWvfjXy+Xx0dnbGv/zLv2x67NmzZ8enP/3p+OpXvxoRER0dHXHJJZfE\nrrvuGuPHj4+/+Zu/iUWLFsWhhx4ahUIhHnrooTjssMPi7LPPjqlTp8bee+8dS5cujY0bN8bll18e\nO++8c4/8jwMAAACAd2LNxr9wyimnxEEHHRTTpk3bdN1TTz0V3/nOd+L888+PSy+9NJqamuL888+P\n5ubmWL9+fVx11VVx4403xk033RTPP/98PProo3HPPffE2LFjY+7cuXHOOedEa2vrpsf+4he/GC+9\n9FJMmzYt5s6dG5/61Kfixz/+cUS82X6cOHFi/OQnP4m5c+fG0UcfHT/5yU/i9ttv35Rn0KBBMXfu\n3DjuuOPihhtuKNL/JgAAAADg3bzns1GPHDky6uvrY8iQIbH77rtH3759Y/vtt4+1a9fGs88+GytX\nroxTTjklIiLWrl0bK1eujHHjxsUXv/jFWLt2bRx11FGx//77xyOPPLLpMYcMGRIXXnhhfO9734s1\na9bEqFGjIiKif//+MWLEiIiI6Nu3b4waNSpqa2ujq6tr07895JBDIiJiv/32i/vvv7/7/ycAAAAA\nIEPV2Gx8z8PG2trarX4cEVFXVxd77713zJkzZ4t/97Of/SweeuihuOyyy+JTn/pUDBs2bNNtV155\nZXzsYx+LE088Me6+++649957IyKipqbmbbf9lkKhsOm/uSpcdBMAAAAASsU7Hkadz+ejo6Njmx9s\n+PDhsXz58nj55Zcj4s0h4osvvhh33XVX/P73v4/x48fHl770pVi6dOlmj/3qq6/GrrvuGoVCIRYs\nWBDt7e3bvM3f/OY3ERHx29/+dlMLEgAAAABSq8nleuxSKt6x2ThixIh48skno6GhIQYNGvSuD9an\nT5+YOXNmfP7zn4/6+vr4yEc+EkOHDo3dd989Zs2aFX379o2ampr4+te/HoMGDYonn3wyLrroopg4\ncWJ885vfjJ133jmmTp0a5557bjz44IPbtANvHba9du3a+N73vrdtew0AAAAAZC5XeOs45DL01mBy\nr7322uZ/c3bdHkVMlMa6jq53v1OZ+c76p1JHyNzatsp7nnpV6OIT+crcrYpj6YzyUImvpz7P3Jc6\nQuY6V7+cOkJRrP/o8akjZG5jZ9m+dX9bfeve8WCrslSJ3/t6/+c9qSNkrjDyY6kjZK9Qeb9zREQU\n6vqkjpC9CnyuevXfLnWEkjR3hw/32LamriqNWUrl/WQHAAAAAJJ4zyeIKSVz585NHQEAAAAAtqqU\n1lLsKZqNAAAAAEAmyrrZCAAAAAClqkJPdfCONBsBAAAAgEwYNgIAAAAAmXAYNQAAAAAUQTWeIMaw\nEQAAAACqwEUXXRRPPPFE5HK5mDlzZowePXrTbTfffHPceeedkc/nY++9945zzjmnW9uoumHjjFeW\npo6QuV4VuNro2f0+nDpC5r73wsLUETLX1XdQ6ghFUnmvqY6ffy91hMzV/N2XU0fIXCFfkzpC5lZv\n7EwdIXN9uipvn579P8eljlAUe0Zb6gjZq6lPnSBz+cr7sRv1XZX3tVez/U6pI2Sura5P6giZy3V1\npI5QFO25yhtd1FTg7/FsXSk91YsXL44//vGPMW/evFi+fHnMnDkz5s2bFxER69atizlz5sT8+fOj\ntrY2Pve5z8Vvf/vb2G+//d7zdqzZCAAAAAAVbtGiRTF+/PiIiBgxYkSsXr061q1bFxERdXV1UVdX\nFxs2bIiOjo54/fXXY7vttuvWdirvzwMAAAAAUAJKac3GVatWxahRozZ9Pnjw4GhtbY3+/ftHr169\nYtq0aTF+/Pjo1atXfPKTn4zhw4d3azuajQAAAABQZQqFwqaP161bFz/60Y/i7rvvjgULFsQTTzwR\nTz/9dLceV7MRAAAAAIogX0LNxqFDh8aqVas2ff7SSy/FkCFDIiJi+fLlscsuu8TgwYMjIuKAAw6I\npUuXxsiRI9/zdjQbAQAAAKDCjRs3Lu65556IiFi2bFkMHTo0+vfvHxERO++8cyxfvjzeeOONiIhY\nunRp7L777t3ajmYjAAAAABRBroRORz1mzJgYNWpUTJo0KXK5XMyaNSuam5tjwIABceSRR8Ypp5wS\n//iP/xg1NTWx//77xwEHHNCt7Rg2AgAAAEAVOPvsszf7/M8Pk540aVJMmjTpfW/DsBEAAAAAiiBf\nQs3GnlJSazY2NzfHJZdckjoGAAAAANANmo0AAAAAUAS5mpLq+fWIpMPG9vb2mD59eqxYsSJ69eoV\nf/VXf7XptqampliyZEls3LgxTjzxxJgwYUI8+OCD8d3vfjd69+4d22+/fXznO9+JRx55ZIvr6urq\nEu4VAAAAAFSnpMPGn/70p7HDDjvEpZdeGnfddVesXr061qxZExs3boydd945ZsyYEW+88UaMHz8+\nJkyYEDfddFNMnz49DjjggJg/f3689tprW71uyJAhKXcLAAAAAErqbNQ9JemwcdmyZXHIIYdERMQn\nP/nJaG5ujoiIXr16xerVq2PSpElRV1cXr776akREHH300TFr1qw47rjj4pOf/GQMGTJkq9cBAAAA\nAD0v6YHjNTU10dXVtcX1ixcvjocffjjmzp0bc+fOjfr6+oiI+Pu///u48cYbY9CgQXHaaafF8uXL\nt3odAAAAANDzkg4b99lnn3j44YcjImLhwoXx0ksvRUTEq6++GjvttFPU1dXFggULorOzM9ra2uL7\n3/9+1NbWxsSJE+OYY46J5cuXb/U6AAAAAEgtX5PrsUupSHoY9THHHBO//vWvY8qUKVFbWxsHH3xw\nRESMHTs2rrnmmpgyZUqMHz8+jjjiiDjvvPPiwAMPjJNPPjkGDhwYAwcOjJNPPjnWr1+/xXUAAAAA\nQM9LOmysr6+Pb3/721u97V//9V83fXzSSSdt+vj444/f7H7HH3/8FtcBAAAAQGq5fNKDipOovj0G\nAAAAAIoiabMRAAAAACpVKa2l2FM0GwEAAACATGg2AgAAAEAR5DQbAQAAAAC6R7MRAAAAAIogV1N9\nPb/q22MAAAAAoCg0GwEAAACgCKrxbNRVN2zsKqROkL21bV2pI2Tuey8sTB0hc2fs9NepI2Tuyl9f\nmjpCUeT7DkgdIXOF7YeljpC5+heeSh0hc131fVJHyFzvDwxPHSF7O+2ROkHmdt2uLnWEoqhb+UTq\nCJnr/4GG1BEyV7NuVeoImWvbaWTqCJlr++A+qSNkLt/+euoI2evqSJ2gKOrz7akjZC73xtrUEbLX\nuwLf99EtVTdsBAAAAICekMtXX7PRmo0AAAAAQCY0GwEAAACgCPLORg0AAAAA0D2GjQAAAABAJhxG\nDQAAAABFkKtxghgAAAAAgG7RbAQAAACAItBsLBPt7e0xYcKEaGxsjMWLF8chhxwSCxcuTB0LAAAA\nAKpaWTYbW1tbo62tLaZNmxZNTU0xZsyY1JEAAAAAYDP5mrLs+b0vZbnHTU1N0dLSEldddVXMnj07\nBgwYkDoSAAAAAFS9smw2NjY2xooVK6KpqSl1FAAAAADYKms2AgAAAAB0U1k2GwEAAACg1OXzmo0A\nAAAAAN1S1s3Ge++9N+bMmRN/+MMfYtmyZTF37ty47rrrUscCAAAAgMhV4dmoy3LY2NDQEM3NzRER\nccQRR6QNAwAAAABERJkOGwEAAACg1OWdjRoAAAAAoHs0GwEAAACgCHKajQAAAAAA3aPZCAAAAABF\nUI1no66+PQYAAAAAisKwEQAAAADIhMOoAQAAAKAI8lV4gpiqGzbWV+CTXIG7FF19B6WOkLkrf31p\n6giZO3PsV1JHKIr6fOW9qC7/z+tTR8jcrI9MTB0hc+c/OS91hMzVVuDrqavXgNQR2EYdL7akjpC5\nwo4jU0fIXGdN1f1KUpYK+ZrUETLXVd8vdQS2USFXee8nolf/1AkyV5c6ACXDT3YAAAAAKIJcBf7x\n/d1YsxEAAAAAyIRmIwAAAAAUQb6m+np+1bfHAAAAAEBRaDYCAAAAQBHkKvGsvu9CsxEAAAAAyIRm\nIwAAAAAUQc6ajQAAAAAA3VOWzcb29vaYPHly7LrrrlFbWxstLS3R2dkZX/va1+KAAw5IHQ8AAAAA\nIpevvp5fWe5xa2trtLW1xdixY6NPnz5xyy23xLe+9a24+OKLU0cDAAAAgKpVls3GpqamaGlpid/8\n5jdx3nnnRUTE4MGD47XXXksbDAAAAAD+R74K12wsy2FjY2NjrFixIpqamjZdd8MNN8Sxxx6bMBUA\nAAAAVLeyHDb+pZtvvjmWLVsWP/zhD1NHAQAAAICIcDbqsnTbbbfFr371q/jBD34QdXV1qeMAAAAA\nQNUq62bjn/70p7j11lvjpptuil69eqWOAwAAAABVrayHjbfddlu89tpr8YUvfGHTdXPmzIn6+vqE\nqQAAAACgOg+jLsthY0NDQzQ3N0dExFlnnZU4DQAAAAAQUabDRgAAAAAodbl89TUbq2+PAQAAAICi\n0GwEAAAAgCLI1dSkjtDjNBsBAAAAgExoNgIAAABAEVTj2airb48BAAAAgKLQbAQAAACAIsg7GzUA\nAAAAQPdUXbMxn0udIHuFCtyniMrbqXzfAakjZK6+El9QEdHWVUgdIXO5Xn1TR8jc652V9zxVonyu\nAr9P1PVOnSBzFfgsVa585Z3RslBbga+pQuX9jOqqxO8UlfgzqkJV4muK6mHNRgAAAACAbqq6ZiMA\nAAAA9ATNRgAAAACAbtJsBAAAAIAiyDkbNQAAAABA9xg2AgAAAACZcBg1AAAAABSBE8QAAAAAAHRT\nWTYb29vbY/LkybHddttFRMTGjRujvb09ZsyYEfvuu2/idAAAAABQnc3Gshw2tra2RltbW4wbNy52\n2GGHOO6442Lx4sVxxRVXxHXXXZc6HgAAAABUpbIcNjY1NUVLS0v87ne/i5NPPjkiIp5//vnYcccd\nEycDAAAAgDflNRvLQ2NjY6xYsSKampqitbU1Tj311Fi/fn3ccMMNqaMBAAAAQNUqy2HjnxsyZEjc\nfvvtcd9998WMGTMcRg0AAABAScjlq6/ZWNZ7vHjx4li9enVERBx++OGxbNmyxIkAAAAAoHqV9bBx\n/vz5cccdd0RExDPPPBPDhg1LnAgAAAAA3pSryffYpVSU9WHUp59+ekyfPj1++ctfRltbW5x33nmp\nIwEAAABA1SrLYWNDQ0M0NzdHRMTVV1+dOA0AAAAAbKmUGoc9pfr2GAAAAAAoirJsNgIAAABAqXM2\nagAAAACAbtJsBAAAAIAiyNfUpI7Q4zQbAQAAAIBMGDYCAAAAAJlwGDUAAAAAFEGupvp6ftW3xwAA\nAABAUVRds7Gts5A6QuZqcqkTZK/j599LHSFzhe2HpY6Qucv/8/rUEYoi16tv6giZO33Pz6SOkLnv\nvbAwdYTsrWtNnSBzK9e1p46QuQHXn586QuZemnph6ghFsefLL6SOkLlcrvK6ArVrV6aOkLn2wbul\njpC53iuWpI6QuY4d9kgdIXO5jetSRyiKDf12TB0hc3X5CvxFnq3SbAQAAAAA6KaqazYCAAAAQE/I\n5auv51d9ewwAAAAAVeiiiy6KiRMnxqRJk2LJkq0vkXHppZfG1KlTu70NzUYAAAAAKIJSWrNx8eLF\n8cc//jHmzZsXy5cvj5kzZ8a8efM2u8+zzz4b//Ef/xF1dXXd3k7p7DEAAAAAUBSLFi2K8ePHR0TE\niBEjYvXq1bFu3eYnlrr44ovjy1/+8vvajmYjAAAAABRBKTUbV61aFaNGjdr0+eDBg6O1tTX69+8f\nERHNzc1x0EEHxc477/y+tlM6ewwAAAAA9IhCobDp49deey2am5vj5JNPft+PW5LNxvb29pg8eXJs\nt912ERGxcePGaG9vjxkzZsS+++672X1Xr14dZ511VvTr1y+uvPLKFHEBAAAAYAuldDbqoUOHxqpV\nqzZ9/tJLL8WQIUMiIuLhhx+OV155Jf7hH/4h2traoqWlJS666KKYOXPme95O6ezxn2ltbY22trYY\nN25c/N3f/V3MnTs3zjrrrLjiiiu2uO+sWbPiox/9aIKUAAAAAFAexo0bF/fcc09ERCxbtiyGDh26\n6RDqo48+Ov7t3/4tfvKTn8Ts2bNj1KhR3Ro0RpRos7GpqSlaWlrid7/73ab65vPPPx877rjjFve9\n8MILY9myZfH000/3dEwAAAAAeFu5fE3qCJuMGTMmRo0aFZMmTYpcLhezZs2K5ubmGDBgQBx55JGZ\nbackh42NjY2xYsWKaGpqitbW1jj11FNj/fr1ccMNN2xx37cmsAAAAADA2zv77LM3+3zkyJFb3Keh\noSHmzp3b7W2U5LDxzw0ZMiRuv/32uO+++2LGjBlx3XXXpY4EAAAAAO+uhJqNPaUk12x8y+LFi2P1\n6tUREXH44YfHsmXLEicCAAAAAN5OSQ8b58+fH3fccUdERDzzzDMxbNiwxIkAAAAAgLdT0odRn376\n6TF9+vT45S9/GW1tbXHeeedFRMTVV18dBx54YIwePTpOOumkWLNmTbz44osxderUOP300+OQQw5J\nGxwAAAAA8iXd8yuKkhw2NjQ0RHNzc0S8OVj8S1/4whc2ffx+FqwEAAAAALJTksNGAAAAACh3uRon\niAEAAAAA6BbNRgAAAAAohrxmIwAAAABAt2g2AgAAAEAxaDYCAAAAAHSPZiMAAAAAFEEuX309v+rb\nYwAAAACgKDQbAQAAAKAYqnDNxlyhUCikDtGT1m14PXWEzHVW4DPYK9eVOkLm6l94KnWEzM36yMTU\nEYri9Qp8UTU9tyB1hMydsdNfp46QuSvW/DZ1hMx11vZOHSFz+ai87xFdkUsdoShq29aljpC5rvp+\nqSNQpSrx+0Su8nYJkurTu/Le92Xhjbuv7rFt9T76Cz22rXei2QgAAAAAxVCFzUZrNgIAAAAAmdBs\nBAAAAIAicDZqAAAAAIBuMmwEAAAAADLhMGoAAAAAKAYniAEAAAAA6J6yHDa2t7fHhAkTorGxMSIi\nVq1aFQceeGA88sgjiZMBAAAAwP/I1/TcpUSU5bCxtbU12tra4pJLLomIiG9/+9uxyy67JE4FAAAA\nANWtLNdsbGpqipaWlpgxY0b87d/+bfTr1y/22muv1LEAAAAAYJNcTek0DntKWTYbGxsbY/jw4XH+\n+efH97///fjyl7+cOhIAAAAAVL2ybDa+5eqrr44JEybEwIEDU0cBAAAAgM3ly7Ln976U9bDxwQcf\njK6urrj55pujpaUllixZEldccUV86EMfSh0NAAAAAKpOWQ8bb7311k0fT58+PY4//niDRgAAAABK\nQwmdJbqnVF+XEwAAAAAoirJsNjY0NERzc/Nm11188cWJ0gAAAADAlnKajQAAAAAA3VOWzUYAAAAA\nKHlVeDbq6ttjAAAAAKAoNBsBAAAAoAis2QgAAAAA0E2GjQAAAABAJhxGDQAAAADF4DBqAAAAAIDu\n0WwEAAAAgGLIV1/PL1coFAqpQ/SktRteTx0hc10V+AzW1+RSR8hc3arlqSNkLt9Wea+nilXoSp0g\nc+1D90odIXNfGrhf6giZu2zD06kjZK62bV3qCJnrqu+XOkJRPD3l71NHyNyHb/hJ6gjZ6+pMnSBz\nXfV9U0fIXCX+1piPytupQq7yfo+KiMi3v5E6QuZyXR2pI2SufrsdUkcoSR1PzO+xbdXu+//12Lbe\niWYjAAAAABRBrsaajQAAAAAA3aLZCAAAAADF4GzUAAAAAADdo9kIAAAAAMWg2QgAAAAA0D2ajQAA\nAABQBLl89fX8ynLY2N7eHpMnT45Vq1ZFV1dX7LrrrhERMXbs2DjttNMSpwMAAACA6lSWw8bW1tZo\na2uLM844I37/+99HY2Nj6kgAAAAAsDlrNpaHpqamaGlpiRkzZqSOAgAAAAD8j7IcNjY2Nsbw4cOj\nqakpFi9eHKecckp89rOfjSeffDJ1NAAAAAB4Uy7fc5cSUZaHUb9l3333jcGDB8cRRxwRjz/+eDQ2\nNsbPf/7z1LEAAAAAoCqV9bBxxIgRMWLEiIiI2H///eOVV16Jzs7OqKmpvuPhAQAAACC1sh42XnPN\nNTFs2LA49thj43e/+10MHjzYoBEAAACA0lBChzf3lLIeNh533HHx1a9+NW699dbo6OiIb33rW6kj\nAQAAAEDVKsthY0NDQzQ3N0dExNy5cxOnAQAAAIAtFaqw2Vh9ewwAAAAAFEVZNhsBAAAAoORpNgIA\nAAAAdI9mIwAAAAAUQy6XOkGP02wEAAAAADKh2QgAAAAAxZCvvp5f9e0xAAAAAFAUmo0AAAAAUAQF\nZ6MGAAAAAOieXKFQKKQO0ZNWr389dYTM5SvwxEbr27tSR8hc75rKe6JqK/GLLyLyFXi2sJXr2lNH\nyNwH+9eljsA2OKvvyNQRMveD39+aOkLm2p5dkjpCUXQcNjV1hMxV4hv3usr7sRvtFfhEtXVW3k71\nz3emjpC9rgrcp4go1PZKHSF7hQr8nbdvv9QRSlLHiqd6bFu1O3+4x7b1TjQbAQAAAIBMWLMRAAAA\nAIrBmo0AAAAAAN1j2AgAAAAAZMJh1AAAAABQDA6jBgAAAADoHs1GAAAAACiCQhU2G8ty2Nje3h6T\nJ0+OPfbYI/baa6+48847o7awufZKAAAgAElEQVS2NmbNmhWjR49OHQ8AAAAAqlJZDhtbW1ujra0t\n/umf/ikaGxvj9ttvj2eeeSYWLFhg2AgAAABAadBsLA9NTU3R0tISxx57bJx99tlRW1sbo0aNilGj\nRqWOBgAAAABVqyyHjY2NjbFixYrYZ5994vnnn49TTjklOjo6YsaMGTFy5MjU8QAAAAAgIpdLnaDH\nlXWXs1AoRGdnZ1x77bVxxhlnxDnnnJM6EgAAAABUrbJsNr5lhx12iD322CNyuVwccMABsWLFitSR\nAAAAAOBNVbhmY1nv8WGHHRYPPvhgREQsX748hg0bljgRAAAAAFSvsm427rfffnH//ffHxIkTIyLi\nG9/4RuJEAAAAAPCmQhU2G8ty2NjQ0BDNzc0REXHmmWfGmWeemTgRAAAAAFCWw0YAAAAAKHn56ms2\nVt8eAwAAAABFodkIAAAAAMVQhWs2Vt8eAwAAAABFYdgIAAAAAGTCYdQAAAAAUAwOowYAAAAA6B7N\nRgAAAAAoBs1GAAAAAIDuyRUKhULqED2pc+mC1BEyV2hvTx0he12dqRNkb6c9UifIXFevAakjFEdd\n79QJMvfqj85PHSFz253x7dQRMpdvW586QuZqW59NHSFzp39oUuoImfvBsz9JHaEoCvnKO4hn404f\nSR0hc7Ub16SOkLm1Nf1TR8jcgKX/N3WEzOX2PDB1hMzlNq5NHaEo1g+qvN+lanKpE2Svf98+qSOU\npI1rXumxbfUaOLjHtvVONBsBAAAAgExU3p97AQAAAKAUWLMRAAAAAKB7NBsBAAAAoBhyFbhA57vQ\nbAQAAAAAMqHZCAAAAADFYM1GAAAAAIDuKctmY3t7e0yePDmefPLJGDNmTEREdHV1xapVq+Kee+5J\nnA4AAAAAIgol1my86KKL4oknnohcLhczZ86M0aNHb7rt17/+dVx22WVRU1MThx12WEybNq1b2yjL\nYWNra2u0tbXFsmXLNl13xx13xMsvv5wwFQAAAACUpsWLF8cf//jHmDdvXixfvjxmzpwZ8+bN23T7\nhRdeGHPmzIkdd9wxpkyZEkcddVTsueee73k7pTVe3UZNTU3R0tISM2bMiIiIjo6OuOWWW2LKlCmJ\nkwEAAADA/8jle+7yLhYtWhTjx4+PiIgRI0bE6tWrY926dRER8ac//Sm22267GDZsWOTz+Tj88MNj\n0aJF3drlshw2NjY2xvDhw6OpqSkiIubPnx8f+9jHonfv3omTAQAAAEDpWbVqVQwaNGjT54MHD47W\n1taIePMo4sGDB2/1tveqLIeNf+n222+PE044IXUMAAAAANikkMv12OU9ZysUirDHFTBs3LBhQ7zw\nwgvR0NCQOgoAAAAAlKShQ4fGqlWrNn3+0ksvxZAhQ7Z624svvhhDhw7t1nbKftj49NNPxx577JE6\nBgAAAACUrHHjxsU999wTERHLli2LoUOHRv/+/SMioqGhIdatWxfPPfdcdHR0xMKFC2PcuHHd2k5Z\nno36z/3lMeUAAAAAUAqKdKRyt4wZMyZGjRoVkyZNilwuF7NmzYrm5uYYMGBAHHnkkXHeeefFV77y\nlYiIOOaYY2L48OHd2k5ZDhsbGhqiubk5IiKOOuqoOOqooxInAgAAAIDSdvbZZ2/2+ciRIzd9fOCB\nB8a8efPe9zbKctgIAAAAAKWuq5SqjT2k7NdsBAAAAABKg2YjAAAAABRB9fUaNRsBAAAAgIxoNgIA\nAABAEXRVYbVRsxEAAAAAyIRmIwAAAAAUQcHZqAEAAAAAuidXqLIRa9sDt6aOkLlCZ2fqCJl79v8c\nlzpC5nbdri51BLZRLnWAIviv1W2pI2RuxAd6pY6QuXwlnqvuvrmpE2Su/kP7pY6QudP3/EzqCEXx\nnfVPpY6QufoNL6eOkLlcoSt1hMyt7b1D6giZ66jARccGtVXe66lQW586QnHk9KTKQf0HhqaOUJJe\nWbuhx7Y1eEDfHtvWO/GKBQAAAAAyYc1GAAAAACiCyuuFvzvNRgAAAAAgE5qNAAAAAFAEFbjk7bvS\nbAQAAAAAMmHYCAAAAABkwmHUAAAAAFAEhUL1HUet2QgAAAAAZKIsm43t7e0xefLk6N+/f+Tz+Whr\na4uurq6YMWNG7L333qnjAQAAAEB0pQ6QQFkOG1tbW6OtrS1GjhwZu+22W0yaNCkee+yxuPzyy2PO\nnDmp4wEAAABAVSrLw6ibmpqipaUlrrvuunjttdciImLNmjUxaNCgxMkAAAAA4E2FQs9dSkVZNhsb\nGxtjxYoVceutt8anP/3p+OlPfxrr1q2LW265JXU0AAAAAKhaZdlsfMu1114bn/jEJ+Luu++Ob37z\nm3HJJZekjgQAAAAAERHRVei5S6ko62HjY489FoceemhERIwbNy6WLl2aOBEAAAAAVK+yHjbutttu\n8cQTT0RExJIlS2K33XZLnAgAAAAA3lQoFHrsUirKcs3Gt/zzP/9znHPOOXH33XdHRMQ555yTOBEA\nAAAAVK+yHDY2NDREc3NzRERcc801idMAAAAAwJa6UgdIoKwPowYAAAAASkdZNhsBAAAAoNSV0FKK\nPUazEQAAAADIhGYjAAAAABRBVxVWGzUbAQAAAIBMGDYCAAAAAJlwGDUAAAAAFEH1HUSt2QgAAAAA\nZCRXKFTXSpWvrN2QOgLboF+0pY6QuboXn04dIXMdL7akjsA26nz5hdQRMldz+OTUETL35Of+IXWE\nzO0596epI2Suz4tPpY6Qudd3/HDqCEVxdr/K268rX3k4dYTM5V9fnTpC5toH75Y6QuYq8bfGfKEz\ndQSqWK7QlTpC5nr1G5A6Qkl6tnVtj21rzyGl8RxoNgIAAAAAmbBmIwAAAAAUQSU2w9+NZiMAAAAA\nkAnNRgAAAAAogq4qPB+1ZiMAAAAAkAnNRgAAAAAoAms2AgAAAAB0k2YjAAAAABRBVxU2G8ty2Nje\n3h6TJ0+OYcOGRUTEqlWrok+fPnHxxRfHkCFDEqcDAAAAgOpUlodRt7a2RltbW4wZMyZ22WWX+PGP\nfxynnXZaXHnllamjAQAAAEBEvLlmY09dSkVZDhubmpqipaUlnnnmmRg9enRERBxwwAHx6KOPJk4G\nAAAAANWrLIeNjY2NMXz48Nhnn33ivvvui4iIxYsXx8qVKxMnAwAAAIA3dUWhxy6loiyHjW/59Kc/\nHXV1dXHiiSfGQw89FIMHD04dCQAAAACqVlmeIOYt9fX1cf7550dExPr162PBggWJEwEAAABA9Srr\nZuN9990X3/3udyMi4s4774xDDz00cSIAAAAAeJMTxJSZgw8+OJ588sn4zGc+E7/61a/i9NNPTx0J\nAAAAAKpWWR5G3dDQEM3NzRERcfXVVydOAwAAAABb6iqlymEPKetmIwAAAABQOsqy2QgAAAAApa6z\nK3WCnqfZCAAAAABkQrMRAAAAAIrAmo0AAAAAAN2k2QgAAAAARdCp2QgAAAAA0D2ajQAAAABQBNW4\nZmOuUKiuvX5p9frUETLXWYHPYK+aXOoImeu/8ZXUETJX6NU/dYTiyNekTpC5Qq4Ci+wVuE+5zrbU\nETLXlq9PHSFzNbnK+xlVu35V6gjFUVN5f1c/c/BfpY6QuWmTPpI6Qub2uuaW1BEy98LGynt/tFNd\n5f3crcT3RxFRke/Po9CVOkHmevXfLnWEkvTr/365x7Y1dvfte2xb76Ty3oEBAAAAQAnorLy58ruq\n0D97AAAAAAA9TbMRAAAAAIqgGtds1GwEAAAAADJh2AgAAAAAZMJh1AAAAABQBJ0OowYAAAAA6B7N\nRgAAAAAogq7qKzaWdrOxvb09JkyYEI2NjbF48eI45JBDYuHChZtuf/rpp2PSpEkxadKkmDVrVsKk\nAAAAAEBJDxtbW1ujra0tpk2bFtdff32MGTNms9u/9a1vxcyZM+PWW2+NdevWxX333ZcoKQAAAABs\nrrOr0GOXUlHSw8ampqZoaWmJq666KmbPnh0DBgzYdFtbW1usWLEiRo8eHRERf/3Xfx2LFi1KFRUA\nAAAAql5Jr9nY2NgYK1asiKampi1ue/XVV2PgwIGbPt9+++2jtbW1J+MBAAAAwNvqcjbq8lWowicP\nAAAAAEpJSTcb38ngwYPjtdde2/T5iy++GEOHDk2YCAAAAAD+V2cVduPKttlYV1cXe+yxR/zmN7+J\niIj58+fHoYcemjgVAAAAAFSvsmg23nvvvTFnzpz4wx/+EMuWLYu5c+fGddddFzNnzoxvfOMb0dXV\nFfvuu2+MHTs2dVQAAAAAiIjqXLOxpIeNDQ0N0dzcHBERRxxxxBa377nnnvHjH/+4h1MBAAAAAFtT\n0sNGAAAAAChXnV3V12ws2zUbAQAAAIDSotkIAAAAAEVQjWs2ajYCAAAAAJkwbAQAAAAAMuEwagAA\nAAAogs7qO4pasxEAAAAAyIZmIwAAAAAUQTWeIKbqho29apU5y0E+lzpB9mrWrUodIXOdNZX5LaRQ\n2zt1hMzVrl2ZOkLmOgbtmjpC9ro6UyfIXF1N6gTZy29ckzpC5nKFrtQRiiL3+urUETI3bdJHUkfI\n3PdvfTJ1hMx9d07lvUca3Kfyfo+qWf1y6ghso85+26eOkLlcV0fqCFA0lfdTEAAAAABKQFdX9TUb\nK+/PUwAAAABAEpqNAAAAAFAEzkYNAAAAANBNmo0AAAAAUATVeDZqzUYAAAAAIBOajQAAAABQBJ2a\njQAAAAAA3VPSw8b29vaYMGFCNDY2xuLFi+OQQw6JhQsXbrr96aefjsmTJ8eUKVPi9NNPj9dffz1h\nWgAAAAD4X11dhR67lIqSHja2trZGW1tbTJs2La6//voYM2bMZrdfeOGFMX369Ljppptit912i+bm\n5kRJAQAAAICSHjY2NTVFS0tLXHXVVTF79uwYMGDAZrf/8Ic/jNGjR0dExODBg+O1115LERMAAAAA\nttBZ6LlLqSjpYWNjY2MMHz48mpqaoqamZovb+/fvHxERGzZsiJ/97Gdx9NFH93REAAAAAOB/lPSw\ncVts2LAhTjvttPjc5z4XI0aMSB0HAAAAAKpWbeoA70dHR0ecfvrpceyxx8YJJ5yQOg4AAAAAbNJV\nKKHjm7eivb09pk+fHitXroyamppoamqKXXbZZav3Peuss6K+vj4uvvjid3zMsm42XnPNNXHQQQfF\nhAkTUkcBAAAAgLLyi1/8IgYOHBi33HJLnHrqqXHppZdu9X4PPfRQtLS0bNNjlsWw8d57742pU6fG\nAw88EJdddll87nOfi4iIm2++Oe6///6YOnVqTJ06NWbPnp04KQAAAAC8qbNQ6LFLdyxatCiOPPLI\niIgYO3ZsPPbYY1vcp62tLa666qo47bTTtukxS/ow6oaGhmhubo6IiCOOOGKL2x988MEeTgQAAAAA\nlWHVqlUxePDgiIjI5/ORy+Wira0t6uvrN93nRz/6UZx44ombTtT8bkp62AgAAAAA5aqzq3TWbLzt\nttvitttu2+y6J554YrPPC3/RkPzv//7vWLp0aZxxxhnxyCOPbNN2DBsBAAAAoMJNmDBhi/OeTJ8+\nPVpbW2PkyJHR3t4ehUJhs1bjvffeGytXrozPfOYzsW7dunjllVfimmuuic9//vNvux3DRgAAAAAo\nglJqNm7NuHHj4u67745DDz00Fi5cGAcffPBmt5900klx0kknRUTEI488Enfcccc7DhojyuQEMQAA\nAABAto455pjo6uqKE088MW6++eb4yle+EhERV199dTz++OPdekzNRgAAAAAoglJvNtbU1ERTU9MW\n13/hC1/Y4rqDDz54i+bj1mg2AgAAAACZ0GwEAAAAgCIo9WZjMWg2AgAAAACZyBUKhaoasa7b8Hrq\nCJmrxCewvqstdYTMddX2Sh2BbZSrwG+LhVwudYTMeZ7KQ0cF/iW3rbPy9qnyvvLe1Keu8v6unu/Y\nmDpC5gr5yjvY6v/vNyp1hMxdse4/U0fIXHuu8r728hX4XqJS5SvwN/neffqkjlCSvrXgdz22rXM+\nvlePbeudVN47MAAAAAAgicr7Uw4AAAAAlABrNgIAAAAAdJNhIwAAAACQCYdRAwAAAEAROIwaAAAA\nAKCbNBsBAAAAoAg0G0tMe3t7TJgwIRobG2Px4sVxyCGHxMKFCzfdvmDBgpg4cWJMmTIlzjzzzNi4\ncWPCtAAAAABQ3Up62Nja2hptbW0xbdq0uP7662PMmDGb3X7jjTfGtddeGzfddFP069cv5s+fnygp\nAAAAAGyus6vQY5dSUdLDxqampmhpaYmrrroqZs+eHQMGDNjs9htuuCEGDBgQHR0d0draGjvuuGOi\npAAAAABASQ8bGxsbY/jw4dHU1BQ1NTVbvU9zc3OMHz8+dt111zjooIN6OCEAAAAAbJ1mYxk64YQT\n4t///d9j9erV8fOf/zx1HAAAAACoWmU7bNy4cWPcf//9ERFRW1sbH//4x+PRRx9NnAoAAAAA3tTR\nVeixS6ko22FjTU1NnHvuufHiiy9GRMSSJUti+PDhiVMBAAAAQPWqTR1gW9x7770xZ86c+MMf/hDL\nli2LuXPnxnXXXRcXXHBBTJs2Lerr62OHHXaIL33pS6mjAgAAAEBEREmtpdhTSnrY2NDQEM3NzRER\nccQRR2xx++GHHx6HH354D6cCAAAAALampIeNAAAAAFCuqrHZWLZrNgIAAAAApUWzEQAAAACKoLOg\n2QgAAAAA0C2GjQAAAABAJhxGDQAAAABF4AQxAAAAAADdpNkIAAAAAEWg2QgAAAAA0E1V12zs/fsH\nUkfIXOGNDakjZK5m+51SR8hc2wf3SR0hc4V8TeoIRdEVudQRMtd7xZLUETL3xgdHp46QvQr8o2db\nZ+Xt1ICl/zd1hMy99pGjU0coikLlffnFCxsr72fv4D6V13+4Yt1/po6QuS/1r7z3sj945ubUETJX\naHsjdYSi6Bh+UOoI0G2ajQAAAAAA3VR1zUYAAACA/9fe3UdFWef/H38NdwqKpYSuJ0TTzcxuKFcz\nsTYx3NK0VvM+ae3GViVl1VaEvE8drTV3WdKOqS0iSWmsVp6jKN5Uq+lau6lk2eqeMCwdTUHjmwPM\n/P7ox6y3iOMFnxl4Ps6Zc2Kuceb1aeCa63rP+/O5gJpQ7nKZjlDj6GwEAAAAAAAAYAk6GwEAAAAA\nAIBqwJqNAAAAAAAAAOAlOhsBAAAAAACAakBnIwAAAAAAAAB4yaeLjaWlpRowYICSk5O1a9cudenS\nRVu2bLnocdnZ2erevbuBhAAAAAAAAMCllbncNXbzFT5dbHQ4HHI6nUpMTNSbb76pDh06XPSYEydO\naOPGjQbSAQAAAAAAADiXTxcb7Xa7CgoKtGjRIqWnpys8PPyix7zyyisaO3asgXQAAAAAAADA5ZW7\n3DV28xU+fYGY5ORkFRYWym63X3L7zp07Va9ePcXExNRwMgAAAAAAAAAX8uliY2WcTqfS0tK0cOFC\n01EAAAAAAAAAyI+Ljfv379fx48c1YsQISdKxY8c0btw4LViwwHAyAAAAAAAAQD41vbmm+G2xMSYm\nRhs2bPD83L17dwqNAAAAAAAAgEF+UWzcunWrli5dqkOHDik/P1+ZmZlatmyZ6VgAAAAAAADAZdHZ\n6GOioqKUk5MjSerWrVulj928eXMNJAIAAAAAAABwOT5dbAQAAAAAAAD8VV3sbAwwHQAAAAAAAABA\n7UBnIwAAAAAAAFAN6GwEAAAAAAAAAC/R2QgAAAAAAABUAzedjQAAAAAAAADgHTobAQAAAAAAgGrg\norMRAAAAAAAAALxDZyMAAAAAAABQDdzuutfZWOeKjeVtOpuOYDlbeanpCJZzBoeajmC5gNL/Mx3B\ncq6QBqYjVA+bzXQCy5Xd0Np0BMvVwrdJtlp4INIwoNx0BMvZftnJdATLNXaeMB2hWpQHR5iOYLlf\nBDtNR7BcYFHt+/376boo0xEst/CrLNMRLDf6lidMR7BcXGSY6QjV4pEFg01HsFxIq3amI1iv60DT\nCeAj6lyxEQAAAAAAAKgJXI0aAAAAAAAAALxEZyMAAAAAAABQDbgaNQAAAAAAAAB4iWIjAAAAAAAA\nAEswjRoAAAAAAACoBm6X6QQ1j85GAAAAAAAAAJbw6c7G0tJSDR06VK1bt9bjjz+upKQkzZkzR3Fx\ncZKkhIQElZSUKCwsTJKUnJys22+/3WRkAAAAAAAAQJLkdte9C8T4dLHR4XDI6XQqMTFRdrtdHTp0\nuOgxdrtdbdu2NZAOAAAAAAAAwLl8ehq13W5XQUGBFi1apPT0dIWHh5uOBAAAAAAAAFSJy+WusZuv\n8OnOxuTkZBUWFsput1/2MWlpaTp58qTatGmj1NRU1a9fvwYTAgAAAAAAAKjg052NV/Lkk09q4sSJ\nysrKks1mU1ZWlulIAAAAAAAAgCTJ7XLX2M1X+HWxsUePHoqOjpYkde/eXQcOHDCcCAAAAAAAAKi7\n/LbY6Ha7NXz4cBUXF0uSdu7cqZtvvtlwKgAAAAAAAOBndbGz0afXbKywdetWLV26VIcOHVJ+fr4y\nMzO1bNkyDRw4UMOHD1doaKiaNWumMWPGmI4KAAAAAAAA1Fk+XWyMiopSTk6OJKlbt24Xbe/Vq5d6\n9epVw6kAAAAAAACAK3O5fafjsKb47TRqAAAAAAAAAL7FpzsbAQAAAAAAAH/lS2sp1hQ6GwEAAAAA\nAABYgs5GAAAAAAAAoBrQ2QgAAAAAAAAAXqLYCAAAAAAAAMASTKMGAAAAAAAAqoGLadQAAAAAAAAA\n4B06GwEAAAAAAIBq4HbXvc7GuldsrI1vsttlOoHlbK4y0xGsVxvHBL9hO3vGdATr1WtoOoHl3Dab\n6QiWs7nKTUewnO3sadMRLOdqEGE6AqrKxsQkfxBQC/fnbudPpiNYLi4yzHQEy21xlJiOUC369h5t\nOoL1auF5PFCh7hUbAQAAAAAAgBpQF+vKfDUKAAAAAAAAwBJ0NgIAAAAAAADVgKtRAwAAAAAAAICX\n6GwEAAAAAAAAqoGbzkYAAAAAAAAA8A6djQAAAAAAAEA1qIudjT5dbCwtLdXQoUPVunVrPf7440pK\nStKcOXMUFxen8vJyDR8+3PPYY8eOqW/fvho5cqS5wAAAAAAAAEAd5tPFRofDIafTqcTERNntdnXo\n0MGzLTAwUJmZmZ6fn332WT322GMmYgIAAAAAAAAXcbnrXmejT6/ZaLfbVVBQoEWLFik9PV3h4eGX\nfNz27dvVqlUrNW/evIYTAgAAAAAAAKjg052NycnJKiwslN1ur/Rxy5cvV2pqag2lAgAAAAAAAK6s\nLq7Z6NOdjVVx9OhRlZSUKDo62nQUAAAAAAAAoE7z+2Ljtm3bdO+995qOAQAAAAAAANR5Pj2Nuir2\n7t2ruLg40zEAAAAAAACA8zCN2kdt3bpVCQkJ+uijj/Tqq6/q6aef9mxzOByKiIgwmA4AAAAAAACA\n5OOdjVFRUcrJyZEkdevW7ZKPef3112swEQAAAAAAAFA1LjobAQAAAAAAAMA7Pt3ZCAAAAAAAAPgr\nt9u3OxtLS0s1adIkHTlyRIGBgbLb7WrRosV5j1mwYIF27twpt9ut+Ph4jRgxotLnpLMRAAAAAAAA\nqIM++OADNWrUSCtXrtTIkSM1f/7887YfOHBAO3fuVHZ2tlauXKmcnBw5HI5Kn5NiIwAAAAAAAFAN\n3C53jd28sWPHDvXo0UOSFBsbq88+++y87eHh4Tp79qycTqfOnj2rgIAAhYaGVvqcTKMGAAAAAAAA\n6qDjx4+rSZMmkqSAgADZbDY5nU6FhIRIkpo3b66HH35YcXFxKi8vV2Jioho2bFjpc1JsBAAAAAAA\nAKqBL12NetWqVVq1atV5933++efn/XzhGpOHDx/Wxo0btWnTJpWVlWnw4MHq1auXIiIiLvs6FBsB\nAAAAAACAWm7AgAEaMGDAefdNmjRJDodD7dq1U2lpqdxut6erUZL27t2rmJgYz9TpW265RQcOHFCX\nLl0u+zqs2QgAAAAAAABUA7ervMZu3ujatavWr18vSdqyZYs6d+583vbo6Gjt27dPLpdLpaWlOnDg\nwEVXq74QnY0AAAAAAABAHdSrVy9t375dQ4YMUUhIiObOnStJWrx4sTp16qS7775bXbt21dChQyVJ\n/fv3V1RUVKXPaXNfOBm7lvup5EfTESxnc7tMR7Bcqa321cFDSmvf7155vcoXhfVXtlq4Wzxb+3YT\nCgm0mY5guYDSn0xHsJw7qJ7pCJarjX9PoaWnTUeoFq6QBqYjWK42HvepvNR0AsuVB4eZjmC5QFft\ne59K1ywwHcFyIb1Hm45QLcZe39F0BMs93u7y6935qx77PzUdwSe1fPqtGnutb5YNrbHXqgzTqAEA\nAAAAAABYova1jwEAAAAAAAA+wNu1FP0ZnY0AAAAAAAAALEGxEQAAAAAAAIAlmEYNAAAAAAAAVAN3\nOdOoAQAAAAAAAMArdDYCAAAAAAAA1YALxPiY0tJSDRgwQMnJydq1a5e6dOmiLVu2eLZv2LBBgwYN\n0rBhwzRhwgQ5nU6DaQEAAAAAAIC6zaeLjQ6HQ06nU4mJiXrzzTfVoUOH87bPmjVLS5Ys0YoVKxQW\nFqaNGzcaSgoAAAAAAACcz+0qr7Gbr/DpYqPdbldBQYEWLVqk9PR0hYeHn7f9+uuvV3FxsSSpuLhY\njRs3NhETAAAAAAAAgHx8zcbk5GQVFhbKbrdfcvvkyZPVt29fhYeHq3379oqNja3hhAAAAAAAAMCl\n+VLHYU3x6c7GyrhcLs2aNUurV6/Wpk2bFBAQoLy8PNOxAAAAAAAAgDrLb4uNP/zwgyQpOjpaNptN\nXbp00b59+wynAgAAAAAAAH7Gmo1+pHHjxioqKvIUHffu3auWLVsaTgUAAAAAAADUXT69ZmOFrVu3\naunSpTp06JDy8/OVmZmpZcuWaerUqRo5cqRCQkIUFRWlRx55xHRUAAAAAAAAQFLdXLPRp4uNUVFR\nysnJkSR169btou3x8ejMdgIAABT6SURBVPGKj4+v4VQAAAAAAAAALsWni40AAAAAAACAv3LVwc5G\nv12zEQAAAAAAAIBvobMRAAAAAAAAqAZ1cc1GOhsBAAAAAAAAWIJiIwAAAAAAAABLMI0aAAAAAAAA\nqAZMowYAAAAAAAAAL9HZCAAAAAAAAFQDd3nd62ysc8VGm9tlOoL1auGYAgNtpiNYzvbTadMRrFev\noekEqKLggNr3N1Ub2VxlpiNYzu0ONh3BcoE2Job4C477/ENt3PcFyG06AqogpFU70xGsVwv3EZL0\neLsI0xEs9+6XJ0xHsFwP0wHgM+pcsREAAAAAAACoCazZCAAAAAAAAABeorMRAAAAAAAAqAZ0NgIA\nAAAAAACAl+hsBAAAAAAAAKoBnY0AAAAAAAAA4CU6GwEAAAAAAIBq4Ha5TEeocXQ2AgAAAAAAALCE\nT3c2lpaWaujQoYqOjlZQUJAKCgpUXl6uiRMnqmPHjvryyy81ffp0SdItt9yiGTNmmA0MAAAAAAAA\n/H+s2ehjHA6HnE6nYmNjFRoaqpUrV2r27NmaO3euJGn27NlKTU1Vdna2zpw5o23bthlODAAAAAAA\nANRdPl1stNvtKigo0O7du5WSkiJJatKkiU6dOiWn06nCwkLdeeedkqS4uDjt2LHDZFwAAAAAAADA\nw+0qr7Gbr/DpadTJyckqLCyU3W733JeRkaHevXvr5MmTatSokef+iIgIORwOEzEBAAAAAAAAyMc7\nGy+UlZWl/Px8JSYmXrTN7XYbSAQAAAAAAACggk93Np5r1apV2rx5sxYuXKjg4GDPdOoKR48eVdOm\nTQ0mBAAAAAAAAP7H5UPTm2uKX3Q2Hj58WNnZ2UpPT1e9evUkScHBwWrdurV2794tScrNzdX9999v\nMiYAAAAAAABQp/lFZ+OqVat06tQpPffcc577li5dqtTUVE2dOlUul0sxMTGKjY01mBIAAAAAAAD4\nH3d53ets9OliY1RUlHJyciRJ48ePv2j7L3/5S7311ls1HQsAAAAAAADAJfh0sREAAAAAAADwV27W\nbAQAAAAAAAAA79DZCAAAAAAAAFQDOhsBAAAAAAAAwEt0NgIAAAAAAADVgM5GAAAAAAAAAPASnY0A\nAAAAAABANaCzEQAAAAAAAAC8ZHO73W7TIQAAAAAAAAD4PzobAQAAAAAAAFiCYiMAAAAAAAAAS1Bs\nBAAAAAAAAGAJio0AAAAAAAAALEGxEQAAAAAAAIAlKDYCAAAAAAAAsESQ6QCoHhs2bNCPP/6o8PBw\n9ejRw/Lnfuihhyx9zuqWk5Ojr7/+WsnJyaajVIvS0lINHTpUrVu31uOPP66kpCTNmTNHcXFxpqN5\nrWJM0dHRCgoKUkFBgcrLyzVx4kR17NjRdDyvVYzruuuukySdPXtWpaWlSklJUUxMjOF0V3Y1+YuK\nijR+/Hg1aNBAaWlpJuJ67dy/qXnz5un48ePq2bOn0tPT1blzZ9PxvFIxpuPHj8vlcik6OlqSFBsb\nq1GjRhlO551z36e2bdvqvffeU1BQkKZNm6Y777zTdDyvVIzpiy++UIcOHSRJLpdLx48f14YNGwyn\n807FmBo2bKiAgAA5nU65XC6lpKTo9ttvNx3PaxXjat68uSTp+PHjCg0N1dy5cxUZGWk4XdVd6Rji\nyy+/1PTp0yVJt9xyi2bMmGEwbdVUZUwzZ85UQECAGjVqpPnz5ys0NNRw6spdaUx5eXlavHixgoOD\n1aRJE73yyiuqV6+e4dSVq+rxa3Z2thYvXqzNmzcbSlp1VxpTQkKCSkpKFBYWJklKTk72i/1gZeMq\nLy/X8OHDPY89duyY+vbtq5EjR5oLXAVXeq82bNigZcuWKTg4WM2aNZPdbldISIjh1JW70vmTP+7P\n4b/obKwBR44c0Z49ey673eFwaOrUqRfdP2/ePOXk5Fz163377bdat26d+vXrZ3mhseK54VscDoec\nTqcSExP15ptvek5Q/VnFmGJjYxUaGqqVK1dq9uzZmjt3rulo16RiXF27dtVjjz2mzMxMjR8/Xn/5\ny19MR6uSq8k/bdo0/epXvzKQ8tpVjHPevHmSpJdfflktWrQwnOraVIxpzJgx6tWrlzIzM5WZmem3\nhUbpf2N69tlntW7dOr377ruaOXOmtm7dajqa1yrGlJ+f73mP+vfvrwEDBpiO5rWKMbVr1049evRQ\nZmamJkyYoAULFpiOdk0qxtWhQwe1aNFCb731lkaNGuV3X65c6Rhi9uzZSk1NVXZ2ts6cOaNt27YZ\nSlp1VxrTrFmzNGnSJK1YsUItW7b06ni7pl1pTMuXL9eSJUu0YsUKNWjQQLm5uYaSVl1Vjl9PnDih\njRs3GkjnnaqMyW63e/bv/lBolCofV2BgoGc8mZmZatGihR577DGDaaumKvuJir+psLAwv/g9vNL5\nkz/uz+G/KDbWgE8++aTSYmNkZKRmzpxp2evNnDlTu3btUrt27bRixQrt3LlTiYmJGjt2rOLj47V6\n9WolJSXpN7/5jTZt2iRJys3N1eDBgzVs2DDPzujIkSN64oknlJCQoKFDh6qwsNDz3Onp6fr++++V\nkJCghIQEDRkyRAUFBZKk+Ph4zZkzR3369NHLL7+sefPm6dFHH9Wf/vQnST9/ozdv3jwlJCRo4MCB\nKiwstGzsFUpLSzVhwgQNHjxYv/vd73T06FHPNrvdriFDhqhfv35atWqVJOnjjz9W//79NWzYMCUl\nJam0tPSS9/kqu92ugoICLVq0SOnp6QoPDzcd6ZpVjGn37t1KSUmRJDVp0kSnTp0ynOzaVIzrwIED\n6tOnjyTpu+++U7NmzQwnq5qryT9r1iy/LTZWjDMlJUU7duxQgwYN1LZtW9Oxrsm5Y6otKsbUu3dv\n9ezZU0FBQbrttts0duxY09G8duH7VFZWppUrV2rYsGGGk3mvYkzLli3z7MOLi4vVuHFjw8muTcW4\nvvrqK08nbceOHfXpp58aTnZ1KjuGcDqdKiws9IwvLi5OO3bsMBW1yq50XPT66697xuQvxxZXGlNG\nRobCw8NVVlYmh8PhF8cVVTl+feWVV/xqn14bj8mlqo9r+/btatWqlafj25ddaUzXX3+9iouLJfnP\nZ1Zl50/+uj+H/2Ia9QXKy8s1ZcoUHT58WGVlZXr44YeVl5en5cuXS5LS09PVqFEjxcbGaubMmbLZ\nbGrQoIHmzp2r4uJiTZo0SS1atNBXX32lW2+9VRMmTFB6erqCgoLUvHlzPfjggxe95rfffquxY8cq\nJydHa9eu1ZIlS9SsWTPVr19fN99881WP4ZlnnlFWVtZ5/3b//v1av369/vnPf+qFF15QXl6ePv/8\nc2VmZqpLly5atGiR3n77bYWEhCgpKUmffvqp9uzZo9jYWCUmJio/P18Oh8Pz3M8//7z27NmjxMRE\n3XvvvVq9erXeeustTZo0Sd9++60GDRqkcePG6Z577tGKFSuUlJSkuLg4vfDCC5Kkxo0be779ysjI\nUGpqqpfv2KWtWbNGN9xwg+bPn69169apqKhIxcXFOnv2rG688UalpKTop59+Unx8vAYMGKAVK1Zo\n0qRJ6tixo3Jzc3Xq1KlL3uer06KSk5NVWFgou91uOoplLjWmjIwM9e7d22Cqa3fuuBwOh0aOHKkf\nf/xRGRkZpqNVydXkb9iwoYGE1qgY54wZM/T0009r4cKFmjNnjulY16RiTMOGDVNWVpaeeeYZlZWV\nKTk5We3btzcdzysVY7rjjjv03XffecaUkpKidu3amY7nlQv3fbm5ubrvvvtUv359w8m8VzGm7Oxs\n9e/fX2vWrNGZM2e0cuVK09Guybm/f9u2bdNDDz2kXbt26ciRI6ajXZXKjiFOnjypRo0aeX6OiIiQ\nw+GoyXheudJxUcXnU0lJidauXesXswuqcqyXk5OjtLQ0de/eXffcc08NpvPOlca0c+dO1atXzy+W\nmalQlfcpLS1NJ0+eVJs2bZSamuoX+/eqnmssX77c8vO66nKlMU2ePFl9+/ZVeHi42rdvr9jY2BpO\nePUqO3/y1/05/BedjRd4//33FRkZqczMTL322mtavXq1jh075vlWY/PmzXrooYf00ksvaebMmcrI\nyFDXrl2VlZUlScrPz9f48eO1evVqbdu2TUFBQerbt6+efPLJSxYaz+V2u7VgwQL97W9/06JFi/TN\nN99YNq527dopJCREkZGRatWqlcLCwhQREaHTp0/rP//5j44cOaJnnnlGCQkJ+uabb3TkyBF17dpV\na9eu1dy5c+V0OnXXXXed95wV/5+eeOIJZWRkeL4Vbtiwodq0aaPQ0FCFhYXptttuU/369eVyuTz/\ntkuXLpKku+66S//9738tG2eF/Px8Tyv8I4884vkQr1evnoqKijR48GCNGDFCJ0+elCQ9/PDDmjZt\nml5//XXdeuutioyMvOR9MCcrK0v5+flKTEw0HcUykZGRevfdd5WSkuKX3Wb+nr8qFi9erAEDBpx3\ncObvYmJiNGbMGC1dulR/+MMfasVatm63W+Xl5VqyZInGjBmjF1980XQky7z77rvq16+f6RiWWLJk\niXr27Kn169frpZde8ixT4O/69++v4OBgDRkyRP/4xz/UpEkT05GqjdvtNh3BMiUlJRo1apSefvpp\ntWnTxnQcS/Tr10+bNm1SUVGR3n//fdNxronT6VRaWprGjx9vOoqlnnzySU2cOFFZWVmy2Wyec8ja\n4OjRoyopKfGsCe3PXC6XZs2apdWrV2vTpk0KCAhQXl6e6VhXrbLzp9q0P4dvoth4gX/961/Ky8tT\nQkKCkpKSdPbsWf3617/WRx99pCNHjigkJETNmjXTnj17NGXKFCUkJOi9997TiRMnJEnR0dGKjIxU\nQECAmjZtqtOnT1f5tU+ePKkGDRooIiJCwcHBlq67FxQUdMn/lqTg4GDdfvvtnk7DNWvWqE+fPmrb\ntq3Wrl2rjh076tVXX9WaNWvO+3dpaWm67777lJWVdd4OLDAw8LKvXaFi5+Z2u2Wz2a55fBcKDAw8\nr7hZYdeuXfrkk088Y61Y5Pe3v/2tli9frsaNG2vUqFE6ePDgJe+DGatWrdLmzZu1cOFCBQcHm45j\niV27dqmoqEiS9MADDyg/P99woqvj7/mr6uOPP1ZWVpYGDhyorVu3asaMGfr6669Nx7ombdq0Ubdu\n3SRJd999t3744QeVl5ebDXWNbrjhBnXq1Ek2m00dO3asluU5TCgpKdH333+vqKgo01Es8dlnn+n+\n+++XJHXt2lX79u0znMgaISEhmjFjhlauXKnnnnvOc+GH2uDCKcZHjx5V06ZNDSayRllZmUaPHq3e\nvXvXimL+2bNn9eGHH0r6+bj7wQcf9Lvp/Bfav3+/jh8/rhEjRmjgwIE6duyYxo0bZzrWNevRo4en\nGNe9e3cdOHDAcCLrbNu2Tffee6/pGJb44YcfJP18bm+z2dSlSxe/+8y68Pyptu7P4bsoNl4gODhY\nI0eO9BSjcnNz1bNnT23evNnT1ShJoaGhWr58uTIzM/X2229r8uTJki4utF3tNwYBAf97S7z9tiEg\nIEBlZWVVfvxNN92kgwcPegqmaWlpOnr0qNatW6evv/5a8fHxSkpK0r59+8577pMnTyo6Olput1t5\neXlXtabh7t27JUn//ve/q+Xb5DvuuEOffPKJJGnLli06duyYJ/MvfvELBQcHKy8vT+Xl5XI6nXrt\ntdcUFBSkQYMGqVevXjp48OAl70PNO3z4sLKzs5Wenu7zV1W8Grm5ufr73/8uSfrqq6/8Ym2bc/l7\n/qrKzs7WO++8o3feeUfdunXTtGnTvFrewpe88cYb+uCDDyRJBw4cUJMmTS767PI3v/71r/Xxxx9L\nkg4ePFhrfh+//PJLtW7d2nQMy7Rs2VKff/65JGnPnj1q2bKl4UTW2LZtm/785z9Lkt577z1PQbU2\nCA4OVuvWrT3Hbbm5ubVifG+88Ybuuecev77w0rkCAwM1ZcoUzxrle/bs0U033WQ41bWJiYnRhg0b\nPJ/BTZs29fuLSrndbg0fPtwzY27nzp1+f0xxrr179/rtEiYXaty4sYqKijxFx7179/rVZ9alzp9q\n6/4cvos1Gy8QExOjvLw89e7dWydOnFBGRobGjRunGTNmqKioyHMhl3bt2unDDz/UAw88oHXr1qlJ\nkyaXvVKpzWarUvHv+uuv1+nTp1VcXKzQ0FB99tlnF01droo2bdroiy++UFRUVJUWsg0NDVVqaqpG\njBihkJAQtW/fXk2bNlWrVq00bdo0hYWFKTAwUJMnT1bjxo31xRdfaM6cORo0aJBeeukl3XjjjUpI\nSNCUKVM8J3tXUjFt+/Tp0/rrX/961WO8kl69emn79u0aNmyYgoKC1LlzZ0lSbGys3njjDQ0bNkzx\n8fHq1q2bpk+frk6dOumpp55So0aN1KhRIz311FP68ccfL7rP123dulVLly7VoUOHPFcyXbZsmelY\n12TVqlU6deqUnnvuOc99S5cu9XSl+qvRo0dr0qRJ2rhxo5xOp6ZPn2460lW5XP7FixerU6dOuvPO\nOz0H1EePHlVCQoJGjx7tWUIB5vTp00d//OMflZ2drbKyMs2ePdt0pGt211136cMPP9SgQYMkSVOn\nTjWcyBoOh6NWTcn9/e9/rxdffFHr16+XpFoz3b1z586eDujrrrtOr776qulIXrncMURqaqqmTp0q\nl8ulmJgYv1i3rMLlxpSVlaWoqCjPxRE6d+6s559/3nDaqrncmGbOnKnExESFhITohhtuUFJSkumo\nVVYbj18vN6aBAwdq+PDhCg0NVbNmzTRmzBjTUa9KZe+Vw+FQRESE4YRX73Jjmjp1qkaOHKmQkBBF\nRUXpkUceMR21yi53/uTP+3P4H5ubyfrnKSsr07Rp03Tw4EGVl5fr+eef1wMPPKAZM2Zo//79ys7O\nlvRz58SUKVMUEBCgevXqaf78+Tpz5oznQi/Sz+umpKWl6ZtvvlFycrImTpyoRx999KLXPPcCMatX\nr9by5ct14403qn79+rr//vtrxfSOc1UUJv39yq4AAAAAAAA4H8VG1DiKjQAAAAAAALUTxcYa9Pbb\nb3vWyTrX+PHjdffddxtIBAAAAAAAAFiHYiMAAAAAAAAAS3A1agAAAAAAAACWoNgIAAAAAAAAwBIU\nGwEAAAAAAABYgmIjAAAAAAAAAEtQbAQAAAAAAABgif8HnXNQ7+02h64AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "bLPjatkUmhkh",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "## strong corr in time & f8's max"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "TC9w29s6mtH6",
+ "colab_type": "code",
+ "outputId": "28f8680f-fc61-4440-b987-874f7160c5d1",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 388
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "sample.plot(x='timestamp',y='f8', figsize=(15,5),kind='scatter')"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "'c' argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with 'x' & 'y'. Please use a 2-D array with a single row if you really want to specify the same RGB or RGBA value for all points.\n"
+ ],
+ "name": "stderr"
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 205
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3kAAAE9CAYAAAC2pquGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXt4VNW5/79z25O5kZmEJFwMEIQQ\nDiB4iT1aFfVXxUv7CK1Si42tl/6e2lrbo/VSfpaKPX16ocf6aC22taBNj9UWK9qqJzynrXipIi0X\nAQkhEiCISSZhJsncr78/hr1nr7XX3jO5DBDyfv6Rmdl7zdp77fis77zv+31N2Ww2C4IgCIIgCIIg\nCOK0wHyyJ0AQBEEQBEEQBEGMHiTyCIIgCIIgCIIgTiNI5BEEQRAEQRAEQZxGkMgjCIIgCIIgCII4\njSCRRxAEQRAEQRAEcRpBIo8gCIIgCIIgCOI0wnqyJzAc/P7Bkz2Fgvh8TgQCkZM9DeIEQes9fqC1\nHj/QWo8faK3HD7TW44fxsNZVVR7dzyiSVyKsVsvJngJxAqH1Hj/QWo8faK3HD7TW4wda6/HDeF9r\nEnkEQRAEQRAEQRCnESTyCIIgCIIgCIIgTiNI5BEEQRAEQRAEQZxGkMgjCIIgCIIgCII4jSCRRxAE\nQRAEQRAEcRpBIo8gCIIgCIIgCOI0gkQeQRAEQRAEQRDEaQSJPIIgCIIgCIIgiNMI68meAEEQBEEQ\nBEEQxKnGrzZux7utAeX1hfN8uP0zZ5/EGRUPRfIIgiAIgiAIgiCOE4okcOuP/sYIPAD4x56Azhmn\nHhTJIwiCIAiCIAhiXPLeno/x5J/3nuxpjDok8giCIAiCIAiCGFds3t6JZ1r2n+xplIySibw//vGP\nePnll5XXu3fvxu9//3s89NBDAIA5c+Zg9erVAICnnnoK//M//wOTyYQ777wTixcvLtW0CIIgCIIg\nCIIYZ3T1hbHy11tGNMaF83yjNJvSUzKRd8MNN+CGG24AALz33nt47bXX8IMf/AArV67EWWedhXvu\nuQebN2/GzJkz8eqrr+K5555DKBTCihUrcNFFF8FisZRqagRBEARBEARBjAN++t/v4oPOyIjHmVFt\nHTOmK8AJStd84okn8MMf/hBf/OIXcdZZZwEALrvsMrzzzjvw+/24+OKLIUkSKioqMHXqVLS3t2PO\nnDknYmoEQRAEQRAEQZyGvPTm/hEJvM9eUotPXzh7FGd04ii5yHv//fcxefJkWCwWTJgwQXm/srIS\nfr8fXq8XFRUVyvsVFRXw+/0k8giCIAiCIAiCKMiudj9+tmHXqIy16Ew37rrh/FEZ62RScpG3YcMG\nLFu2TPN+NpsVHq/3vhqfzwmr9dRP56yq8pzsKRAnEFrv8QOt9fiB1nr8QGs9fqC1Pn3Y+Pf9+M1f\nPhj2+dOrbfj5/deM4oxOHUou8rZs2YIHH3wQJpMJwWBQeb+7uxvV1dWorq5GR0eH5n0jAoGR59WW\nmqoqD/z+wZM9DeIEQes9fqC1Hj/QWo8faK3HD7TWY5sf/fYfaDsaG5Wx5MbmY/l5MPrBoqQir7u7\nGy6XC5IkAQBmzpyJf/7znzjvvPOwadMmNDU1YcaMGVi/fj2+8Y1vIBAIoKenB7NmzSrltAiCIAiC\nIAiCGAN885G/YTAxOmNZTcCv7r+ceS8USaB5Uxv8wSiqvA40LamH2yGNzheeREoq8vx+P1Nvt3Ll\nSqxatQqZTAYLFy7EhRdeCABYvnw5vvjFL8JkMuGhhx6C2Wwu5bQIgiAIgiAIgjhF2dXux6MbdqFw\nEdfQmFLt0rzXvKkNW1t7AAAHu3JRvTuWzh/lbz7xlFTkzZ8/H0899ZTyetasWXj22Wc1xzU1NaGp\nqamUUyEIgiAIgiAI4hTlpTf346W3O0dlrBmT3Hj83v+Dh3/9jiLgAKDGpxV5/mDU8PVY5YS0UCAI\ngiAIgiAIguDZvL0Tz7TsH/b5syZLSGXtShQuhwkA0LSkHslUGm2dQQAmpFIZhKIJJh2zyutgzq3y\nOoY9l1MJEnkEQRAEQRAEQZScrr4wVv56y6iMVVtpxuqvXAoAWLtxt1ioZYFD3SFE4mkAwPb2Xlhb\n2ph0zKYl9QDA1OSdDpDIIwiCIAiCIAiiJIQiCdz387cQywx/jFlT3Fh5s37vOj2h1rypDYHBOHMs\nn47pdkjCGryxbshCIo8gCIIgCIIgiFHlVxu3493WwIjHqZxgw103LDI8Rk+oierrik3HHOuGLCTy\nCIIgCIIgCIIYMaMl7ADgs5fU4tMXzh7RGHy9nc9j103H5CN33YEw8/lYM2QhkUcQBEEQBEEQxIh4\nYsM/8a/2gWGff8eyuWicM3kUZyRO49RLueQjdz63nfl8rBmykMgjCIIgCIIgCKIo/vi3Vrz23tFR\nGWvRmW7cdYN+rR3PUOvk9NI4RWhr9ayYdUb5mDVkIZFHEARBEARBEIQhI43UXTjPh9s/c/aI5lDK\nOjk+tXNSpWtM1eDxkMgjCIIgCIIgCILh0efew/sHQ6MyVm2lmRF4w3WuLGXj8tOtlQKJPIIgCIIg\nCIIg0LKlA8//vWNUx5wxyYNVX25k3htuRM7ntuMgWCOV0WIoqZ1jARJ5BEEQBEEQBDFO6eoLY81z\nOxCOJpFIjaCZHYDFCydiIJxrOi4jEmLDjchlkWVfZ7M6RxIk8giCIAiCIAhiHPHSm/vx0tudIx5H\nsprw0G3nY5LPpbz32IadzDEiIcbXvxXrXBkMJQxfj4Sx3vych0QeQRAEQRAEQYwD1v/lfby5u7fw\ngTrMqLZi1a2XGB5TjBAbTv1bKJJAPzfWaLY14FNIk6k0bFbLmBV9JPIIgiAIgiAI4jRktCJ2ADBj\nkhurvmzc7kAkxPpDCYSiCUYgDaf+rXlTGwKhuPJa1NhcHY07o8aD5ZfOLFqY8SmjbZ1BROJpADnR\n136kH6tvaxwzQo9EHkEQBEEQBEGcJpTCPCWHqeARvBADgEAojuaWthGbmvAirNwlaQQXH42Lx1NF\nfy+fQspf72hdx4mCRB5BEARBEARBjGHe2/Mxnvzz3lEZ67OX1OLTF87G2o27FcEEAF63hLUbdxum\nL+oZqPiDUSXK1tUXRiiWgsdpRY3PVXQaZDF1fF19YcPXRvAppKlUhjGQkT8bK5DIIwiCIAiCIIgx\nRFdfGA8/vQWx5OiMd8eyuWicM5l5TyN60pmCbQ+00bAc/aEE1r/Wiu3786IpMBjH4e6wcBwRxdTx\nhWIpw9fMZwKjFfU8QtEEDv5mKxOZHM0awFJDIo8gCIIgCIIgxgh//FsrXnvv6LDPv/vGBZg/o6rg\ncXzd3MNPb2U+F0W1ZOHV1RfG0d4w0seNNQOhOGKHxIKrO1BktK2IbgkepxWBwbwoiyVSmnpAmUK9\n+twOCatva0RzS9uYbJBOIo8gCIIgCIIgTkH+u2UP/rq9e1TGWrxwIr509VnDPr+YdEm3Q0LTlfVo\n3tSGI72seEsk08JxByP60TY1xTRQr/G5lOggAETjaTS3tClzUou1Ynr1jeUG6STyCIIgCIIgCOIU\nYqQ1dqL0y5FSbNsDtRhTY7Oacc6ZE7G9rQfqnuvusuLkSDGirGlJPfZ0HEMknmKOEwnEYkTrWO6d\nRyKPIAiCIAiCIE4yo2WeMloCr1DNmh565iRzZ1TgjqXzNYYukypdwuP5uQQHY8x7Po9dOM85tV7G\nMKXK6xAKxLs/v1D5t55oLSZ6eKpCIo8gCIIgCIIgTjAfHgniB7/bNuJxymxmrLq1EZN8hcXSUBiO\nwBH1yXParZhXV6GIqOE0Qm/e1IZgmHWZyWazwnkumlWJxoZqBMMJeF0SmpbUo7mljYnayXMsdD3F\nRA9PVUjkEQRBEARBEMQJZKS1dg1nlOG+L144ijPSMhyBI2pYvvrWRk0jdHWNXHNLW8E0SNF3B48L\nNf6zYCiBVV9uRFWVB35/Ttg1LalH+0f9iilLsT3viknpPFUhkUcQBEEQBEEQJeKJDf/Ev9oHRmWs\nay+Ygs8tbhiVsQrBC5xCffJCkQT2dBxjxghHk0IRN5QooSg6KM/PKI1TjdshodwlMc6bxYjW4UQd\nTxVI5BEEQRAEQRDEKPOj3/4DbUdjhQ/UoRTmKUNhqH3ymje1MYYnAJBI5c9RHzuUKCEfHbSYTTjr\nzEolDZNP40ymxC6eoqhcIWMVctfU4eWXX8ZTTz0Fq9WKu+66C3PmzMF9992HdDqNqqoqrFmzBpIk\n4eWXX8YzzzwDs9mM5cuX44YbbijltAiCIAiCIAhiVPnuL1/HR4FM4QOL4JZrZmNubSUe27ATbZ1B\nACbMqfXilmsbTpi7Y6E+eV19YSayZ9TvjhdxQ0mD5M+trXbjG587S/gZABw4qm3GDoijcs0tY9dY\npRAlE3mBQABPPPEEXnjhBUQiETz++ONoaWnBihUrcPXVV+ORRx7Bhg0bsHTpUjzxxBPYsGEDbDYb\nrr/+elxxxRXwer2lmhpBEARBEARBjJjRMk8BtE3K127cjR3tfcrr7e29sBZRRzZS9KJbvDALxVKM\nQPK5tWmSMryIG0oapNct6b7m55RD3DVdFJUby8YqhSiZyHvnnXdwwQUXwO12w+124/vf/z4uv/xy\nrF69GgBw2WWXYd26dairq8OCBQvg8XgAAOeccw62bduGyy+/vFRTIwiCIAiCIIghE4oksO7VvUp0\nLRovrpG3iEVnunHXDefrfi4SHKMhQgqlKOrVy/HCrDsQZmrc3A4rpk9yM8IUAEyARsQNJQ3SZDLp\nvm5aUo99hwMYiORTNutr9QNF/LX73HYcxNg0VilEyUTekSNHEIvF8NWvfhUDAwP4xje+gWg0CknK\nPUSVlZXw+/3o7e1FRUWFcl5FRQX8fn+ppkUQBEEQBEEQRdPVF8ZD67YgIS71GhJelwUP335BUSmX\noiiVyFSkELywSaUz2L4/10dOlKLIC8mtrT1o//nbuPemRcpxoUgCD/76Hea4crcEm9Wi+f4sUJSD\nph5qIcm/djsk/OdXPoHmlraiooJ67RZE547lRuhAiWvygsEgfv7zn+Po0aO4+eablX4WAJh/q9F7\nX43P54RV8BCdalRVeU72FIgTCK33+IHWevxAaz1+oLUePwxlrX+4/h/4x+7hBx/Om1OOsjIX3tp5\nFAAQDKfxh9cP4P6bGwue+60V5+LONX9FYDDvLClJliE/q+t+u5URNi4Hu/0PhhPMmGfUeDTiMhCK\n45HndmL9qiXKmANRVvUe7YugslwcCdva2gO73VrUdfPw8zmjxsPMtwrAqq9cIDyXv1fBMOvSGY6n\n8cgdFwnP5e/bcOd/siiZyKusrMTZZ58Nq9WKadOmweVywWKxIBaLoaysDN3d3aiurkZ1dTV6e/Nd\n6Xt6erBo0SLDsQOBSKmmPWqoe3MQpz+03uMHWuvxA631+IHWevxQaK1fenM/Xnq7c8Tfo07F5A1L\njnQPFv28lbvsjMjr7osUdW4oksCvXt6NvYeCSHPxk2yGfcPrkpgxl186E/F4vt5OZiCcUI470q2d\nQyiSxJlTynXnNJTrVrP80pkIheNKimywP4pVT76NwGDcMMImWmuvS9K81psTf43DnX8pMRL8JRN5\nF110ER544AF85StfQX9/PyKRCC666CK0tLTguuuuw6ZNm3DxxRdj4cKFePDBBzEwMACLxYJt27Zh\n5cqVpZoWQRAEQRAEQSj85/q3cKBb24etGKwWEx6585OGaXwjaag9nHNDkQS+t36rJs1Rpr7WC5vV\nUjBF0WYxIalSiC6HTXde8ufyWNvbepDijEaN5m6UGul25NJAI/Fc5HD3wYByXrGOmPL4XX1h+Dx2\neJxW1PhchqmdY7kROlBCkVdTU4MlS5Zg+fLlAIAHH3wQCxYswP3334/nn38eU6ZMwdKlS2Gz2XDP\nPffgtttug8lkwte//nXFhIUgCIIgCIIgRpNd7X78bMOuEY/jkMz47i2NhgIvFEkgmUrDabcAMGHO\nNO+QGmoPpxl386Y2XYHX2FBtWFumrlkDcqYpVqsZbocN967IZ9o1LalHNJbA3kNBZACUuyTcu2KR\nYqhyzxNvM3MwAVi2uM5wzkatDIwMZ4oxo+Gva9bU8oLCcCw3QgdKXJN344034sYbb2TeW79+vea4\nq666CldddVUpp0IQBEEQBEGMU9b/5X28ubu38IEFMAFY+aVzcObk4lp9NW9qY9wmD348tHS/4TTj\n1hM9Po+94Fj8uVkAi2ZNxB1L5yMUSTB98f7vdfN1xaLTbmVEXhbAi5s70HRlvTBi132M7bHH99wT\nt0rIf6ZGjtoFwwl4XRKaltQPr1VCYZuQU5qSijyCIAiCIAiCOJm89Ob+EQm8K86rwRc+Na+oY/m0\nQ16sBEJxNKt63ZXCwVEkiLxuiYnE6X236FxZEK17da8iWA92DSKZSuOu6xcK5xCJaVtL+INR3Yjd\nYIQ9PhjKC0qvW0IqnYHFBKa+0Gm3or62HKl0Bg8/vTXf4JyL2onuSTGpl4Wii6c6JPIIgiAIgiCI\n04L39nyMJ/+8d1TGGoq4k+GFgahB+M72XqzduFsjSA52DWJPxzHMq6sYkdgTpRmKxhKJmKYl9Wg/\n0o9AKB+FkwVRzvgkD/9ajdthZcaQx9GL2PHHJ5MZjVDjqfY5YLNaNNcgagGhZoLLhu5AWFkDvfs8\n1hulk8gjCIIgCIIgxjS/2rgd77YGCh+ow2cvqcWnL5yteX+okTZeCLiPtytQC5hEKi9geNETUbla\nDjdqVGyKp0jEuB0SVt/WKOw7x3c5E3U9k+9X30CMed/nsaNpST1WPbWFeX8glDO8mVjuQKdfdS/Y\n/udCqrwOzTV09YURGDB24R8IJzEQTuJwd+779O4VGa8QBEEQBEEQxAlkNCN2dyybi8Y5k4WfFZOy\npxaCwUFW3Ez0OnDvigY0t7RhZ3svEirLSX8wqklTVH82EtRz8rolmEwmpeXAskvq8OIbHejhWpLJ\nIkZPJNolC6KqjvB2Sduzmk+VdNqtTGQylmCvV36d5Qrg7FYzonHj7vOpVAY+tx0HkRdiXccijCNo\nIYzuMxmvEARBEARBEESJadnSgef/3jHicaZOdOD+m84tKh2ymJQ9UQ2YTMfRfjzy/E5UeR2YN6MC\n29vztYFVXgfS6YwmrVH+bCTozelg1yDaP+pnTFHUQswIj8OGYCjfasIpWRgjFpHBSbXPwQhGs9kC\nIMW9BjMukBN/siPpzCke7OkIaHxQtrf3YtGsSjQ2VMMfjKI/nNB1FdXD6D4Px/TmVIJEHkEQBEEQ\nBHFK8+GR4IgE3vzpTtz9hX8fcuP7YlL2jKJBwXASwXASB7sGGUGimIS0tDFpisUKrkJ09YV1PwtH\nk8zrSDyF3Qf6sP6VVtxybQMjftURwVCUjcL5+2M4eix37fI94u9XfzjBmKLMqfUyQjeZSuOh9Vsw\nGOYifMksgFwkz2G3YeWXzsFPfrddE6Xb0d6H/3fc7fThp/V7A6oxmwCrxQyXw2bY1oG//tEyxjlR\nkMgjCIIgCIIgThn++LdWvPbe0RGPUznBBo+zbESpdsWk7BnZ+6sJhhJY9eXGguPLImIkAiMkcLeU\nyQqK6aKJNLa398LKOX/yTdVNyHUWMAEawdXVF0ZleRmcdgsymSzSmSwCg3EEBuPK/bnl2gYcXJcf\nM5nOKrVxPo8d5S4JPYEoIvH8/P3BKM6c7MUv770M9/z8bU3k8ye/245f3nuZJnVTPV81mWyuLjIx\nGMeLmzsMo3Vj2WGTRB5BEARBEARx0hmtXnYAYDGZ0DeQRN9AckSb82JS9tRCTV3/1h9KCF0qix1/\n/Wut2L4/dz8Odg1i/5EgHr7tfI3QE4lBj9OqiWpJ1lz0yijapY5KipqqZ7n/MvOIpdDp7xN8kmNP\nRx8eeX4n4glxrV25S8KqLzdi7cbdTKqp+r6JXDtlscnX9X1iXg1u+tRsrHtl73EnUBOyyDK1foVq\nH8eywyaJPIIgCIIgCOKEs3l7J55p2T/icW65ZjZ2tAWYNEBJMg9pMz8S9IRaKJpgXCqXXVKnqWEz\nisztO8y2KAiGEkyPPRlRtKnG51IiZDILZ02EPxg1FHlqQWWU8snj89iFwlJNJJ42jHjK320UPZ1U\n6WJdOI/z2Iad2PkhKzCPDcThdkhMLz8jASm8Li466PNoW2KcqpDIIwiCIAiCIErOh0eC+MHvto3a\neFMnuvD92z8BADh7dg2yqoiNxLkzngz7e178qQWG0pfuynqsezU/7zm1XlVdnDZeJhKromjT3Z9f\niGQqnR93mlepARQJLbMZmDejghGiXceMWxHYLCZMqnAiFEvB47Rq6urUWMwmpDP563HaLaicUKac\nW+NzKWJOJJrlaGVXXxgmE9u+wW4zKU3a1dRUODXviQSkUVosHx0UpbqeqpDIIwiCIAiCIErCaNXX\nAYCrzIRwLL/JnjLRpfzb7ZBgs1oQOS7sIvGcCDGZTIrBRiiSwLrfbsWR7kHdSFopjTZEYqx5Uxsj\nUNR1cfW1Xo14EYlVkTkMH8GSUYuc4GAMwXDOhCWTyZmRvPhGh2ETcrfDgnAsDbPJhIbpPlgtZnTu\n71UiePI9L5MsmD7Jg8FIElVeB6KxJHYfzPcxrK/1Cuenh5GDaUqQ/WkxAUf9IU3Dc5GAFIlv+Rje\n9ZN/fSpDIo8gCIIgCIIYNV56cz9eertzVMZavHAivnT1WQC06Y+8CQovonK1WlnFYANAQRMNI6MN\nIwFYzGeivnRGkblbr53L1JPJ0TieoUSn3A4JTVfWo3lTGw51sxG9fYeDqPYZRzzD0TSyANLZLHYd\nOAannZUSyj1PZVAmWfEfyxcBAB5/4X3mOJOpiG7nKvTSbW0WE8xclBAA0lngwNEBHDg6AMC4HtOo\n7m4sN0QnkUcQBEEQBEGMCiON3N1yzWxcfFat5v1CEbZQJIF+gyhLMWmOovd4IxI9ASj6bNnFdVjz\n3A4EQ3EmvVDdJkGUPul156NOxUS7hhqd0o+KZYUOlewRLNGEformjvZeJZLG1+r1BqO69YmitdZz\nME2ms7BkjFMoC9VjGgm5sdwQnUQeQRAEQRAEMWS6+sJY+estozLWtRdMwecWNwAQb/ILWdk3b2pj\nXBdtFhNj8V/ldSDJ5fXJYkqN0YbfSACKPlvz3A6hEYm6QXjTknrs7wwoaZPA0KNcInjTlK2tPQj9\nfhvuWDpfV/Rks8CHH/cP6Xtk8eq0W5FMpZl7nkxlsLW1B+1H+jFjkocRj6FYakiC+crGM7Bjv1/T\ntgEAzBYz0qmM8tphtwypHlNPyI3lHnkAiTyCIAiCIAiiSEZqnnLFeTUIhrKGG2fRJr+QlT3/elKF\nE5MqXcz3rH+1lTlGJKaMIjdGAlD02dFesTtl97EIUyvm9ZQxIq+Yht6FEPXJ23soiOaWNt2oWDSR\nRlSnvUEhqn0OpNMZofNlIBTHdLiZRvDdgTBznV19YSWy1xPQru0vNu4RCjwAcJfZGIE/p9YLm9WC\nYDgBr0sqGH3Tc0cdyz3yABJ5BEEQBEEQhAEfHgniJ7/frrvJLpYrzqvBFz41j3kvFElo0vZEAq5Q\nbRT/+aRKl2ZDzounfYcDePjprbo1a/5gFM0tbcpnRgJQ9Fn7kX4kQlrBFk2ksbW1B8lUGjarRVir\nN1L02hnIzpvtH/UPWUxOcNkwp9YHfzCq2wNQJPIAbSP4tRt3My0euo5FdM+t8jpwpEfb5Hz6JE+u\nNcXiOry4uYPpU+gPRnFGjQfLL5057OjbWO6RB5DIIwiCIAiCIDi6+sJ48NdbkCl8qCHqNEwRomiJ\nSNAVqo2SX3f1hRGKpdAdCGucFflx5b5txaQL3rF0vmHjctFn9960CGueFadsAkBbZ1BxAwXYWr2R\nIuqTB+SdN8tdku68+FRX+b1vXL8AZ072AjA2wenqC6PrWESTLqtGvZ794YRmLk67BdU+pzL2jv1+\niFuw5yJ58r3naxHj8dSwo29j2XQFIJFHEARBEARBqHhvz8d48s97h33+3TcuwPwZVUUdq9fjTf63\nOsqmF2ED8iJL3uQHBuOKyFHXv9ntVhzpHkRPIIpIPCWcR/cxVhx1B4pvCq5mks+F//r6JzUNuPOw\n6aLqWr2R0rSkHoPhGFo7B5T35k7Pu3PyAsZiMsEuWTBnmhd9A1GNQEyms/jFC3uw+rZGJeIpmqvi\nRFrACVV9/sNPb9WIvHl1lcz4lRPK0KVK48wCQoHOP097OvoQiiaGFc0by6YrAIk8giAIgiCIccto\n9rHjo3bFGFfo9XgrpkZqx34/Jk90Ko203Q7JMMXO7ZBw/82N8PsHNcJLHaUZjLD1bPzrocJHGeXm\n36lUBtvbe4VzAEZm/OF2SLjvpvM048jiWJ7Tno4+ROJppLNZROIpWC1m3ShgIBRH8/EefsV8f7GC\nlX8GfB67RlDFU/oxZXmNRQ6rkXhad86F7u9QruFUhEQeQRAEQRDEOGWoAs8EYOWXzlHS9owoxrii\n2GhJKJLAno5jzHvJdBaHu8NMxE4kGtWb+ZpKJxKJNHqDUfg8dkVwqb/X7bAy9WbuspFtl0ORJNo/\n6kc4moSrzIavLp2PST4XQtEErAbRrtEy/hCN03RlPZKpNJMuCgAf9QzigaZzAeQFoJpCdWl6wkl+\nnxe6asFpJGb1agyBvDjmHVYLzVnvvoxlR001JPIIgiAIgiBOY0SOmF6XBQ/ffsGQxqmtduHeL5yt\n2fTqbexFUTXRscUIl/WvtTLplTzyd4kEQ3OLdjMvM2tquabZed9AjDlmUqXL8FqRhaEw+MnvtyN4\nPMKUCMXxk//ejkfuvKhgCupoGX+Ixln36l7saO/THNsdiCpplvW1XhzsGlTmDgD94YTGrEZ9b763\nPp96qRamfG8+Pp2WWYMW7b2s9DiY6KLNYmKiuEb3R6+Wjm8z0dUX1gg/2RxnLIo+EnkEQRAEQRCn\nGYXSMIPhXBpbMdyxbC4a50zW/Vwv4iSKqg13E73vcNBwjvJGXpRiZySO9JqdA2IjFNG1AjCMuPWH\n2RRC+bWRKJKvSf0dRgLLCNE67OnQCjwAyKiuBQAWzapU1kc2SAkMxvV7FXLRtn/u68HjG95H36B4\nDdSpls2b2pjooTq6xvfvS6bh/iZ7AAAgAElEQVSzqPGxDqqi1hDq1E9eoA9GksyxoVhK86zs+rAP\nsn/MWGujQCKPIAiCIAjiNGD9X97Hm7t7Cx94HH8wimsvmIJX3tGKwcULJ+JLV59V9Dii16Ko2iPP\n72SOVTtMGm+itc6KNosJ1T4npkx06aZ5AuLNv/ozvetIpbV1YMVE1/j3zADUSY/ZbM4FMpXOaESR\n+lz1/Ts2GGMEVjKVxl3XLxReE49oHR548l3hsSZTvsE5wLY+4A1SirkX2Sywvb0XPrdd+H3qVEuR\nOc3O9l60f9SPgXBS8xn/fU1L6rGn4xgT8S13SYoY5gW6Q7Iw53ucVs2zwncNGUttFEjkEQRBEARB\njFF2tfvxsw27hnVuldeBzy1uMGxxABQ2qNCzmhdF1fhj40lWSOltoutrvZr0wmQ6iykTtf3w+Pku\nW1yH9iP9mnotr5ttlM3PLZHKKKJAL7omX6uR1f7c6V7sPshGIre29sBp127D1eeq79+dP9vMHNfW\naRzZDEUSWPfq3uPHmTCn1ou7P79QWbc5tV7G9EX5zjIbBlQRLq9bUvoY8qYmhXoVqonGE/C6JSb1\n02YxKa0u9BxME6kMEgVq8ZS5OyTMq6vQNdThny0Ta26qSf3kHVhF33kqY3nooYceOtmTGCqRSKLw\nQScZl8s+JuZJjA603uMHWuvxA631+GGsrvXKX/wN/7tdZM1fGK/Lgm8tXwTJZil47G9e2YutrT0I\nhhI42htGb38MjQ3Vyudzp3vR2x+DZDVj9hk5m369cdXHmkwmzSbaZDJhywfd+OBgAHOne5Vx5tVV\noLc/ht5gFOlMPrwiWc1YvGiq8joUSWDVb7bgwMeDynz/tc+PW6+Zg3f2sPeqYZoXFy/MnyvPjf8O\niwloPRzEa+8egmQ1Y3KlC2WSRbnWM6dOwLa2XmQyWUxwSrjtM3MZEbzgzEq8+0E3YgnWxMRmZfvR\n+Tx2fPOGs4T37tV3DyOpiizarBZcc8F04T0Gcmu2ra0XyXQWyXQGXccieHdPNz65YBIkmwXz6nzC\na632OjBnmk9Zy2wW+FebH8FQArFEGj6PHRVuCbFEGl2BKF7f9hEWzq6E2yFh7nQv/vefncgI2tml\nMoDZZGKuIZMF+sNJHO0NI5tlBb9JOwTD2bMn4ktXz4FksyAUSeA3r+xV1mdieRlC0SQkyQKf2455\ndT5INgv+1dqNnmC+3tJuM2NeXSWzlm6HhMaGaixeNBWHugdxtDcvPo3W52ThcokjpABF8giCIAiC\nIE55WrZ04Pm/d4x4HKfdgge/fB4m+VgzET7qc8u1DYYGIF19Yax5bofiGHnvTYs0Y4qif0b90Swm\n6NZ88X3wZNSRla6+ML771BZNil0wlMDjL+zW3At1VEk9X1eZDQlV1C8US+nW6rkdEppb8rVoiVAc\nL27uYKKLes3H62u9RZt68JG3OdOM3U1FEVGmBcLxe2S1mJBQ6exQNIUrG8/A43/ahUPdg0zqJpBz\nGs03Os8iwBnJ5MJj4qbl+u8DSa5FQjkX9VPjkCz4xufyqcR8qqfPY1dSgLe39yL7yl7YrBZ8cIiN\nfoZiaVgtZiUdlWfZJXWMK+q9KxaNGdMVoIQib8uWLfjmN7+J2bNnAwDq6+tx++2347777kM6nUZV\nVRXWrFkDSZLw8ssv45lnnoHZbMby5ctxww03lGpaBEEQBEEQY4LREnYmAP9h0KC8eVMbkwq5vb0X\nVlVvMVGK4prndjDCZs2zO/BfX/8kM2Yh+39+XLtk1W1QDuSEWDKVRpnNhGQKkCQzUqmM0ux6zXM7\nNAJPJin4QC0QebdJr8sGr6cMVV4HugNhRqBF4ikmjbOY2jRRL7hbr51btGi45doGTbsFo7YEeqmT\n8tz0auACoTh+8ux24f0CcoKX/4wxluFVoYqZUybAYbdhZ3svEpyoM3G5kx6HDbPP8MIfjKKzJ8RE\nG2PJNNZu3K3r4hqOsvV76rpPHj3HV7dDwotvdBiK91Odkkbyzj//fDz22GPK6+985ztYsWIFrr76\najzyyCPYsGEDli5diieeeAIbNmyAzWbD9ddfjyuuuAJeb+H+KwRBEARBEKcTo9mc/AufqsMV59UV\nPK6QeYjIuOPbT/yDOT4YiitiSzSm6Dv4cQs1B+fFaDSeZgQpv7lXY7OwqZE2i4mpx+Nr3AYjSTx8\n+yfgduRq0kTNweVr4gVVTyDKiBDRtQ7Vil9U38hHNdVtCZqW5Prgqd0h5bmq5y5CJPAkqxn/NsOH\nfYJaQLPq39W+MnzUqz+2KBrr89gxo8bDrP2kynyt5eMb3mc+y2bBiGz+/vORWKPkT5/HrvuDxGi1\nsDhZnNB0zS1btmD16tUAgMsuuwzr1q1DXV0dFixYAI/HAwA455xzsG3bNlx++eUncmoEQRAEQRAn\nhZfe3I+X3u4clbEkAE8+MLQ9lCjqo2cAIsNvpLNZ5FMBBWOKDCv4cQs1B9fbZMvvazf3OUwA7vvi\n2fjFn/YgEkvCKUy9Y4VAOgvc/+Q7mF9XmTNu+ahfk24pX5M8z10f+hFLZpVIn9oBU3QPR4rh/cjm\n6vamTHQxUb5ll9Rh7cbd6AlEhvRd8+oqYLWYERVExOZOzwdmqr0uXZF34GjueWDSIB3H16LMhuwr\n+ZRhdYRWjmLyEUA9F9dli+vw4uYOBMMJeF2S5scDNdlsVlfMaVpYhBLMDxmnOiUVee3t7fjqV7+K\n/v5+3HnnnYhGo5Ck3I2prKyE3+9Hb28vKioqlHMqKirg9/tLOS2CIAiCIIhTglAkMSKBd+E8H27/\nzNkjmoMc9VFq8qZ5DVsSAMC9Ny3Cd3/9HpNGJ6e+rXt1L1oPHYPFZIJkM6Nhuq/geACMSrYA6Ls3\nymLr3psW4f/9cotmGKvFhDMne/FfX/8kqqo86DjUp0nPE7lNRuNpbG3tUQSJGqfdolyTLOByDph5\nEVTIAXOkGN0PPh0znkijxufCH//+Ibbvz1+n025FNptFNCFOZ5TpONqPCW5W3JhMwKJZE3HLNXl3\n1qzhIuY+Y9IgB/NpkDarhamlkyO0evWY6ogpL6DvWDofVVUe+P2DCEUT2PfkuxqTHyBXl6n3g0TT\nknpG3DM1jWOAkom8GTNm4M4778TVV1+Nzs5O3HzzzUin8w9QVidnV+99NT6fE1brqeNso0dVledk\nT4E4gdB6jx9orccPtNbjh1Kv9ZGeEO748V9Hbbz7bz4XFy08Y1TGqgLw/TsuGto5VR6cN7cGW/Z0\nKe9NqnThD5sPsCmViTRcTgl10yo1Y7QePIbvPPEm5OBMuUtS6rsOdg2i4+MB+CaUoabCiTs+txDf\nWnEu1r6wEx/5QxgMJzDBJWFKlRt3fG4hJrgkVFV54HLYEOIE2aSJLmZ9/7D5AJOeZ7db8e2bG3HT\nqteE18pH8ABgwayJzDX1hxOadhAms2nUnqv+cAJPvrAT3cciqJhghwkm9A7EMLG8DM4yKyKxFHM/\nHvr1O8z5cnTR5WC3/lOr3aipcOKtncYpwsFwElku69Fpt8LllFBZ6cEEV04AhnVq3wCgzG7FD/97\nG472hrixE6iq8iDINY3f1uZHImuC2yXhyRd2KtcbjiYQTWSUazJbTPjG589R7o/8vAC557QKwDkN\n1cJrrKl04q7Pn4O13LkTXBKqAEz0Opj1l+c6FiiZyKupqcE111wDAJg2bRomTpyIXbt2IRaLoays\nDN3d3aiurkZ1dTV6e/O/KPT09GDRokWGYweGGGI+Gci/HhDjA1rv8QOt9fiB1nr8UMq1HkkfOwC4\n9oIpun3sTvbzGY+zYioWT6KvJ6Y57kj3oDLXUCSBX7z4Plo7BzTH9XOb/N7+GHr7Y9jfGUQ8nkLT\nlfWIx1PIZrKomzxBqWuLR+LwR+IIRRKICqI1k3zOXEQnksAfNh/AeyphKs+vr3cQZhOE9v8iEok0\nc//XbtzNRDUBoP4M76itER/FUtM4uRpNV9ajeVMbjnQP4tFn/wW3oAcfAGS4ejt3mRXLL52JeDwF\nfzAKr1uCyWTCvsMBjVnJINeQPBxL4a2dRxGPp5ToltfFRvt8Hrsi3o8NxHFsQCuYvS4Jfv8gyqxm\n5v10Jovv/OItzJpazly7hTNp2dXei5/+9j3lx4X9nUGEwnF8/46LlPu//NKZ2HOgTyPYE4k04pE4\nbr06/zcmP0+i65HneqpgJDhLJvJefvll+P1+3HbbbfD7/ejr68NnP/tZtLS04LrrrsOmTZtw8cUX\nY+HChXjwwQcxMDAAi8WCbdu2YeXKlaWaFkEQBEEQRMkYqahTU+OzY8n5M0dlrFLAW9y3dQYhCTKt\n+sMJPPz01py5SjojFHiF+KhnEN9bn2+5cLBrEO0f9aPcJSkpl82b2jRCS93wfP1rrUyqojK/UALr\nX2sVCjzesEWGFwt8XZfTbmHSGEeKkemHPxjVmIcsmlUJn8eumafNZmZSM7PZrLBeMBRN4D8ef5u5\nn3r6V56b7H7qtFsgp/3eck2uFQffLsNpt6Da52ScQj84eEwzdjia1Fx7RjMTkyY1Vv1ads8UGfOI\norRqRIY5Y4WSibzLL78c3/72t/HXv/4VyWQSDz30EObOnYv7778fzz//PKZMmYKlS5fCZrPhnnvu\nwW233QaTyYSvf/3rigkLQRAEQRDEqU4oksC3H3sLI2mnPmOSRxFBshDpDpzaNUA+tx0HkY9qROJp\noYO+uvedUyfCpIzpsSMcTWos9v39MY3YUo+bSmc0G3an3YKHbztfMcrYKxARQK7WKn6YjVrJ9WY3\nXH4mXtzcgT0dfUxkizeS4eu65tVVjqpBh179nfwZL4SCoYSmN5/TboHXLWFAFZHT60Xndkg4a2Yl\nU6dY7hL3rpPvxfrXWplUXXkc0fzn1VUyz/XajbuF7S9cDpvm3HKnDUHVNcyZ5sW+w6zIiycyuPvR\nzTnjFdXflN7c9SiFYc6JomQiz+1248knn9S8v379es17V111Fa666qpSTYUgCIIgCKIkhCIJfPOx\ntwp5hhiiTsl8+OmtzGenom27HBnZe6hP85lJ360egLH3wtzpXtyxdD6aWwQ93AybbAP7DgdRX1vO\nfVfO8VNO6+QbbnMzY16dN6da2dzfsXQ+QtEEmlvyPem6A2GmTUIpIz58hGzmFA9sVgsCg/F8FLOl\nTWgewgsrAEw7CCORw/fmW7a4Dmue3cE2sDfnnTB5Eb19fy/u/NkbmFPrxQ3/50zG3EftngmIn3MT\noDhvysd43TnRljg6AHW0cP0rrYwgTWez2H88mif6YcFht6Bhmk9xGx1ua4tTmRPaQoEgCIIgCGIs\n86uN2/Fua2DE49xyzWxcfFat5v1iWg+MJnqNoI3Qa6QNAPW1XhzqDummwdlsZkyvcSkpmzaLCfd9\n8WycOTlvw9+0pB7tR/oRULVDcJfZmNc8mUwaBz9m00CjiTTTT02yWXRdJOtrvbBZLboijXd4VPek\nUztAjjahSIJJUwUAh92m+S4jkWn0npHI0bS4iCQQ5+5fOpNVnDBFIjoST+U+t5p13TMB7XNvs5iw\n+vbzMcnnQiiSjx7yz5bVYmbaLPiDUfQEopyTpvbHgfnHI4nqWkdRCvBYFnwk8giCIAiCIAz48EgQ\nP/jdtmGfP7Fcwqov59MGZWH1921dms3kia4B0msEbYRedNHnsePWa+fip7/frivyvG4J9910nuH4\nboeE1bc1Yp2qb9rUiU7MmOxRolfRWBK7D+bFdjoDJoVPzZ6OPoSiCTRM8zHRHq9bgtdtH9KG3qhB\n9nAEcyGaN7UVrP8TfS+y0J0LnyZZ7Po3b2oTtiGQ52QkokXPjPo9+Tnv6gujP5JAMpXBfz79L8yp\n9QIm6KZbymOoBSlvUjNzsgd7D/dr2n3I36dGnQIMFP5bOJUhkUcQBEEQBKEiFEngvp+/hZhRdl+R\n3H3jAsyfUYVQJKFETPrDCcZABMhvJksZERJt+vnNtyyIeEGqPk9UH+bz2LH61kaEIkl09rAbZzU1\nPldxE87mojZy5Gf3wQAaG6px9/KFWPfqXrR1stFUkTmKTCSeRnNLG265tgGu1w/gSPfgsERYKJJA\nP1eTpo60DkcwFxKGInHER3dF3wugqLkMRbR2B/TXtcrrgM9t1206LkofVV+H2yGh6cp6fG/9VqZm\ncHt7Lyxm/RxgUaRbFozBcAIuuwUHuwY1hjzyeaGYWLQCp2aq9FAgkUcQBEEQxLjnpTf3j6gpuYjG\nhmrMn1EFwDjF8URsJvUECC/YZEEkCwLReU1L6rGn4xgT1QkMxvHrP3+Azp6QJjnOIVlQU+EURib1\nRI5eBKt5U5vG3KMY/MEo3A4J99/caGiBbxQV481XfB67JgWS/85CYxcShvz68N9ZzPfqvScavz+U\nUEQ+Pzef286cK7dHUK+rqOm4Q7IUTB8FxFFLABqBJvpeGfU9PqPGg3AkoTGLUTey9zitulHnUqdK\nlxoSeQRBEARBjEt+9Nt/oO2otq/bcFi8cCI+d2kDmlvahJtYIyGn3kyWIuVP9P3ya5FgUx8rOs/t\nkDCvrkIjWncdOCY0Xpk/s9IwBVAkcvg0OiC3uTe6j3rtDoDiNuyhSAKrfrNFSfuUXTutFrNQoJe7\nJGZtjAQTIL5W/np2tvdi7cbdWHZJHV58owNdfWH4PHZ4nFbU+FzC54H/Xq9bwqGukOYYEU1L6tH+\nUb8idAKhvKMrPze3w4pZZ5QbPpv1teUaET5/ZqUwVZTHaG35lgt6fxP8PRaZrqidT2t8LsaIRqax\noXpMtUsQQSKPIAiCIIhxw2gZpwBAwxlluO+LFwI4Ls5a9MWZKCIjikYMJeVvKIJQz9BFJNjUgkDv\nvGWX1AmFjxmAuirLZjEZbpZ5MSe/FqXRZbNZ3VYCuVq/s/Hi5g6mqbfagbIQzZvaNHV9ew8eg9ls\nFh7PCyeRYPreuq3KOvPpjvK6qa8nkcpga2sP9h8JMhGoWVPLdZ8Dvo4zlc4wJjU2iwnLFtcJz3U7\nJE2rhT0dfXj46a2a1NRJlS6l6bo/GGWcS2VMnMqX+xQW86watYngWy7owT9PvJsrHwltWlKPHfv9\nzI8DPo99TNfiyZDIIwiCIAhiXLD+L++PSOB99pJafPrC2cLPCokzkaGKSJAVk3pX7HeqMTJ0aVpS\nr2tvr3fei290CL9n7nQvDvvDGIwkYTaZ0DDdJzxO3vQf7WU35bK4E6XRBUMJ3P35hUim0tjZ3sek\nhc6Y5MEkn2tEm3PRvU6mMkhn2eJMp92KeXUVQgdOj4Odt9rIg093VN/Pf+7rYXoM9odZgWX0HMj1\nbLKI6gmwxybTWfzhr+246/qFwvNFKbvy6wkuG1KpDOTnQt1Qnn/mQpEEWg+xf1/hWArNLW1Mr7qD\nXYPY03FMuYdq0yE+qixZzVg4ayJzr40EI//jgM1mxpxpXuXZnlHD9uJ2OySsvv18rHl2B8LRJFwO\nG+5dsUjnTo8tSOQRBEEQBHHa8dBTb+Bwr76pQrE47Sb86KufLJgyWUicFWuoohc5C0US+NXLu7H3\nUBAZAOVOCS6HjTm3qy9ctB0+Pzfe3j77yl6mpcDdn19Y0BBkwcwKfOUz/6b0uUtns9h14Jiwobte\njaLHmduaitLovO5ceuRd1y/Ew09vZe6TXlNvQFuntfzSmcL1FEWSeMdIkwmYU+vVFemDEf1nziGZ\ngePN3l0OG5YtrlPW5c6fbWbq/fiIaKF0U6OaTwDHRY4YtZDn2w/wJih8+qOcXirXF/LumsnjkUn+\nvEg8ha2tPWg/0o/VtzXC7ZCEUWVXmY0VcVxLCV5o8j8OeN3aZ/v9x96GXbJgTq0Xt1zbgEk+F/7r\n65/UvT9jFRJ5BEEQBEGcFoy0xs5lB7LINZyWmywXWw83Wv3t9CJnzZvasPtgfqMeDCcQjrGphaFY\nasjujjK8aGvrDCob42IMQRobcs3DQ5EE9nSwTbHVQsCo+TWQd99sWlKP/Z0BJn1SnQo4lPvNRzzj\n8ZTwvvARzTnTvEAWjGNk9vjrfU++q4lEAbm6Nb1+ftFkRhEgicE4XtzcocyjvtbL1LLNne6Fo0wq\nupVGYfMefYdKo/YDWtj0Rzm9tPAcxLWS6hpAILcG+zoDirgMhOJY98peJQpp1FIiFEkgOMD+/U9w\nah1k09lsvn+f4AeI0wUSeQRBEARBjFlGyzxl8cKJiMTNSj1XMpXGA0++A8Ck/OJvJPhGq7+dXsRN\ntIHOZrNobKhmLO7VG+BiXTtFrQF4UcBb6ydTaTjtFmQyWZTZregO5KKIqXRG466oFgJ6za/5FEi3\nQ4LXU8aIvMBgXInKiQxJ9CjUJkJGjhIy9yaagLWlDTvbe5FQNfuWI1HqawJydWud/nwEUl17abQ+\nt14717CmsxBeN3vsBKcNA5H8vZszzct8rpfyKEqZVDNzsgdWqwU7P+xj0ktF9YVqplW70B2MIxiK\ngyuT0/wIkOKaqqujkKJn2uuW8NiGnXj/wz5wRpw40hPC7Fqf7rzUArEUhkcnExJ5BEEQBEGMKb77\ny9fxUWAUmtgBqK+dgO995ZN49Nl/6UYw5F/81XVPQ0mHHA1EG2iPizWIWLtxN5PiWOV1FLV5bd7U\nxkSffB47ZtR4mAgW3w9OHXWKJXM29Ye7w0I3QxlR8+uhGHFUeR2atETekKSYvn58mwjDGq9IEu0f\n9SOZFj9vvJmK0XWJ1kdmJM9PKJLAwY8HmPem1bjhsNuEPzoYpTzqOacqmEw41B3SCDX5O5KptEYA\nAsDR3jAGouJG6dofAfioo34E1+exI5XOYHeHuNY2Ek8bCld5DYbT4/BUh0QeQRAEQRBjhvf2fDwi\ngXf3jQvw5o5uZUPX1jmAtS/sLBj1knu0qTeCIvOIUtG0pB7RWCJfk+eS8LVl85gaPNlBUb2xX/fK\nXkWQHewaRDKV1kSr+Gsvd0m45doGWIfRDiKR0K9JE4kaWWA98vxOjSgSCaZHnt/JjPnPfT2482dv\nYOZkD2AC9h4MQDZKVPf1232gj6kXU4szow3+mud26PZRA7Q1eEZibdkldWj/qD9Xk1dm03W8BLTC\nU26pIBKPIlfQUDSF//uZeVj36l7s6ejDA0++q0SkRSmPaldKWay1HjqGWJJVaweODjC1g0C+75wc\nCRWlfA7G2HMsJsBiMTPRUfm5mlPrZX5gUEchRc9ELuIuxuWwCYWrxWzCWWdWMuOpGeuN0AESeQRB\nEARBnIKUsjn5n14/yLy/9YMuOO028UnHqfI6NBs/vZS9UuB2SLjuopnY17kd6XQW4WgSf9p8AHsP\n5VLZ9KIPvOGGyIBDFDFTi5WuvjAefGqL4pjpcuhvH3Xa1MHntgtFjZHAEgkmfq7ZbG4ddh8UR3Lk\nvn5lkpUReWpxxq/rtn096AqEMcnnQjjKiicepz3XXkGdRhqKpYR97V58oyNfkxdia/IK3Rd1faLc\nv+8bnztLOH8gF+HiI65yRFp0fKc/jDt/9oYiBPXEmmh51X3nAL16SjDRPbtk1W3dYfQDg1hEi+sN\nbVaT4pTJC+x7b1qEScfrP+XvHo2a2lMJEnkEQRAEQZwytGzpwPN/F9vzF4PHYUZluQv94YSuQQO/\noYsnM4gn40r9lNctIZXO4MDRAcgGHE1L6tHc0ias7SnVr/58NEfdzyuZzioCz3ge+qlvMswG2GHD\nleefwUQI9x8JKkYY6WwWA+EkLCatoHPaLZooj0wgFBfa+Ov1yevqC2PNczs0m3J5w8/XyOmR7wfI\nGqK4y6zMMep1TWeBNc/uwH99/ZNwldmQ0DFSAYBIPDcHPo00MBjH4e4wEzkdSrSI/6w/worNfYfz\nay9K5c1ms8LxjWrneDMS0fl2qxlR1RpbzGzLDSAnxGZMnsAITHcZWyMo2cy6dZW8kAtFErqusYA2\n8mc2AwvPnIhvNzUiHsmtnZ7ANqrxHOt1eiTyCIIgCII4afzxb6147b2jozKWyQQMRjMYjIpNFuQN\nv55QKHdJWPXlRt3x5fP2dPQxYsbrlrB2427DKI6aYjePoiiXEaLog1HqmwyzAR6M4/EXdimi7mDX\noDBOIorYzaur1DSWViOKIvJ9zfqPb+i37etRviMRiiuiSxYAhV0g2cbXleVljCHKYCTB9ALk+9TJ\nEbx7b1qENc/qp2zKYlFPsKmveSjRIv5YM0xIM3G0/L9FNWfBUEIo5uTnzWid9JqhA4DHKWF2rU/5\nG0hnskKXSr6lRblLwpxpPviDUeUHGPmYQnWV0XhSqbmTo5oP3/4J5W9GFPlzOyRMcEnwHxd5IoHN\n1ybKt/XbN+bOVz9jY7FOj0QeQRAEQRAnlFKkYgLQmD2o8XnsWHZJHRMRmDejQtdcRIRSRxZNME6I\nqXRGGMUBxJtCXrwlU2mlJ53XLcFkMiEwGNc0teaxmIBz5lQL09pkjFLfAAhbHgxyUSOD26og12Vd\n+Ykz8JPfbdcREFq5yPc1S6YyQvHGp03y7Q5mTvEgFk+i/WgIAGCzmPC1z85ThIC6/QIABMNJxXzF\n7ZDgddmZSJ/cg1DuodYVCOO7v34Pac6+cVJlLuVPLzqWyWSVZ87rlnD27IkIDMYLOrDytWfRWJJJ\nSa2vzYt1Uc2Z2ghF3RJCFkCTKpyM6FWjboZus5iYtZxUmWs4z/cp5EUUfz/k8wDg4ae3GrrA8n8f\nFoO1k6+/kPjSM/Hhxbu6pcNYr9MjkUcQBEEQRMn58EgQP/m93uZ/aHz2klp8+sLZmo0mj9q+Xk63\nVG8eF82qRGNDNYLhBLwuyXDTbWSEoSfG9DaFRj3pjGionYAPjw4imc7CZjHhvi+ejTMnayNzagpt\ngJs3tWlcB80mE9IqxSxZgLIyG1OTN8AZfch1WW6HhF/eexkA4PEN7xeMIvJNz0069VVldgsjlkwm\nE4KhBObVVSrC5Z4n3laOT6az+MWf9ihNrkWROPU6yBG7wXAcJpMJTruVsfWf5HPhnPoqRkipI4Xy\nf3mDlzK7lTmnsaFaE+HN87wAACAASURBVC3Wi+wy0S3uhwX+WRW28MgCNqsF1T6nJmLMt3rQY1KF\nE5MqXZrvLRSVNGopwp/bH8pHVUU/OmQEv96Iei/qoW75oRa7vImPjF5a91ir0yORRxAEQRBESRjN\nVMw7ls1F45zJzHui6Akv7NQbQF5cBUMJrPpyI6qqPPD7jdMh+ehC+0f9hq6L8vz03mfnrd+o2mkX\nb9JHC/6eOO0WnDm1HLsO5Dfa82ZOVEw+gJzgWPfKXk2EiKdQFBHQioFUKsMIQyCXDltb7RZG+NRp\ndINhdj3Ur/VSF2XkiJ2covdRbxgf9bLRWKP2CHpR3u5AmEldFAl/zbN1pB+rb2vkmqwbi3XR54+/\n8D627+9VxlWbtZxbX1kw3RVgI3AyeqKp0HxkRA3PH/zVOzjzDB/2HQ5ofvCwctFEQNx7UQ/egGb3\ngT789LntGAyLnWD5tO6R9r48WZDIIwiCIAhiVPnwSBA/+N22YZ9/xXk1+MKn5hU8TpSOdss1+k3L\n+YbR3cciWLtxN7614lzlPb2oCr85D3Hpg3ZbLgaVTOVMJRqm+zS9yeRx3WUWeN0SIrEUXA4bzqhy\nMaJKzby6yoJ94EYi/HjxI0fGjKJGoqbhIuQec+FoMhetiSWFDcj5iNXBdWw63+wzvEWZlORSMvNi\nQE7RlEVJmc2EeDILkwmwSxaNYYh6LNHrYtIC+WOMeuPpfac6ZXAkqM1Z+Ne/fHmv7nkTXLbjDcm1\npiqAVjRZLeahPYNZIMy1nhiIphVBqsZpt8DnkfBRr3j9u/rChqYsgPb+JtNZZU3YJ4aNzrodEv5t\nejmeae3Bwa5BbG3twS3XzMbFZ9UWf60nERJ5BEEQBEGMiP9u2YO/bu8elbHuvnEB5s+oUl4biZpi\nxYYMX5cVTaSxtbUHa1/YiVuvbhA2iZajKppIEJdClslAiTZEE2nNxpd3X5RJDMYxvcaNxoZqTU2e\nSGAV27RZfd80bqHHbfJl0xG5J1oylYtyrH+lVfl8JKh7zKnNU4xwOySUuyRNzZZezRuQF04TvWX4\nuC+/oZ/oLQOgFSXZLBCNp4WGIaOdosf/ECESTaJr29PRpzlu6PBpjlndTwBgxiSPUmMqCy7RPSqm\nVo3/u71oQQ1+/qfdSKazGmFlxLy6SgDQFXmhWKrg34PRs8PPw11mVe75rzZux7utbGuO9a/uJ5FH\nEARBEMTpy0hbHQBAmc3ENFteNKuSEXgAsP61Vt2Us6Gil1659YMuxOMppNIZXSMGPnXraO8gu/Hk\nokjqja+ozkiNnDZaDMWaQeiJSoDduLsdEmxWi7IO0YRY/BiJbb12B7xZSqGeczJ8xNXrzonR9iP9\njDmK025VmtEDQCzOtlSIJXKvh9KqYLgpekZ98mzWfGsJ0b0VXVsknsaDT21RImozJ3tgs1kY8V9I\nANbXehlxqzZrEQktvYbzhUxVREKY/zHin609yvcVZ+STX9tQNB8RLrNbMLXSiUPdIQAmxLh6UtFa\ni+6vHp3+MG790d+KmOGpD4k8giAIgiCK4r09H+PJP+uneQ2FW66Zjef/egBAvv5m54d9GjMFo5Sz\noaL3i348mavvsZjFtXFyQ20+DU8t8txlNmYTqd74isxN+HkBOaGw7lVVrZsq4qZ3DVVeh1CAFXIC\nVH+u109NjSiCuOziOiZaB+QjdqtvaUSWi3am0xk8/sL7BYUKH3E1mUxwOySsvq1Rk0bK1q2Je+EV\nEwXMj1E4JVOEXp88oLAwl6/tgSffZZ4TtbmN2lmzWDv/W6+dq5t2+x83LsDPntvFCC55/kMxVZGj\nxA8/vRXuMguO9EYQiaU0LqRGws5iNmH2VA+6AjElhfneFflm5c0teRfMRCoDizmma1QkEpzqZ2d7\nWw+KaK94WkAijyAIgiAIIaFIAj9qfg9HA9p+WSNhxiQPLj6rFs//lY0EZrNgzBRCkQTiCX4zV7w7\np8YRc3Edk5qYyWaZ0fiNqYzPY9e8x0d8li2uwx/+2i5MyzMSXI0N1cpYfFqhXtRH/b0i11DAWNjI\nn6v/bWRKIn8f/5oXeDLhaBLNm9o0ZhnpLJio7I79fqy+/XxlMy+jiaYef11IgPGOkXJ7g6Yl9Rqj\nHD4KaEQxdZBGTqqFRJM8/lCe7WLs/I3u1/wZVfjNA5drHGq7+sKoLC8r2lSlmH6FgDZyaAIw/Xh6\nqPwMt3YOAMilMK/85RY4JAsapvnQN8gZJnHPh8NuQY3KnEjvXsRjkRELvFuumT2yAU4gJPIIgiAI\ngtAwUmfML3yqDlecVwdAuxGUN7l8o24ZeQPbvKmNsfIHAMlqLrpWSRR9UqcmFgsfkQLEG2i9tDw9\nwWUxmQxrnfj3+Eifz20XnucPRnH35xcq/9bU5Kk27mpTkmQKkCQzGqb5NJtlkVA52iu24Hc5bEWJ\nkGQ6K6zT0xNFhcSWXqqlqM6v2ucoKmInqtMEiq/76g8nkE5n4PPYmRRONXwUUM78NXpKR1orKN/L\nnkCEfT+WQqe/OFOVQmnIJhMwvSYn5C5eVIPH/7hbt/2H6HmRU4fl51yGvy9lkhWrvtyYuyZV5PJb\nK87Fo8+9h/cPhnTnOBQqJ9hw9uyaURnrREAijyAIgiDGOaOdhskbE+htvmWL/T0dfUz6lbyBFW38\n+EbIRhRTv+a0WzC12oPeQFS3ZqevP4bHNuw0TKM0+j75et9v9yOeym9R587IbXLlDXf3MXbDDWjT\nPkWRPpEoKjbtkB9zPufmKSNaw/Yj/Uhw98znsePeFYvw4uYOw0iijKhOT+95KWQ6Y3TNwzVUETXM\n1qv7AsDU5A1GUggMxpXzZ00tF86PH0/wmwKAXG2i120fFTv/da/uZdbdIVkwf2YljvaGmevtDuj3\n0iuUhmw2mRgxLvdPlFGL9v6QfraAQzJj1nFjop5AVPOdclou/3zctOo13TGLxeWwIBzN/b+pb6D4\n//ecCpRU5MViMXz605/G1772NVxwwQW47777kE6nUVVVhTVr1kCSJLz88st45plnYDabsXz5ctxw\nww2lnBJBEARBECpGErET9a4Tobf5lt/vOhbGmt/njTuWLc5FAPWiI0ZRIqONo7yx51sGrPrKBdi1\nrwtrfp9rhp3OsNECPrqxvb0XHb95T9lwy43R+aiI/H3qHmrq/nI2iyX3HrfhlvG6bFh2SR3WbtyN\nrr4wjvZpRSAftRuqACjWyEW0hnID8XA0qamjEomeCk8Z9nQcY9I4XQ5bUd81lLmKkOdTTOP7Qt+h\nV/fFz/nhp9lWENv29eCrP32dMacBAJ/bjoMwFsQWswl1kyaMiutpKJLArg/ZCJzJlBPM9/z8beb9\nwYi+iOPvjWQBnA4J/eEEstlc+rNRLzv+ubcJ+uEBQCieMkwPnVTpwubtnUWljQ4Fn8delMA/VSmp\nyFu7di3Ky8sBAI899hhWrFiBq6++Go888gg2bNiApUuX4oknnsCGDRtgs9lw/fXX44orroDX6y0w\nMkEQBEEQo8FwBd4t18wuSuAVw4tvdDBW+y9u7sAdS+crG3G9SJ8IPvWNb44uwwsi9RyAXCqlXbJg\nzjQv+gaims1eMJRAMJQQNkbXrffKAoe6Q5qUzpzo0+L1lOHFNzoMN69DidrpnT/clgFyA3EetdCe\nVOlinTgDYY0wPBFzle9RMY3vjb5T3UdtqOems0A6ldG0k8jqJGb6PHbEEylE4mmkM1lhjWYhRCmu\nojToXJWcvnlNMde3cHY1mq6sxwO/ZA1k/MGocB78c28x53504X/wSKoK6fiWFFMqy7C1tWfYAm+C\ny4JUyqSJDjokMzxOq+bvfqRpsieSkom8Dz/8EO3t7bj00ksBAFu2bMHq1asBAJdddhnWrVuHuro6\nLFiwAB6PBwBwzjnnYNu2bbj88stLNS2CIAiCIIaJ3WZCTYUTNT7XqNam6EVo1BEwo+bcarr62PQy\nd5lVaU+gV9MmmkM6m0UknoLVYkaNz8U0tObhUw7jiRS6A2Gl9YIscNa9ulcYGdBLz6vyOjTXo2bB\nzOKMQ4wYbssAI4zSKvWE4cmaK4/IrIf/zmIjafL8dh/oQ5QzEFI/M0Eu4ixZzVg4a6LSzkAtpHa2\n92ocaI3g12Lf4QCSaa37yJxpuQCLnnmN0fXxJkC8YKryOjTzEIsyE2xWC0wmNmXVhLzb6gcH+hgR\n2H50ZPV2FpMVSWijlWV2m+bvfigC/1SgZCLvxz/+Mb773e9i48aNAIBoNApJyj2MlZWV8Pv96O3t\nRUVFhXJORUUF/H5/qaZEEARBEMQQqK12odwlYXdHzr49nszicHdY2fgUa1xRyJnQKEJTzPnM98VS\nuq/1atpWfeUCw9TQuz+/EPsOBzAQEfd5c5XZmNq0dBbC+7RPELGr8joQDMUZEWA2A+fW51w3v7du\nq+61Wsymghv9QvdvOFHAQmPqiXbReciCFVXHU19F/eb4uYYiCazduFtz7nAEmTxeMSYrxSLP986f\nvaH5TJ2mqomIzZqofCf/WSKVMUyB5K+HN0YRPcM+jx23XNMAYGhCWvTs8GvvtFuEvfdElNmtQvGX\niKdK1rsuEIpD1DjF47RqooYzajwlmUOpKInI27hxIxYtWoTaWnFHeJFLldH7PD6fE1arZdjzO1FU\nVY2th4EYGbTe4wda6/HDWFrrex/9X7R2aqM+5S4JP77zYkytdgvP+/ynZuL5/z2geb9uygQ8ds9l\n+PzKvwjPC4YTRd2fdb/dyvyCb7dbcf/NbOPvW69bgI6P38ZgJAGPU8Jt1y1AVZW76PPV8HU0gcE4\nbv/x3+D12OFxajf8wXAuivKtFedi7Qs7saPNj5AqynJGjQd10yqx9oFPYe0LO/GRP4TgYAyJZAYw\nAQtmTsSXPz0P9zy2GeGoNiKgvk+JpDaC8q0V5+LBJ99mojkOyYpvrTgXE1ySsC5Ipv2jgYJrMNT7\nVwz8mB0fD8A3oQw1FU7c8bmFOKPGwwiTUDQJu9OOda+1auYCQDNWb39MOVfuNyeat2ge8rlG16p3\nz9b9dqvmXvcNxAzvcX84gSdf2InuYxHl+ie42OfMLOi/+MOvXaQ84/KzJxpD/mzrB12Iq56fYv7+\n1v12q6ExCgC4HTb8/N7Lle+rArDqKxcYnmMEv/bnNNSgblql5n2ef583CT2BiCaqCUAQZxtdROpj\nysTc373bZWfSq12vHxjx38+JoiQi7/XXX0dnZydef/11dHV1QZIkOJ1OxGIxlJWVobu7G9XV1aiu\nrkZvb946uaenB4sWFc7NDgS0hcenGkPN+SbGNrTe4wda6/HDWFnrQsYp/eEEvvOLt3RT5JacNwNL\nzpuhMTSYOKEMfv8g4glxY6neQBQdh/sKRkoOHe1nXv9rb7fmvHUv7VY25/H+GH7z0i4lQnCkm12D\nI92DhutSOaHseKuAPJkscGwgjsGwdgPpPb65jUfiuPXqBoQuncmkhi6/dKbyfbde3YC1G3ejQzV+\nOp1BIhqHZLEgLNiOel0SOg71oXlTGzJcHz6HZEE8EsfECWXMmOFYCo8++y/csXS+8HqU68pkCz6j\nQ71/xcCP2dsfQ29/DPs7g4jHU2haUo89B/oUwdTbH8Ojz/5LE+XhxwGAAcEa6c2bP58/9533j+Jz\n9/+ZMTrR+7v+8EgQb+3U/h0FBuOG90v9dyNfPx/dmjV1gsbJ8skXdsBkMgkbw8cjcfgjebF569UN\niMdTzN+n1yUNee1FzJ3u03xfMehFZYP9EVhMQAa5H5iu+fda+P2DWH7pTMTjKU19rTJeOKb7nJ8M\ndu7347tr39JE30fj72c0MRL6JRF5jz76qPLvxx9/HFOnTsX27dvR0tKC6667Dps2bcLFF1+MhQsX\n4sEHH8TAwAAsFgu2bduGlStXlmJKBEEQBHFa8OGRIH7wu21DOkdkU8+jl6Yl2cyaeiIgl+bU3NKG\npivrmTo3vr0Anz4ZTaQ1NuSi9D69Pl56jaT5Gqqd7b1IcJ2Ps9ksFs2qROuhY4gnszCZcvVS/7lu\nC2761Cy4HVLB9EXRXJs3tQnbL8g1POpm5WrkOqimJfXY03FMY1Yhf9Z+pF84vny+ESMxKyl2TDV7\nOnJihu9LZ9QUXP0en/qqPpavqZSsZuYYUdqsbHTyvafew9QqN2oqnUgk0hpx9ZPfbxdej8NmFr6v\nvi6j1wBw67Vz0axqFRJNpBnRJ19/05X1ummww6lH5O+30279/+y9e5gUV50+/lZX3y9M9wzDDLfA\ncBkGgUCiGLNqolkjMXz3u8GYmIu4QszuJjH57Saby9doYvJkXVdWXKPmpkKUGIPiEvUXXdjf6pes\nN0IEJoDAMGS4DfTce6bv1Zf6/VFzauqcOqe6umeGEK33eXgeZrqr+tSpUz2f93w+n/fFvOlhnOnP\nIJMrUkq21YLtsdvb0YdIwKNnxgGt13DDi/tNwkfP/eQgDp6gyRP782RDAuD3ychyCCcA0z0icIRX\nOLj77rvx4IMPYuvWrZgxYwauu+46eDwe3HfffbjtttsgSRLuuusuXYTFgQMHDhw4cKAhPpDGZ7+1\nu+bjeTL1LETkpu2iGNewHNACTlYGnVUADPpcGEqajzOCF/yzKpk8xcrjZxL44gt79XIrYw8VT2o9\nGPDAM9ruoUITd8gqJew+FEfHySHN361CTxdvrCJZ9XRW89VivcaMwhqANvdLWuq5hvHhgBeP3bYS\nW3Z0cPvUKmEyxEqM5xxOKRQBzeQ1Es+bJ6uxGEn69l38nrwtO+ieykyeVk8lx/YlsjjZk6TEOwol\nFSfiSWpMxvXCk+4HgCynxNYIOySaPFuPP79HSI7JZoFIsKaW3kmRMEoipREqomRrRS5FMAkVlVWK\n4BEQn0ByPe9c2DAphM4laRl7u79XAcyfHkH3gFk5VwTSX/h2waSTvLvvvlv//+bNm02vX3PNNbjm\nmmsmexgOHDhw4MDB2woHOvvw79sOCMTV7SMSrE6mnsW61W04scncqwRoAS3J3BhhDAAzeXOQzAbC\na65oQWf3MOWT99xP/ki9Z1osoCltGsQ2TsaTpvmJD6SRyigoFEtwSwDxHvfIEmZODQml1odSeTz6\nndf0YJ8NsknGMD6QxpSQB3mliGJRywT6PHydACKSYVTxBGhhDQJLMjZ6DbLswoKZdVUJiozHXsHO\nOVNZBQ89Y5bM53n3icbC/k40Xh6ZzitF3Lt+pUnAJZHMc0mH6JwS+L1ZkaB1qFwNibbKgPI2C8br\nycab755BesOhZyjNJZdr3t+CDS9pvpGSJGFaLIgZU8cEcKyuRYTxWB0EfTK3zJMgHPRgJG2uWPB5\nZG4lAgAcPpnAzGkh6ruNVfY0wit4zi9UnLdMngMHDhw4cOBAjFrKMEWYOsWD2U11ekla2F85kydC\nOOBF2E/7RXncLqwYzUQ99MzvTccYSRzrNRXg7IbzfPLYIPJEPGlLYS+VK5pUNAEtk3Mybi23zmZz\njEE2m1kkyCpa+Z3IyBnQvMcWzKqzJAK8gJwQS2Mf03gVHycaoizkZJBLHrHI5Et46Jnfw+eVKVXM\npXOjkFwS0tkCVFUV3huyVpsbAjg3YCZVTTGxhQBQmUQby4mjYS8uWTgVQ8k8wn7ZVDa5fVfXhJfW\nsmDNzZOZIlySmVxueGm/4blV0d2fRnd/Gp3dw6gLeRENa/94QikTDb9HsiR4HllCNOw1kTyXpL0m\nosolFejupcvBl89vgMctoy+RxWAyR50zkVKw+edHcPf1F9d8LecTDslz4MCBAwcO3mJ8f8ch/Pe+\nnpqPv2PNYsqY3FiqOBGkgO2rCwc8+vkWzY5S5ZzRsJciMazXlN9jDj3YjAUZuwRx8C2Czw3s7RDZ\nMVWXFx1OKUhlFYQD3opZFdmF0VJQCV6Piwp+mxtCNc2/iFiON8Mz0ai1JLRaewwiad9+fIDKtmTy\nRZOKZMeZEaoklojp8HryAGBWY8S0ziaiPI+9hyvbpuGRT63E0y8fNJVNUhntQHX9cnbnkmd2zis5\nPdvP92ck5ZcAsGJBAwDoPZKlcgn5wnhrD8yQXC4AfJInAbjtr9q4CsFlFRjhKN4aYTSFd7m0stP1\no3P3+PN7TMTx6Knz2zs4Hjgkz4EDBw4cODjPGG+PHcHV72rCzR9aYvp9LWVfVkEim40zlrCtW90G\n9w5xcLl2VSs6u4f144lgi5H0iEq/VAD9iZzp91YYGFFQ4jXhAGidHYXHLZvMqUN+NzyyhAQT0BnH\nWqk8LVdQQQLR1tlj2YDx9MGJ7tuFJv5Qa9bOqgdN9Dn3fGw5t9+SBesnp/vOCdQ1eQI3S1oaxu1D\nyCuPFP2eymgnq+uXY+eSZNzYY1iz81SuiPhAGrGIj+p/7DwzzBXAMSKRUvDIp8bsBO752qvIFybe\n8IA1oJAlLQsHaN8RL+7owEhWnOmzi3IZOPDmIJ776SHc+/FLEA3z7v3Ek9jJgkPyHDhw4MCBg/OA\n8ZZj3nvTMiyd22jrvbUoKloF3Gw2rikWMgW39358uSn4JO9h1T3jA2k8ua0dR04OolAE3LImCT8l\n7KE+B9BKKHn9UnObIyaxjcZoAPs7+03vDnhltM2JYd21bfoOvXF+ZjSGEfLJXDU9QrSMWRZWtZPF\n/s4BxMI+Xba/VvDUEVnxGSOqzYxNBMbzmZVM00WG6OT6WTn+WMRnuj/tnf14+uWD1LhEY37stpXY\n9MqYemexWNYzuSJUIqpseWR3XwZPv3zQZEouKpu0S4TZuTQKnhgJH8kO9iWyGE4rVGZuwcw6ve+1\nYYqHIrxN9QEoSpn6nd0S6vGidbamIttxOoGcUgJbeTsRBM+Ig11DSGUVSJLZ35CM5e0Ah+Q5cODA\ngQMHk4Rd+07juzuOjfs8665daJvgAbWVz1ll/0QqfZUyB6Jyw1SuiNN9Y4SqVATyRQULZ0dxrj9D\n9U95ZAl337AUX31JE6GRAPzjKOHlBes8u4GsUoJbdgEq8OS2dpxi/MMapvgRH+CXpxGCbMyysAhw\npNiHUnlseHG/7k9I5P8JsfV6XGi7KEbZTbDgzft4CAcP4yWGvM+0m30SbUaw64YYopPrIZnDVFah\nPA15dhVsRo835kJRu3cdpxPIK2W9hI9ViuWhUtacLY8slVXsOdILP2PNICqbtJuVt8o0swqXxPbk\nJPMckHNv2dmBzrN0/6pSKOOdC6P4/8ZRVr768hk426cI1Xp5WDwnivWrF2Pzz49Y9uVNNLbs6DA9\n70GfjPWrF5+3MYwXDslz4MCBAwcOJgivHTqHZ352eELONaPBjydu/4uajq2lfM4q+8c7n1XmoFAs\n4Z6PLecSJwmA38v3HutLZPHAJy7Bl1/Yh0JJhUeW8MAnLsH86VF856GrTO83laidGcad1y/BU/9x\nyBSgkawIL1unQuUGycTnjne9Riwa3d1nz23MYLKfnVVKJhLBI1x27iM5rp0Jnu2U6Y6XGPYO1Z59\nEm1GiMZtJlDmdUnOwfokEu/FZzf9Hq8fpTceOk4nhASi0hxWypo31Pmp8kgCl4vOEjU3hISbKXay\n8la2Fuz1iJ4D4kV4qGvQ9NpQMj8uggcAvUNFqFWWO8qSdp8PnzCPiSAccCNVofeuWhzqGsCi2TGc\nwNjc2ynfvZDgkDwHDhw4cOBgAjBegrdifhgeT3BC/cyqQaXsH0tAYmEfFQAZcfRUAqmMgvhgxvSa\nVZ9dYzSA+dOjePb+D9oas4lopvL4yS5NgIGVQm+MBkx9UASDI3nc/dGlJkPyupBXD+rYYN7oz0aC\ncRZGf0I7xMWKHMUH0tjw0n7dZsJYCirKmNop02XHdahroKoSRd5n2s0+iTYjRFkpO9dDzsn27fG8\nF8dgLsuz+5lEDKbjdALlsopjpxP4wubdenkpr+QPGOsPrWQxYfVcirKwxgwnS/isfB3XrmrFhu+/\nbhKxmSjEB9IYGLHnSUdw+KQmdFIQlEhHQx401wdw5PTIuMdnRCZfQqFYxJSQB8lMAS5JQk4pVnw2\nLiQ4JM+BAwcOHDioEl/63m/RcbY6QRARVl8+A9df2TYh5xoPKmX/WAKyYkEDVrZNQ18iawrIlWIZ\nW3Z2CGXrCyUVKxY0jJUuerXSxWqJLY8MHD6ZoHp2ZJeES1sbsXZVKx79zh7ueZrqg5aG5IDWk3f0\n9BCSmQKgAqVyGWWVzhQZIUug/AntEBc280k8/1jDeYUpBWU/mzVbtwI7rky+hPu+8Rs89ul3C/sJ\neSTB43YhHLBvBWBVJkrGzfbkrbmiRfdIrFRayiNHG7e2m94X9MkmhVjt99b9jwThgBce95iHW66g\nIJFWcKonjWKpzC3xDYyW/dkhC1bPJftMHuoa1Mds9DHklbTy1uI9X/t1xfFUQiSokSIeUjmzCiqg\nzXW+UOIKJpEnzOtxIavQRE92SZjVGMYfTw6Ne9w8dJxOgOgzlVQVB94cNIlGXcgQkrxkMokXXngB\n9fX1uOGGG/Dss8/iD3/4A+bPn4877rgD0ejbp/HQgQMHDhw4mAikMgr+6clfYyKcoVa2TaspWJhM\ncQ2rc7OBvVFZ766v7qJ60rwel2WZmywB93xsedVjYLF2VSuOnR6iVDHZ/X7ZJenzzPZHAZrlwx3X\nL0c+k7fMmvzwl52UnPpIuoCRdEEP5lmydOmiaRRJIhmfIycHkS+okCTA55UpcQ/WqkLk+QfQpaDs\nZ/PM1kVYu6rVlMEslFRTP2GlLG6hqBGa7bu6bPWEWmUt9Z47w+cCwI9+dRz7jvVzj7FT6soj2kta\nGrB2VStUg+DKoouiukiPHYjW+uETg1g2f6rpM30e2da5Kz0L7Odm8kXsOdKLYqmMu6+/WHj82lWt\nNZuSs3BJwBN/e5m+1gmpjA+kMZTKIZMrQYWWFQ/63Cbj8RULpmLdtW146JnfcUtm60JepDIKd8Oo\nVFZx8MTkEDwA4HmoX2j2JVYQkryHHnoIF110Ebq7u/HKK6+gtbUVn/rUp7B//358/vOfx9e//vXz\nOU4HDhw4cODgdQ0pPAAAIABJREFUvGPH7i5s/VXXhJwr6HMhkx+jIIe6BvD483uqJmqV+p3GQwKt\nzi3qPUplFHhkF7IGH6tFo6VoIiGIxXPojWLjmInin93rm94QRCI9rL8uuyQUDQGhsWSSlY+PRXx4\nbP1KTAl50ZfJW2ZNNALAx9FTCXzp798DQExsiPw/oIm/7O8cQDav9eWprxzGPR9bzrWqEAWVxuuq\n1aeOjIvNYALmfkI2ixv0ublZmb5E1kTSNm5tr7hpYFTW3PTzwyYRlBPxJII+OmyND6T1zJ7VujGq\ndcYiXuSUEqRRMkfGJNp0sANRlrZQLGPtqla8fqSX6kTLGeYtlVHw3E8P6hlojyxhWiyIGVNDKJbK\nQlJr9bnEy433PM9o8OEnvzld87Wy32MXz2+gM76jF9qXyIzaimhIpBRITFnsuxaNbXRdNC1ElVxK\nAKIRH+6/ZQWe++lB6pk+H5AlCWXV3EHIt1W4MCEkeSMjI3jwwQcBAFdffTW+973vAQDe97734ZOf\n/OT5GZ0DBw4cOHBwnjGR4inAWMaO7RHK5Es4EU/qQiW8/hwe2ODYGOg2RgMVA0Mr8AJvOkCmvbQA\nLZA0ysHHIj5dgY7NEInKCK16vNgxsYGrzAhYuKBSfTSzGkN6pqxatUojygLvPQ2qdn6DquSWHR3C\n87OE8cjJQTy5rR3dvXS5ZtNo8MwG8h5ZokpBx2PdlcoourqkEaGARyjokkgpXGII0KWZtWwaiDKX\nGugLTeWKttYNz5B8IkvuyLpiyZx3NGMX8MlUlsoourJlZwcOnhhbD4WSiu7+NLr70wj4ZOpz2GdB\n/9yjvVT/KZkntvx3IrJ37FJJpOi6BqtnORxwY8GsOvQlsoiGvSiWyvpG19lB+trqwl49k0z68s4n\nQqNeoKwZuqjH8kKEkOQVCgWoqopkMolEIoHBwUHU19dDURTkchPTh+DAgQMHDhxcCCDB7Klzw+gZ\nrk4YwIi2WX7cef27TD0wAJ1t6R3KUuTn6KmEbs59Ip7Uy614YINjY6DLy3bYLS9KZRQMMwEbT6yC\neGmJzp/OFnSCwxIBURmh1RjZfi72vWwfj9stY9HsGPYc6TX30ahAoVhC71AGvUNZbH7lCNatboPR\nnMKYKYyGvZAkCUPJvNBgHRjzzrKTZd3088OmsrRC0azMaVT2JMIevFLCVEbBo5v3WGY/rcAjVdGw\nF/ffssJS0MVO3xxPeZNAlH0UieMAZrGSnqG00NbCuG7sCsHwYCczTjKXX9/2BtXb1zYnpo/bOMde\nt0vfeLAai8L0oA2nFEr4g3wuyQwTzGgITJp/XcjvoUzSh9OKTtTWXNHCVeYkaG4I6evSuOl1Ip4E\ny52M57XcXwFwycKpONQ1WNG/kge/x4VcwXzcSLqApXOjOJwdpp590Xq7ECEkeVdeeSWuvvpqAMBn\nP/tZ3HzzzVi8eDEOHz6Mm2+++bwN0IEDBw4cOJgsxAfSeOTbu1EcRyZk6Zwg7r35PdTveAG2sRSQ\nzeqxwQkpt+KBDY7NgS59MXYUCXWiYAjeCMlgxSrYoJQlnUZfMrtlhJWUK63ey6J1dtQ0RmKIXSyV\nqWCYWBg8cvvl9DzYCOQCPhlNsaCl9L/xZ6tze70uk8+eUdnTqpRwy06zn1c1JIb33oWzomiOhSwF\nXUSlrezaNqKSLQdgNg8HtN6taNiHG/9yAVUa+PTLB3X/PEC8btg1YyQQLGljSV01mfF1q9vg5mzw\nrF+9GI9uGrv3iXRB33iwWs8eNzDF79OPG0rl9ePYzYgFM8K6tx3rcTeRaK73I18oolxWUSqrJtN1\nK2VOqw0AlfkOVlXolQ4eWRKKOAHAuo+04dFNeyjyaRculwvmTl4Nb55L4uJ5DRRxt/N9eqFASPL+\n67/+Cy+88AL+7u/+Dtdddx3e8573oL29HXfeeScWLFhwPsfowIEDBw4cTBiee3kffn+k9mb9h//m\nUsyfLhYfs5K6J1hzRQs6u4f19+SUop7J02AOaNjg896PL0c44DUFum7ZhUsWxjCUzNvuz+IRBUIy\nKvmAiXzJ4gNpU0ZzIky/rTKixKyYVQ8kxJPNcpJx/+v39uDGD8zjzoMIS1saKgp7sKWLvHNr6o4x\nk7qjKJhk10HPkDnzVU0gyiMZhNzZFXSx8s2TJUCWXQiNKm9WAk8cR1UxJupiKImNhr24ZOFUaq3z\n1o1xzaSyBfQP5yhzcOM1PbX9Db037EQ8CR9jWm5FoK1KdutCXur+k/OsXdWKbE4xqcICgN/rpnoj\njcdZlUVOJg6fGha+xo7VCFkCvrjldaSy1Rualy0IniSNPltVEryAT8bSlgYUi2WhOXsmX4IKVVcR\nfiusbcYDIcmbPXs2rrrqKqiqine84x0AAHWUZkuShMOHJ65fwYEDBw4cOJgs/Nv3f48/njb7tVWL\nqXVePPKpd1vu+q9d1YoNL+3XgzlW6p5g+6td1HumBGQYQ0e3oZyLQFQKuHZVKzq7h/XzjWQKcMsu\nXfnSDniBKyEKbFlez5DWA0iCVxLYdp4ZpnbS2TJSMl527thyv0p9clYZUWJWTMa8v7Of8tfiGTEr\nxTJ+3X4W+XzRslQQsM4wkt62oE8GDKIeBCJyIFJ3FAWTm39xhMossUIQxjJPO1i7Srt3xiA5GvZi\n40t7cWi0V8zlApbMFdsJWBGOkgqUimUooyStUhkpK45jBGu0Dmj9dZXWunHN/Mv396J/eKztiPSd\nErEXtpQ2z5TyVSLQvOd07YdbTaXQxtLLe2+6FABtd2AUkmE/Pz6QNhm6XwhgSzkJJABzp0dw/Kw4\nA2+F0ug5eFQv5JctS0RFaIz6AQA3/OV87O/sF7a1GlWE324Qkryvfe1rAIDPfe5zeOKJJ87bgBw4\ncODAgYPxIJVRsHHrXpzoGR+x87pduP/WFZZZOzagM5ItAt7uNhvws+WaI4ZyLtEx5GerLIFd8Mol\nSUDPmksPJfN65pCUjT3ynd2UjUE07DUpRVoJqADQz0tEaOyQPyojasgUkTHf943fUOTF43Zh0ewo\nOk5rPZDGErG+RNZUKihLwMULzJmiVMbsPcZ62e0/1o9Hv7NHz+Sycyy7JFw8v6FqdUe2lDeXL5oy\nDdVYaoQDXjx220rqeoqlMiUGUi4DZ/rSVB+gVTbR75Hgcrm4c1wJoswwUJ3ROgsy5nP99FgbowHT\nvWNRTSaHNz5epklUekmy9Bu3tnNJ3p4jvW9JBs8O7rx+CXbuPmPaXJndFMKJ+PhKSEUkrGV6HQ68\nKSZ5Lpe2flmc6knjVE8aOaUISTKXixIkUvmaVJAvBFQ0Q3cIngMHDhw4uNCx+f99A/9zkF9yUy3W\nXbsQ7794NhobI+jrs955ZgM6XlBmlLoH+AInLpcMgCYYlXrfjBmFSiWVlWCnXFIUXG/Z2UERPABQ\nCmU0xUJUGWklARWCA8cHqLI1llQaQWVEDZkiEjQnM0wJalAjU6mMovVIGQLvxmgApVKZ+t2MqSGu\nAA4vW8MqZqrQAnmSyR2PsicNOhp1GXwAawXbH/f482bT+KFkXs/gstcfC/uo95bKQK5gLstrjAYq\nCpmwmwoEZOOBLcW1u9bZTQWj2flDz/xOeJwEUGuKZwdBwHu2h9MKzvaLM5Ps2Mi1edzjU3F8+G8u\nRVNdEFt2duDA8T7KziA6qj470a4EO3efwdoPt2LfsT7q96d7rDPktWJKyIPhtHWZJo/gGWFFEAEt\nk5dIKRUFsS5EVCR5Dhw4cODAwYWIXftO47s7jk3IuepCbnz17iuo3w2nFcqagBfUVRIBiY36PBnB\n7urHIj7MbYpU7MmyEjEhRtuk3M9osG0HVv5wxvHwgms+WVMriq6I/KZEgSfvc6yIJy/b0VDnx9Mv\nH8ShrgGqLG9qnR9rV7Vi8ytHqFLBqcw9EFkKaJ/LD8pJJtfOHFuBfHaZiVqJsudEQrSuyZyy826U\nxheVGQZ8mvE7W24qsg9h1/TcpggA+jlgZfjXrmoFVHBJJDvmabGA4X6ICdW0Oo3AVlJOjQ+k8eim\n1yiBEI8sWfZ4kmeAHdt4M3V1QQnzp0eFIjjRiB+ZfAmlGtQoZUnSvQtZxAfS2LKzw+RpN1kOdyPp\nArI5sdDLROPIyckzXp8MOCTPgQMHDhy87fCjXx7BL147W/PxrGx26+x6/f8kmD58cgip0QBdpKpn\nDDiHUwpF3kReXGxAVxfyYt3qNqona96MiCl4tSQJKnCyJ6UTl32d/TjxnT147LaVE1ZeJCJtPEIw\nb3qkIqmp1m+Kl7GxSzyJKmSxVOYGvbEpfoQDXlPPXtfZYaSyik4cWHJo/NxY2McVcGAzubXCKhM1\n0VhzRQsOnxzgimSQ+2+cd6M0/uPP8xVEifE7K37TfnxAL5VjSd9wWqHWtHtHB9Z+eOx6T/akTNYR\nALhkzCrbvWh2VCi+Mb0xjKdfPigg9mPfF3uP9po2KLQ1LqY4nWeGJsXqoGVGPXfMBLGID8Mphds/\n55UBRaCNEg17MXWKV6je2ZdIC/sprRD0uS1VOa1gpbo50VA42ekLGQ7Jc+DAgQMHFzQOdPbhq9sO\nTMi5bv5QCzrPpLllYASiLBAvk2QkMkbRhGrsAhqjAVNPFush1XlmmCJsrILnrGkhU2Bt7PmZCIhI\n29pVrTh6aogyRD/Vl6YyifGBNL704l7doPwdc2OWZVaxiA8Bjwt9wzlAkhBmlBlJYN3dq8mrQ5IQ\n9o+9R6QKyStDBICm+iAAs7EzkboH+NkV1tzdvUMbk3HcbCa3GlipVtKZqOrOValcdPurXUIVRNYy\nopJdgRlMloeJ0XniJwQ84RX2ddHvyBgTaQXRkJca87rVbTjxHbp8l5Bo0cYAsWEQZS4BwO+VLb3b\nUrnqM2kEs6eFcLqXbx8hGjNBoVDE/beuwJde2Gsy+7bypEumCyiLmtcA5MTimkJc1BTCF9ZdZvIY\nfKsR9LmRzRep1epxu4TvvxDhkDwHDhw4cHBB4if/cww/+c3pmo69cvlU/M1HLjaVK3WeSXMzacZg\nV9QrZtz5FwXMdoJuO95xrMrjUCqPz317N4rFMgAJhWJJ38FWUnmMZBTTOayuZSIRDnhN5VlG4Rit\n/22sjI0YlLN9XACdndqyowNnB7MAVF0+n8yvOdBXMZQae4/drCP5vDuuX458Js8tIbWaw1DAQ0nl\nTxShJrAiNGQ92iVvVuWG7DnO9tMkLeCV0VQftLXWyVyLsp7E0JwnrKJBnOHlCa8YMZxWkFfojBCZ\nJzJmXq9tOKCZv2/4wX5dxOf+WzTBHHZjQJKgCx1ZlWJKAOY0Ryr2fNWKhil+NNeHuPddtJlB0Nk9\njO27ulAX9CKTK1LPr1UFZ0lVkczUwOQs0J/Qej1v+Mv5OH5u2EQ6AcAlWZPPSq/XBhVL59VT98/v\nc1dVBv9WwyF5Dhw4cODggsCO3V3Y+quucZ+HCKcA/J6tSiIlvEyEVbZPZA/w3E8P4vDJBMrQBD8e\n+MQlaI6FLL20CHiG0Lzgh6AkiHDOn3Gv+fOJ4uKWnR3ckqpwwI05zWF0nE6gXFbh97kxJTRW2mil\noigK9I2KozyxjDVXtlB9XvOma2WxX/jW7xANebnzSObQuCYkCXC7JMoIGhCbZNcK9jqDPhnTGAP2\nSmtRdC7jz+w5PDJNtPw+t20ZebK+iSVBsViCirFsKzE05/WLTQm6TZm9aNiLaNinXzMrvEIyWGxG\nrdpyVpGID/t9oKqasFAluGUJhyaJ4AHAYDKHL6y7TP85lRnrIU4kcxZHAkpRrb3vb4LJVCY/ZrVS\nFDBMi+QhAGDR7DpL/77axlXCyVGLEpLhT6SUCa2OmGw4JM+BAwcOHLxlmCjxFJcEvHPRNBNZ4hG6\nSpm0tatacahrkOoRqZTt49kDGCXoE2kFG17cj8fWrTT1drF9SGG/XLWxr1uWqN14YvRrN8A1+oQB\nEhbNjmLd6raKO9YiMRBgjKiKCJmxj4sE/ImUoitpisg4T8GQIBr2UmI5xVLZJPJh7F08eIIWUmD7\nxYI+mZpDct9U1dwLNBlZU3YOlnAM2O1aClhtbpiOYXrJIkF+uCjKIm7Z2cFYEqjgZVtZy5ERzuZG\nXimZBFkAUBYbjdEAymqZOpeonHU4reDJbe2mtc7OQXtnP55++SDWXNli+j5gmU4s4kNeKVKZy8nu\nFTNuBKUyCh7dzO+F5MK6VdAS4YAbyezEi51om0L8LG6locouCbJLEm521YqRTMH0nXA+qiMmCg7J\nc+DAgQMHbwkmUh2zrI71TBkDO5FsvdVObDjgxZKWemqnu1K2z449QCpbEJbfHTw+gKJFfMKLyTyy\nBEmSEAp44HO7EDf0bE2d4q9qt3nzL45QQTkRuah0DqtywrBfCzF4mdFl8+gMC4+o3Pvx5fr/2cwV\n5X0nS5g+NYimWIjqRToRT4LVdrHq99JAzzIxVweg9/SJ+s1Ij9Z47BFY0kR6DPWfr2gxKb7atc+o\npo8u7PdQc9wUC3HPyWYAD3UNYklLvck3zwgrf0ceskqJerZFvo1s+a9oHp75cTt3rbNzoBTH1hL7\nfUBKTuMDafQl0vbJFQdetwt+n4xUplBVySF5vqomeNCemXyNhKg48XWRADTSOm96xLTxYgfHzgxP\nOMEbA33e81cdMX44JM+BAwcOHEw6JqoUEwCm1vkwMJLnlvCYpd35ZXuVgvC1q1rh87lxpifJzfat\nuaIFR08P6UIiOaWo92oIM02qivgAP/i1IngAML0+gGn1wbHsw0VRrLt2LNN23zd/Q70/VaWsOGuw\nDQBn+9MVM3xWu9rNDRoxsOMPJxKj4ZFMtl9x+tSgXrbG9iKZ14i1oicJ3kWkKhb24QQMhuaSBJ9X\nhtfjoko3CdmpluxVKr1kBXkAez2elfr22HOsubIF23d1VRQRYu8/Kb3j9VsSWPk7WqFSxtJo48CO\n2Xj9vDUbH0ijoc6PoE/mGrgbNxz8Hsnk5Vgrls2rRzJTwOBIjkvwrBJuzQ2hmggeAOQLE0uIiPhR\nuawKyZZHliyzm8OpPHL52vr98pW+QMeBeTOmIODzVHwWLkQ4JM+BAwcOHEwaxmtSfu9Ny7B0bqPp\n9/d94zfckkbRLqvdviWCcMCLBz+5UmiGvv3VLr1HjgiJkF4NNtOkj63Oj2GBQEolzJwWsRxv0Oc2\n9SNVB3OQ1DuUMZXdsRk+UZBOyhxJcB0fSGMolcOpniReP9pL9SgC9ogKAduvmEiN9SKJyjh1C4Vi\nmVLwkyXgHS31yBXKuuKikfywpGrp3ChiER8SKW2ToaSqo2V89Hwb+4yqyaiyBJbNiPGIjh3Bn0rr\nn3cOq3OS+9ozmOG+buy3pHryGJVU1gtv3owIisUSjp0ZMZEoVmimd4j+bGP5L3mfvi4sFDABYDij\nCKX/G6MB/OFIz7i961jIUmUj7kjQQ6nWErgkYM2VLdp3Dee6poQ8KBTLyFpmrWuDxwUsWtDA3fgR\n+fJJAO6+YSm+9sODQhJYVoGsYi77lgC4XECpdiHSceFMbwrRiH9cGfq3CpNG8rLZLB566CEMDAwg\nn8/jzjvvRFtbGx544AGUSiU0NjZiw4YN8Hq9+OlPf4rvfve7cLlcuPHGG3HDDTdM1rAcOHDgwMEk\nYSLLL10S8H8+eSnmT9eMntlMxJ3XL8FT/3EIyXQekiRhWiyIGVNDtjMOVhko8ln9IzkMDGdRKJYh\nMcGMlVS76NzT6oOIHx/gviaC7NLsBoyEiZeNyTCZu/hgBk+/fNBWUJLKKHBxElyqIPNovD6RkiIp\nc/z6j9/Qe+KMID2KX7nrvQAYK4qMgk2viLOH4YCbItGFAi0Xz+uPKpVUHOoaxLzpEUpIoaQCfq8b\nX7zrci6hZ+/lm+eSgnJPfuBK+roq3QfdEoIhGmzfFUti7ZaOVbP+jeMRZf6synQBzXT+xLkRw1yN\n9uQl83hxx1EE/F793DdetQDbX9WyhgGfB0W3TBE8VkDFrl9gpTESBLwyCozghywBs5siaIwGMG9G\naFzfa1P8wL//w1V4chtdJur1aFlDEVwSUBAwm7IKPdPKIhbx4c7rluDLL+6zPUY2Y0jEbE73JE1k\nO6eUTJ6cZONn7apWZHMK1Y+M0XN//UcH4fW4qiae0YgPkaBb79WdSAS8LihFcfYR0GxUEukC18rm\nQsekkbxf/epXWLp0KW6//XZ0d3dj/fr1uPTSS3HLLbfgIx/5CDZu3Iht27bhuuuuwze/+U1s27YN\nHo8HH/vYx3D11VcjGo1O1tAcOHDgwMEE4bVD5/DMzw5PyLmMqpgseJkIImJix/fLqm+JDWiNYh1G\nGIMZXgaLnJMt6SMiKMVS2XbPzeI5Ub3/iIBXqkeIEUt8SmXVdiZpy84OpHLmwCsS8nHLPiliMXo9\nDVP88I2KYDTFxsg2rwyUIJ3ll2ZVyh42N4SorAsbKIf9bjy2fiW27BgTuCEZt4MnhqoSUjDfZ365\nJynzZMmusa/LWDbMEyrhERLSd0XmxXiPWcVXK9jt2zN+llXmTzRnkgS8a9E0FEtlJARqsIdPJnTi\ncCKepMRXTsSTpvvDCqiwn10UECG7AhlL5zXgUBedUSup2lhOxJPYc8TWaYQolGUAwPrViykfTTar\nzMLvlS3Py1MKjkV8eGz9Sjy6aU9Vwi9+L004szkF2ZzCLUktlSVT9tDYZ3nvTZdye1cLJRUBnwtZ\nVEfyIkE3GiIBIckbj+BK2xzNB9GuzcVQKo9NrxymPE0vZEwaybv22mv1/587dw5NTU3YvXs3Hnvs\nMQDABz/4QWzatAktLS1YtmwZIpEIAODSSy/F3r17cdVVV03W0Bw4cODAwTgwHv86Fqsvn4Hrr2yr\n+D5eJqKaEkyrckD2PFaljkZjZWOZ2aKLovo5VSars2h21NKIm2Buc0QoUx8fSGNvRx93LICZ+PDe\nU+majJAl4P5bVuCZlw9SAV2AUZtkycmCmXXMPRAHX6GAh/t73nj2dvTivm/+BpGgG/URP5a2xHCw\niy/QMJxR9MwgL9hk789wSsFIWsuQ8YRPjPfZ63YhY4hvjVmkcMCLVFaTWGc94Mg1idaslQKpaF5Y\nxVer7Fs15bC8z2J/FpXpuiBh7apWbNzaLjw3S8nMZJ++P71DWSobaiWQYlx7dvr9CFH+tx/sxane\niVeMBLTMl7Gv896PL9fXintHB/Z39psyiYC2cQCAUSkdg0gpWDt3db1t7EZJzqJnz+txmd5vLKXd\n9PPDON3Dn/d0DR57I+kCpgT5m3exiA9zmyI1mahHQx6su7YNqWwBB57bbfu4IycnzxZjojHpPXk3\n3XQT4vE4nnnmGaxbtw5er3ajGhoa0NfXh/7+ftTX1+vvr6+vR19fn+h0Dhw4cODgLcCPfnkEv3jt\n7ISca+mcIO69+T223y8qU6umBM2qb8l8nDjAMRor3/Ox5VRgTfzuEsxYyc9s0MkKEVhlVza8tN+0\nW21UcyRkhBWEsFPOxwuGL100Dc2xEJpiIWoHfalBbRKoTAZaZ0e5QWo0rJlP2x1PqQxd2ORUTxqx\niFjYo1AsC/u2AMDjdsHvHethHErl8fSP27H+I21cEuZxy3p2LpMfK2XjZY+JR1znmWEohqwbuVe9\nQ/z5Epm0WylgsvfWatPDTt+eEZU+a80VLdjb0WdakyVVxRaOUqURdSEv9YyE/B5qrkhW9OCbA8gq\nJb2/sVgq4+7rL9bnhCVHbP/imita0Nk9jHS2AFVVuZmtoWQe93zt15WmwxIzp4bQ3S8uJVQB6r6Q\n6wgHvFjz/ha8zsngemQJN161AD/8ZSf8HgmFIuB2AwGfB1NCHj1bzpY5k0whjzTaQdDnRk4pcisO\nSF/r0dNDFMnzyJJ+T1iVXhaVcng8cZZEShH6EuaVIq79i4tqInlKsaxl0Xd0VHVcYXL2AiYFk07y\nXnrpJRw+fBj3338/VINckSpwNhT93ohYLAi32zqNfSGgsTHyVg/BwXmEc7//fPDndq//ZfNv8duD\ntW++3fPxi3H1u1u4rw2nFTzz43b0DGbQVB/EHdcvx5SQl3ptf0cftTM9tc6Pf7jlnXj6x+1UIDmr\nKVLTvZnVFKHOs2zBVHjcMrr7Ukgkc1qAIQHL5k3Fp/7XEjz7s4M49OYgVKjweWQMjoyVmrlkybSL\nTsZFxkyu9RPXLMYL/3mYe+0seKWNRjVHn8+NcMhHETwyT6JzEvzDLe/Ek1v36te0bN5U3P3xSzAl\n5KXGHAm6cfzsMO74yv9FJOjFE3//XtPcsffg/k++G1/5/h60HxuAqqqIRnz44h3vw8xpYere10/x\nQYKEgZHc6P+tvbEyOXFGwOWS8MNdbwr7sRrqAnDLLipD2TOYQWNjBIk0Q9DTZiGXqdEANv7DlcLP\n3/S9PVRZpdc9przJQrQ2eGuh0nt4Y6/1u6rSZz37sz8KS+QSaQVfuP1yfOqx/6QCdtkl4fJl003r\nXvQc3PS5V6jzdpxJoLExgkYAj9x+OdY9vgP9w2Om35lcibreTb84Qs15LOJFIqlMqJe3z+PCrKaI\nJcljse9YPx54+rd44u/fi40/bDeNR3ZJ+Po/XYUX/vMwRZhKBUB2lTF9agT3jD6fRjy7afe4xWEy\n+SJkl8R1H3/3kmY8+MmVuPGzP6N+XyipuP+p3yISrD6DyEJUYspm38fGW8KzP/ljTZ+VyZegqBL6\nR8TG8bxSUJ9XftvEAJNG8g4ePIiGhgZMnz4dixcvRqlUQigUQi6Xg9/vR09PD6ZNm4Zp06ahv3+M\ngff29mLFCv7uHsEQZ2fuQkNjY0SoyubgTw/O/f7zwZ/6vSYZkFPnhtE7nK85IJIl4Kv3vG9Mal8w\nZ8Y+s2OnE8jniyaDbBbhgAf5TB43fmAeEsMZHD6ZQBnAwc5+HOiI64qN7DWJevdu/MA85PNF/fVb\nP7RQKwvj3OunXz5AjSnNmAIf6OynerJiER9u/MA8/TzrP2IsTVWpn/OZPPoyfAXAShugZzjlUWSe\nROc04u+83uLQAAAgAElEQVT+agn1s/G49R9pQyqj4L5v/kYPwvLDOfyfp36Nx9avpObOeK0En1lz\nMXs16OtLCu8voFkTlCyuOejzIF/gX1frrCh3PggSyTzyCn3fmuqD6OtLIsoEzuzPANA/lEXXqQFT\n/ydZZ+0VsgpBn4xpsaBpvshaSGUU/PuLf+CuV6v1whv7eL6rRJ+Vyih4/XCP8LhoyIuB/iQWza7T\nn826kBcP3ErUVFXL52CgP4l/f7HDJCZUKpbw+Ld+p8+Lz0P3Rwa8MnW9J88OU68PJWtTtrVC0O9B\nXiD7L0EjgTlOFqp/OIeHvvk/pmsEgIvnN8Arqdw1nMkXsftQHJ/58i9NAiAHashm8eDmKFlGw17c\n+IF56Do5AEUxP5f5Qhn5YTFZGi8UC4GaEc5GDA+8jaMHvvGq5TE+j8sktOR1SxdUDGBFOCeN5L3+\n+uvo7u7Gww8/jP7+fmQyGbz//e/Hjh078Nd//dfYuXMn3v/+92P58uX43Oc+h5GREciyjL179+Kz\nn/3sZA3LgQMHDhwwSGUUPLX9DRw5PTJh57x00TRbCmRseZ9RjVBUfqmXjqnA0dPDevaKVWwkqEU+\n3u54zaADT7ZvqlbUh73oGRaTNTIn1YhrVIPNvzhi2mVPZwvW6TYDWL+9edMjOH5OvN48bi1zQeBz\nSwgGvLqwy5orW/DD/+7EkZODyBdUSJK2w952UQzrrm3Dlh0dJkGKupDXJKVPyiLvuH458pm8sHfN\nKA4ylMrrdhlGiMRT2HLEJS0NluvNar3yNiygQrepiI0qERrFb+yg0kYIOz5eFo+U861d1YotOzoo\nhcWFs6KmzRc712+E3+um5oX14iO+cf/8/O/RMzKxNXW8MkJScvycIJMU8MlwuwBR0nk4pSAa9lFr\nAwC6zg7j8ef3CO1AAG0Nbv75Edx9vXEDRfwwulxA2WYFJ+s5J0tAvlDCQ8/8Hl63y3LzRQSv26WJ\nu+QKEFReWsJKQybok6n+Vx5cErglqMlMAX6PS3icW3bB5ylTvoIRQX/ghYhJI3k33XQTHn74Ydxy\nyy3I5XJ45JFHsHTpUjz44IPYunUrZsyYgeuuuw4ejwf33XcfbrvtNkiShLvuuksXYXHgwIEDB5OD\n7+84hP/eJ96NHw+CjDiHVQApElEoFEvcvh7jubfs7OD0b+R1U3KCauXjrcAbk7FHi1XMs0u0KgXZ\nHPsoAPzerYk07SXkjNdnEwp4TISEZwIeH0jj0U2vUffq4Am+aApB25x6ypScRzqsFO5EghSPP08b\nRxPlxikhL/oyeaQyBb2PazilIJUroDkWQl3ISx3Hs0Zg1xUhPYSQEoJbLJZNa9QIq/XKI4AAKojf\nVEY1Ikai52f5gqn6MVabN4SU8u5tKqOYlC7JPPYMpSnFzoDXhVLIg2SmAJckoT+Rxj1P1tZfJ0s0\nkfDK0L39Aj4ZTVE/jnXTzz0hrqL+w1yhZEmsVAD337oCn//WaxRpJpL9lcAq17L9r0Ziapfg8VBS\nodse2CgK4EIplqEUy4iFfVwPUYJKhuk8zJoWRrknxfUTJBCJb6oCbz6CkUwBsbCPqhowiiFd6Jg0\nkuf3+/GVr3zF9PvNmzebfnfNNdfgmmuumayhOHDgwIEDTJzdgQTgn//uMjTHQvg/T//GlGFawohz\nWAWQJBh//Wgv1QbScTqBL/395eg8M0wFBcZz84JNVYUpy8JaGliJdlQCT1Vz3bVjHm5EMa9aosXO\nEevHFAm6TT1d0ZAHj3/6Mk1Nr4pMTDVg7QyMaK4PmMQueCbgG17abztwY9Uqa4UoO1vJSsNIRpVU\nXs8M21F0ZN/jlrUMQdjvocRbWEuIasZoZ8Oilk0M1g+R548oGp/sknDx/AZLkRjjfAEQfh8897ND\no+byYyiVVRSLZZOM/tnBsessqSq64rX5qK27diEuWdhE2RsY15+orPhQ1wBSWQVrV7XiUNegadx2\niNX2XV14x9yYbQl/Gqr+3McH0hjOKAj4ZM3T86IoBkay1HyRMuHuvlTVRMoOZJeEedPDJjJsRDjg\nxoJZdehLZHG6N0WRW1mqnuABQCpbxBO3X4ZHv7PHkkDWCuOYJ2rz7Hxh0oVXHDhw4MDBW4+JtD2Y\n0xzRS68uml6HnmHaiJr9I2gVmJJg/DNffZUJkiSEA148dttKU/BFINpBZz+PbdovFIp4cls712zb\nSJZmNUVw4wfmmdQTRaqa4YDXsvSTDciMJusDSXrMbEkgq3JJ/LDI2KrJxFQDK8Jw+GQCHpnvG2c8\nTuSHZ4QsSfB5ZSyaHR2TgRcQ1/EQWisrAWFJquE4kTWC8T3EK48Q3v3H+jA16qfOy5Jju2MUEcDx\nlumyfog8f0Sr8bHzTzZD2jsHqKevZygNl0SXxx3qGtBVYv/IyfCWyir2dfZjblOwyquqjLnNEd2b\n0+hjuHFru35tomcgky/pz+iSlvqaRE/2HOnFlBDfSqQSWmdHsfkXR7ienm7ZZfrOIGXC8aE0Pvet\n3ePK7vFQKquWBA8AGur8KBRL6B3KmPqMedYMdhANe5HKFFAoTY7sZSpXnPDNs/MFh+Q5cODAwZ8Y\ndu07je/uODauc8iyhIc+cQnmT4+adrKHU4pebsZmtuY2mcvt7RgxL5odpcocF12keURZkSY2qBad\nn7U0ePNcknq/MbPCkiWjEIwRtZAqUa/Rvs5+U38RwCcQomBjvCWp8YE0Nry0H8l0HpIkYVosiBlT\nQ6YsKAvRzrvxHvi95p6ZpS0xeNwyhpJ5vU8uky9S98IYwBql5ytlPa1ALA5Ygt4IvnE78fIj65B9\nFlgPN543X6GkIj5A349kRhyQ2lnzxnWQyo6VmIb8Hqy5kq9kawU2UxwJisND3vh4xNvjlk1dYomU\ngkWzY9T8ZPIl3XjcCid6Jl50z44NhZUdhNE3EwD2Hu217B/jIZe3T2w88tizuXZVKx565vfCcd37\n8eX6/42bBc2xEMJ+j2V5Iw8Bn4xisVxzFlACkMsXTL3fAZ+MpS0NOHpqENkatHEkScKGl/Yjla2e\nIFoh6HPD7ZYoFeNCsfS2MUIHHJLnwIEDB38SOH4mgS++sLdmNcyr39WEmz+0hPva2lWtQuGJcMBb\nsRTN6FclCkLXrW7jljkag8do2AtJ0v7okvfccd1SxAfT2PCD/dT5jVmz+CAbHJqzTyRYs0uWRO9j\nBUaMWUJrHz/tz7Gx3MgYgFYSh7FDpK2w4aX9hiBfRXd/Gt39aSxtiWHFggZ0nE6YVOZ44PUIzmmO\nUOVoy+bV4x9vHFPRZvvkyDyxpIv8zM4jm/WslOnjBfKP3H45eMIVrJefKFsHiMs2wTlzLl/Us1fV\nZAfYdZDKKNjwg7F7p6Ty2L6ryzQXvOwxWZeAOVPcZFMkhYBHyHmWEYVCmSKqvUNZKoMvEsgYL9ie\nOwCQJOj9kaRPcN8x2irmbH8aD956CfYd60ORQ26Mvpl3XLcUj35nN073VVc2ygrziLBiQYOJYIhU\ndxujAaGHXmM0gEKxekK0tKUBa65swcPP7rb8OxMOyFzCJUvgintJkHDHdUtx18ZdVY8J0Kxk7FQL\n8CBLQOtFUQwn81T5L6D1655lVDTbOwcs+2kvNDgkz4EDBw7+BPDlH+yrmeDd/KEWXP0u8e5/OOA1\nCU8YA+1KxGj7q11UEPrE838w9V2JSIwo+2XMnrHn3/D9/Zg7PcItY4pFfJjbFDGZ55JgzS5ZYt9H\nMjrFUpnqYTOSXquMQHNDSFcltNP7wRIZQpxr7RsRBUlvnk3iG/94BQDYCmCJkIkRSSZjwP4snnN6\nReeVIlJZhTuPVuIkrBiMaL2ywhUBr4ztu7q465TN1rFZ1/3H+qiMBysokVXo7FU1pbXGe8+qhQJa\nNunv/+3/IuT3YNa0ELffi92MsSoRtQMeIV/SUm+6T5IkUc/6k9vaqTmvCwC1umTJsoSSIMvE+7Wq\njs0DAO73TO9QRhPs+fS78ei3afEgXml6c0OoKpLnkSUE/S4MpfivTwl5UBf0IpUrYjCZM4n9eJgS\nR5cLeGfrNNO4RII91eBQ1wDWXNECtwuWCpklAX8U/X3KKkU8/fLBmsYEaN8XwynFFlFmUVKB+GAW\nc5sjJpLXM5QBWz2qwtzzfSHDIXkOHDhw8DZDfCCNx5/frUtzVzKO5uGjV8zG//qLhbbfb0V+rF6L\nD6Sxt4PeHTdmP0jpXHwgjVSuSMm/V8p+9SWy3PMPpfLIn+JHGnUhL9atboP6ymFKPIUERcas45SQ\nV1j6JsroBH3mP6vGkq69R/tMEuTRsJcq9+OBJXXFUpnKnHR2D+sKn7X0jYizCar++cmMuZaKzZAM\npxVThqoScRYRDJZ0lUZFddauajUJ8liJk7DZNtF41q9ejC07OvR7mlVKpiwduQ+9DBNhs66Pffrd\n2PDiaHY54MGdH12CnbvPcLNX1ZbWitROCUoqUCqWoaTyGOHcM97nitae/f5H9htIxdpVrTh2eohS\niiRl2IBWfcBeR60Eb2XbNH2TpLs3aQrYrXCoa8DUM0lQKKk6sZrZGKbWjdEehcxTd291BKpQUtHd\nzx+rBGBOUwTHu4eRyZcwlMzr2VZyr6JhL0YM8yu7zHYAPMXSWpDJl7DhB/srWiBI/DZdeD0yt+dO\nVTWC7Rb091bCkVNDuP1/t+GZ7QeRydci3FLAH7vMz1NWULlg1U97ocEheQ4cOHDwNsOGl/ZT3kt2\n/6xVythZwWqn3+q1DS/t53pqkfezmTo2kLHKfkXDXjy66TXB+S16xVTA4x4zpDYGrsasYP9wjip9\nM0KU0eF9rpH4LJ4TpewDXC6gpXkKd6xGsDvxrLeTsW9k/7E+PPbpd9v2JQM0KfcNL+43ZYVaZ0f1\nz+fJui+b36BbHZCsEhkHoN3DD6+cpWe2PLKED182izqHiGCsX70YDz3zexMhYgV5omEviqWyPsei\nPkJCaqjy4YChfHj01rFlecZS3Ec37+H67K25ogVPv3yQegZYv8Y7rtPmku3ra4wGqhKT0TYn7KFs\n4Wlmp6TXbu8pS8i9bhc2bm3H3OlTqBLrNVe0YONLeykPvWowtzmMs/0ZU48nWRekb7IakpfJlyii\nxIJcv0ilNz6Qxme/tbuay+CC3TBRAW4W1kjO2TLbAkf1dcvODpPyZ61I2SiLbJ0dxcl4itqEiUV8\nmNkQtLROEZWeAkDYL8PlcnH7CJOZAr79syMo1HqJqop8FX2GVv20FxockufAgQMHFyB4PnahgIyH\nP/kuYWkdL6N3x5rFWLlo+rjHY5Vlsur9sAoKGqOBij1vRgIZ9ss4059BJldEyO9BqawKRQDmzZiC\ngM/DzRBu2SEOXKsRMIkPpNHdR9dZtc6Oolgs4fDJhB6wGYnP4ovqsLJtmp4tKpcrS+rzxlGwMP8t\nlFSuKbwVmmMhfOWu9yKVVbglo7x5CPpkrF+9WCcjbG9dfCCNp18+SIlRFEoqnvqPQ7bGFg54TaqF\nbA8UQJOmE/EkVixowNK5URORIMdS5b1JrYdtWWuzsDQ4Gvbi6ZcPmgR+gLHyVHYMAE2G2N7SSxZO\npXpL2TVpJSZTrqJpLRL0YNHsmLknz5C9toLd54FkQY1kn2wKzG0K4kRPBifiyZoUKAk8MnAizq9r\ntMrk2sFwSsElC6dyS7zJOaNh+l4QUrLhpf1Vfx4Py+Y3oOP0cEVCZrxWO6qvPYN05mlcfY8VjNB9\nbmm0JNcNSKC+dzf//EiFc4tfKpbKcKniTF8yXai5XaEu6EZ/0n5PX9AnNk+/0OCQPAcOHDi4gHD8\nTAJf+v5ebg9JOlvChhf3c0vrJADfeeiqCRnDeCTq2Z1/VmLfI0uY2Rimgltepk4PZFToktunlbJe\n6qik8sgXxOIBbtll28zZ+HM1Aias/5tHlrB+9WJs/vkRocJex5kRfOuBD1r2dPHAjktU+kQwlMyb\n+nfswK6/HGD2Q2TfEx/McPuTeIb1ItjpFWPnLpFSMJymyxQ9siQkrO2d/fjX7+0xlWF53S68Y66m\nBMkqtBIQpVn2nK8f7cXXt72hi5uwBHJl2zQ88qmV+s+sL51RTIYV8ynaiNAlCYiGfbj/lhVVZXRZ\nVPIV5JVal1VadGWiVDFF+xpuw73ljZkHWZKosmkVmrWKCNGwFx2nh6nfHTg+gC9s3o3EOLzZlrbE\n8ObZEWjyIxLmTY9YZruCPpm6VpHqK7lPqYyCcwP0/Af9MjxuNxKpfCXOZkIlZc1gwEsR5bxS0kV8\neEI8+nE+GaqqCo3J8wUVkiS+P+PR6hERvIuaQujuzZjK6zP5CfaemEQ4JM+BAwcO3iIc6OzDV7cd\nqOqYdLaAL9y2Eo9vonvy/vGmZbbPUYv6oN1GczbYbazzI1so66VxbNBJAhY2UCTlb7zsCUFeEf/R\nFwXlgHXgaiQCxCdPBDajSkQljpwSB2mkfK5ag3aW7BSLZUo8hpfFZcu27EC0Nngm8GyJolH8hScI\nQsAzrK80jns/vlxICnn382w/TZrIveG9XymW8ev2syYbi+ULpgKwXkuEjLHnNIp63HHdUtNzQYy0\n9Z4uji8dOcbKkJ6HaMiDxz992YQoAFqRbFGpdbA227eKEBGSUlml/BO7e5MmoRuCuc0RzGqKIDGc\nNZGpwyf5JaQrFjTgRDxpNmlXQZVKimCVOevuz1DKxFHGM4+9Dp9nLGw3kv9yWUU05MWUsEfPnMUH\n0vj8t3ebNpw05UtrdU3R/FU6xuems1ykH3bPkV5EAmLK4fXIyFtsWqkQ3//JUGSdUR/AF9Zdhrs2\n7jJtpoX9bx/q9PYZqQMHDhz8CSCVUfDcTw/W3JMSCnjQHAvhqfuss3ZWRK4SibOyB6iU4WOD3ZnT\nIpbBvNG3LD6QHu13SFOy8CIYYxA2KDHuZLNjtrJ0ION5avsb+HX7Wfy6/Sw8soQHRj0DjWAzqqqq\nIpVVoAh2owGtfA4wG7Rb9aOQcRnNmvuHs4hFfDop/vBls/DUfxwyzZmd0jWRWqNxbRATeCOsShTZ\n0k0WVuNie98qbTTwiEjnmWHq3hC/O/L+QrGE9uMDVOAYDrixYFbdGGm9ogVPfPcPps+TJDrgJJ5k\nh7oGTUSAXCf7XGTyJTz0zO911U/Wp44cYzyHHcQiPjy23p5noB1YlWkLTcJrU7PHw39zKX6y682q\nvxtVVVtviWSO2zdK4PdI+Nu/egc2vLQPQ0kzcedxmoBXxsmelCXRtzM+Y4m2EexGUSpLr59YxItC\naSwLNpTK6+uGVfLNFRRILgkuSfN/PHYmUbVnH6BtGN19w1JsfqWj4ncwdZwkWa7VZNZ6U25K0FOT\nGbrfK9uyd6kGfcM5xIfS8MgAe0XNDbVnxs83HJLnwIEDB5OM1w6dwzM/Ozzu84QCssm3SwQrIlep\nz0aU6bKT4eOaNVeROQSsy3oAQHZJ8HlkKqBurg+iuSFkyjjwxmz08FJSefzol8dx9/UXU+Mx+jkV\nSiq+/MI+PHv/B6lx3H/rCkpWvVBSsWVHBzxuoMTEmpKkqfE9cOslAMzZIbtBJDtXC2bW6ffgK3e9\nV1i2Vc05jaikbir6uVLJnNW4tuw0B5eHugbEvnKcQJYIyRBz96DPTZWvetyyKTOQyhapc3/9x29w\n+6PYrCnxJGudXWfKuJEM7dpVrSYSSLIcx84kML2eno8pIY++hu2UHxLklSI2bm2vqsy62vJsVt13\norBz9xm8ea42eX8789M2p37UD9L8rMUiPqQyiil7lVVKtohH0OcW9tJJkvZstM6Omkp/2Y0ithS3\nL5HHnOYI9TxYKfka+39FKpeVoAL4n/09CPvNGw+AVoUwxClRVVV1XBm1as3ZCUTCXnYgygIWSiq+\n9MJesB0BLgnckvELFQ7Jc+DAgYNJwPEzCfzzC3sn7HxzmyNUD08lVBOAk74iEtiJSrTsiDDwdv4r\niVJUK5QwszGIpliIIibNDSFuxoHXf8UGBfs7+ykCwBsPr3SpORYyyar3JbJom1NPBfs8E+Nazcsr\n3YNa/M6s5t9qXHbKXtnsBc8s3c54Mnmxr5xo88FIeom5O3mN9xlsH9wbx/klksblEw1rNhupjIIT\n58xGzyRDyxORIUikFBPJd40ek8ooKBRL8Hsk5AqVg1mreRKBnT+e6IuRCHb3pUzB70RAuyfVMROX\nCyjbaJGKRXxYv3ox7vvmb7mv14W8CPrc+hqpBiLvTYKyOrYuJWj9gF6PC21zYrjhqvnYvqtLWJau\nwlzaTb8qRrX9dkb0JbLcEmIAuPOjS/D1Hx8wKZJWW95ZDaYEPUISqFTydLBA66wpODuY5aqrJjMF\nBLw0TfJ73W8bI3TAIXkOHDhwMOEYT+YuGpLx+Kcvp9T2AHskgCq7Y4JGo0x7fCBNlTcag1uALqHs\nS2R1b7LJIiaiTEUs4kM6WzDJpTdMCdgmM7z+KxbEpwkQ2zawAjKi8xMFvqBPBuldW3dtm/668R4Y\nyy2N47fKrFS6B1bldSKw54xFfKgLeU3WBGyGx3gPomEvsvkCPvPVXdp1z45i3eo2bNzaTp2bZ5Ze\naTwsjOXDm35+GO0MGTOuL9HaE32GsQ/OToYgkVKwfVeX9n9OoGgkb2S+Xj/aWzEAH84UNKXTCv14\nsgSEgh5ukEp8JDe8tF8vTb7/VrMQCztHQ6k8Nr1yGB63jFPnhtEzXLuwSDXoHcrC65aQsflxAa+M\ntotiQnJFvdfjwqOb9ghVaclzZEXy2DJdgrqQF9defhH2d/abaBeb9VUBlFQVWaUEt+xCcywksGLR\n4JElU2k3QevsKI6eSlRV4ihJwJK5MRw/OyL0gQO0+cgJMpM7XztjaTkxGZjREBCSPBVA0Csho1RP\nMt1uGRG/m3s9kgTMaQ5TvZpzmsNVf8ZbCYfkOXDgwME4EB9I40sv7h33H71wwI0v/u17KmbTrMCW\n3ZFgnfQXsR5fRrCBHi87UmlMInJSSaGvUCwh6JNRLqvw+9yYEvJw7Q4IVFW1TWbIGPd19ArV+dg5\nWLuqFcl0Ti/ZJD15VufnmZQDmsqnVWmqsdyS9x597g19iyJyWCtYskZ8zU72pCz74lgbAyMZIaIj\npqwxxyydxZorWnRfPR7IhoVoPRtFbERrT5RprKUPrmcoDZfEl1U3yu6T+XpyW3tFIRUiTsOOw++R\n4HK5YNxA2Li1nfv9czKexL98fy+So8Gxksrj0W+/Rqnb8p5PAFUJvUwUMvkiMnn7oh9+n5vqTa2P\n+CFJEvYfM5MtK9+8aEjLxkKF5boTEfPGaABPvXyIS8WigtJGwF5584JZdfgjIxDjdbuwfMFU7vej\nR9YsDHibWeQauvsyaJvNJ8cuF/DOVs1Y/r5v/IZ7DlbUaCLBE5ACQJXPs/DIEvI1/vntPDOMnCAT\nGA54TKT/2Jlh28rAFwIckufAgQMHNaAWZUyCO9Ysxi9+d4b6o57KFk3ZtGozMmxAGPa7dS+6SkIm\nbEaIPVd8IG3yT9OVAUczKgeOD+iN/kZSUEmhzxhQLpsfpa6b18tkzI6QTAXpvZoWC2LGVE2dc/ur\nXRRxqVTeZPRge+DWd8Eb9OFrL/4BfYksdu4+g7WrgqY/7ux9evz5PdTrbC8Z61nFyvaTeWJ/tkMO\na4Uxc3vgeJ+wLLCa/jzyu3s/vlz/v8gsncX2V7tMgXbQR5vXb9khFoUwitiI1l4qU0Bn9zBy+RIk\nAB63izJG5wXdYZ+EVN48N8lMEQtm1nGD9BPxpCkoXL96MTa9MmaJ4PW4uD2ZZMzG87bNqdfN592y\nRizDfpk/D4BO8AgKJdVUzvnhlbPG5V/Hw5SgGyM1mkazZvRGkHVgXEsA/Tzc/q+/MsneWyGRHsvG\nVlNyGPDKaJsTw9pVrfgnThlo0OdGU8yH4UyeW1Jq/M5dc0UL/nC0lyoFDgdkruLnkpZ6/VqN63tM\nNMn6GoZSecwBPyPlkiR8+LJZCAe8wrPUUtJqB7WumQc+cQm++D3r1gjRxoGIDANAXdCLc4y1SbGk\nYtMrh03l9xcqHJLnwIEDBzXg32skeB+9YjZWLpqO1w8PmIJCVla9WrABYSpXrBi8SRLwrkXTTHL4\nbB+I8Vwn4kl0dg/rWUJW5Y2ABP7VKPSZiKqFITaAUSEFEuyreu9VZ/dwVcpwK9ummbJiz/y4vWor\nCZ6KojGoTjJBDPsz7xw803jjz+PxNSSwEl8xjsNuthbQslhGMsMqiIpII+/3rbOjOrnZsqODS44J\njIRJtPbodaMFe8QYnWxMsJsLZbjAk54P+91CU+pESjHZRbBKpcSAnpdV5GWK2TV5pr82Hzoyz0+9\nfKiq4yr1oBHY7SNkYXWEb7RHipXbN64ZnvBRJdRioO73uXH39RcjlVG46riZfFGYgVo2rx5rrmjB\nk9vaceTkIHeeMjl+OaXxs4zru5KirRGJlMLNmhUNIlM16rYIy1qtsHDWFBzvFmfrRIiFfWiKBhHx\nyxjJistPheTdYu+vuSGE+GDG9Abt++ztAYfkOXDgwIEAPPEU4klXa4v56V7tjzCvJC2TL+G5nxxE\nwO+tKWBnA8KeoXTFP/oBr9tkpnsinsSKBQ1Y2TZNeC5jRoan8gbY69mz0+dHLA9Itu5sfxpPv3wQ\nH145S3h9rDS5FWZOpfvECJF54zgdxPYlsiZjatJ7xiuz7R3KUiShL5FFOOCmyrd4nku87BNrGm+c\np/H4GhrHxoMsSZjdRJvX8z5r7apWZHMKDp9MoAxtF7xUVnHgzUHhZ0bDXmpjQUQYYxEfJEmiPjds\n4bklOq8RovVh3JgwC6Xww97TfWl862d/xO1/9Q4AMJHlSgRCt8cYJXvsuMm9TGUUPPTs703nzggE\nMsiIoxEfkum8qVz5ZDyJ+FC6qmfF73HhsfWaANThp34rLHWrNYtXCcbsnRG9Q1ldPIkVPrID8jyJ\nekGnhMx9j2TeNv/iSNWiI36vG9tf7bIcp+iMIiXealRYrd5LrsXF39OoiFoEX46dqZ7gAVpW8v/5\n2jrG8IsAACAASURBVK8xpzmMkWyq6uN9HlnYm1gsllFf50ePqdS3Vvp7/uGQPAcOHDjgIJVR8EWO\nOqYK4KsvHbDaAKR81diGehLw8UrSAM2Ql1fyyI6Nl01hsxZPv3ywolnvvBkRalwEiZSiq3nGB9J4\n+Fu7Lc5ivo5YxGerX8xOnx9dajqWrdt/rE94Xlaa3Ai2dCeTK1MZVFFWqzEaMJWXGg2vR4eng7V5\nIIHk6b6xe0I8lypl46zmyY7qaSWIgr6LFzRQ9hJxpnzp4Jtj5agej1tfu4m0AsViZ570DokII7kO\ncq0bt7ZTx7N+YoBWHrfoIs3LsBLpFa0PYw9dJQN6Iw68OYhNr2hiS7JEe67ZFSiqVKK9ZWeHSaa/\nMRrAcEoRrnUVYksSFcCGF/cL52JK0INiqUxlF5fNn6qvS7/XjVyhdv+4iQCZa2IrAGjlsFt2dGB/\nRy/sCC8av6vYjTfZJWHZvHpIkoQ3Ovup+6qqKh5/fg9O91ZPLvYc6dVIlAXqgh6umI9oPbG9tTxR\nFglan+CaK1vwRmcf8kX+X7Ent7UjX0UW1iNLmD41iL6hLLIWPqGTARXAiXj19wDQxp0D/2/5vs5+\nruAW+Y55O8AheQ4cOPizRnwgjSe+9xoynF4bEVQA9960DBtfGivZbJ09BZ/56MUVzcErCTuwfx55\n77ObuTH+0T/dm+KqBXrcsuU4AeDLL+61zFy2ztb+6OnZrVFBCDIXlgp/Faad55lGwCPJblnCJQsb\nsebKFmzf1YX4QBrDGQWFYhnS6NhuuGo+Nrw4RhxZdVF2zo1CByzZYN9vJX5D7kehWNLnqlgs6yqK\nxntaKJb08kRyrIgA1Kp6agQZW3wgjVSuKFT91MqXxpBVxspRzRld8c0l4i5GsOW9hPhu3NqORDJX\n8RqKpTJOnEsiyGRHec8Q8dFLJPPUKCWDuRhLulJZBe7RTNvJnqQpY3H0dILKCtixi+BBRPjZ6wj6\nZM2HMlfAhhe15wtqGdX4SaezBdx/ywr8M6en6YnbLwMAU3aRIF+jj4LPI1VFIKzAfgVo2Xat35LN\nXLKbO5KkEZ77b1mh21W4ZRcKpbHrmtkYhMctU8+0JAFul6T3N9YKK+uHZfPqcfPVC/XvsFSuiKDP\nhUy+jJ6hNGX5osMwFx63DJ9XNpE8Fdr33fZdXVg4K4qDjKgLAS/D6HIBrTOn4OxAxpSpLZRUNMVC\nOFehdDjsdyGVq54EtkwPo+tcbUTOCiOZIgKceSJg/8b4PS5KLflCh0PyHDhw8GeJ8fjYSQCWzm3E\npoeuEr6HBGrdvUltN1CSEPZbCzsAmhy3sRyHF7DbzdwYg9Svb3uDm4UYSuYphUtC0ozB3DBHulqS\ngDlNEVslpcb+JyWVx4YX9+Mrd73XpJDIEtZURsGhLnG5Hw+R4Ng1kzJUY+aMyJbXhbwUybBSugsF\nPHovGM+zyniP2HuRzhawYGYdNUeSJOnZkX2d/cDPj5gIT8fphP4eHpE3EoFo2ItLFk7FUDJvW4mV\nRaUsErlXVmVpeYUO/Izkn/UACwU8FcmpVZ8gL5OuFMtQUnmksmb7EON1kHlbMLMOPUNpKtttvA88\nskXm6B+e/B+TpLvZr0sdd3+k8d6z87WkpQHhgBe/+N2bVfWfGhEKeLDztTOm3wd9sj7uiRL4IQh4\n3cgXJkeCvzEawJe+v5crt8+uXVXV7jfpw/zWz/5oCvabYiFT9trvkdEY81eskhgPjneP4If/3QlJ\nkiDLLiyYWacr9w4l8zjVkzZtBBmVfU/Ek/B7xKnCA8f7qibasuTC8bNJ4XdAfCBdsWxVU4atnuRN\nBsEjqMY0PuD3vG2UNQGH5Dlw4ODPBMTqIJkpwCVJKNvwwBLhH29aVvE95gBVxVAqjx/98jjuvv5i\nYebEmIFK5YrcXdtaMjfrVrfBLRB3YEsQWdl/FySUmJA6GvbZNmdne37Iz7ws3etHe/GZr76KRbOj\ngARTeVolRILWWRyRTxrPyDuRVtCfyFL9hysWNGDFggYqa2kkVTxfPqMHHwAcPUU37h89lcCSlnrq\nODbYtLK4ADThGLv3oxZYZVQJSqo5c0kyJM/99OBYv17Iq2VP/B4A/BLUSgR/Wp0PgymFG1Sqqkr1\nk7JqrkYCFQv7qGON4jLGZ4Ul2nOaI6Z+Q48sUdnyTL5kEl2xA9Ga5ZWxPrH513izp7aSSUkC7r9l\nBZ77yR9NrxGCLsoqpjIKlBozeflxmFdbwSNLWLuqFfd87ddVHXeoawDxwTQOcNbb2lWteHQTrZib\nVUqmjFUs4kMuX6zKsw7QykHLZbMTXiZfpL6TT8ST8DAiqu2dA/pxJ+JJBHysyqr4b1wtgjiFkvV9\nO9OXhksCrP60Tlav5njgcmllv2Vo98Oo7upzS1RJay5fcCwUHDhw4OBCQCqj4Mlt+9F5lt4FrEZe\nO+iTKVL0vuUzsHRuY8XjRNk1EuCzhuOs0AIRQiG7tp1nhvHYbSu14zjBXqWeLnLe+GAaG34wWjo5\nKhnPBnns2BfPMZf1zGoM2f5jx/b8qKqKVFbhzpE62l+zr7Mfsou/xUrKAnkEsIkxeq7kk8YjAmSu\nGhsjuHvDLylyY+xV5EGkskgrp7LrTzX5trFLlIyblL6KSh3HA6s1xGYzAE2MolAsUyWKdSEv1cv5\n6KY9SKTy1PUsnBVFcyykZ5B7hzLoHcpi8ytHdBEbXv+ZERdNr8O/jJKn+77xG0rMJhLy2VZzzeYV\nBH0yJJeE1llRoTcjQN9D1poAALxeGS6XyyS2Uy1Ea/Ynrx6jCOp4bA9mTg3gwVvfKRS6Wb96MQBx\nVnHLzg5TqWTAK6OpPojTPUnTa0ZUS4Tsork+WLH8m4dMvoQNP9jPfe3R7+yB32fOiBk3F2IRH+6/\neQU+/+3XTO8L+2WkBCqZABAKuJHKFGyJlbCc2pTJZnrh3LLLfNAkQkVtoitvJVhBnWJJpTaqjp4e\nQr449npWKde0cfNWwSF5Dhw4+JPFlp0dJoJXDW7+UAt+d7CfCoB6Bu3JlRsFHGiM/RW06q1jg0Nj\n3xivtI5VxzSey4jtr3aNlU6OlipVygz+7V8vMUm8H3hzEFt2dFAm3WwvFyEI99+6Ao9++zU9MCqU\nVGzhGGWzYHsIjT1ObCAuSxJ8XlnvcatkKm/Xh7CarCkhSafODZv8l4xZndbZUWqXvnV2VB8PK9Rj\n7AcEzNL/dsZlB6LSWXJ/WQNkCcBDn7gU23d12bS3GANZ21YiNjxy5JI0sQ82e3rnR5fgy9/fh0JJ\nhUeWcOdHlwivky231TIa2pomGWwRMTPeQ97ajQTcyOTKXLEdwL7VhXHNEjK350u/FF5TNVjZNs20\n7ol6rd4zO9qjRsZgBPmZN0dKsYzGaADxgTRKk5Sts0JzQwhbdnbUdKxIYXQolYcna13PVxfyYvur\nXabvK1kCPvs376K++1jwTOxrhccNXDp/LIP9h6MT6314IYOnfmoHRY7wTF4p4t712obqXRt3mV6f\niA218wWH5Dlw4OBtj1RGwcate3Gipza/KILpDQHMaoxQwVfnmTQVzDXVB22dSxIU+nvdLp2EWPXW\n8YLIasyoDxzvw2e+uguszD/vM42G1dyertG/g6xJMc+km2QegTGS2RwLYWZj2KQy+rf/+x3Y29HH\nFYQhMJpgE4PzjVvbqT40YgJMMoBuA/kk13Tvx5fXVGJTSf3TiEpec/EBrfR2YDiHWMTHFTex6gdc\nu6qVG4zyPP6qBa8ck3d/CVQA23d1Ye2qVhSKJRw5OYhC8f9n790D5KjK9OGnqrr63jPdmUtC7pOE\nyYQkJIDRRRTEVQLy7ZoooBuMK6CugBeEDavIcpN1kQgqikGRBIyLwMaFdRf4JbuyorAQgrmQhCST\nSSb3zH16pu/X+v6oVE3VqXNOVd9yYfv5K5nurjpVdarqfc77vs+jqm3+ZN07uO7KDmbgzBMfYpXT\nAmoZWDKTt5QTb3jriGkBYcPGI7hxCV0Bz1oYZ903e4HGXDrZdWTElEHsG05bgvlNu/uw5yd/shBi\nnnLuHY+9BoZKfsXY2T2mhqo95557pcvUM/vc77t0Hz/WIgft+hSKStVN1Z1CU8j8wW+2UD+3E3vx\ne13IMk66XZ+ZRmxJzJ/ZhKBHxuwpjdhxoPbearMmh03z6XrOwgCpAFsqKv09DSzDcicYF/IySZ5b\nAlOMiO5vOLaYQ3uNV7qgdjJRJ3l11FHHGQvNs8zYm+AU82eMw5f+6hwEfW49C3Z8MIXjg2oQp70s\nySD/xk8vQCZpL3LA6l+KJnLMbADZF0YGkbyXC7ktY4bCmCGh7dOJdDvLUoBFPI29dddd2UHdL231\nm4TRBNtspTDWh0aaAJPkpFzvOMB5xk/bLw+kOf2sSY2WbRvnm0ZetX5AwFr6GgmxSxNLAW3svOur\n/Sboc0N2SXqPTypb0OcbOVZJFHB+e4teXjxCCaqN5bTk/GeNtRQLCZbHmLbveDKLA8fZ1g/a+II+\nN+69YZGuPKldKxpGE6r6ZWPATB6N43x1y2E8tX4vc7/VQjIzpoYKqPcEae5s/D9rkYN3fWqB885u\nRi5XoKpBnnd2s67mG2P0fHlkCaKoMD3RwgEXBEFAIpWzZOFZkF0iFp7IspN9ewDwzv5B3PnExqpm\n63hwSeayUlZ/3Ly2CPYdG2WeCyeoNsEDgK9dNQ8PP7vd/osUhPwy8zNedXA2V0DHlAaLaf2O/Wpp\n9oyzQiaC3uCXK15QO5mok7w66qjjjEEliphGnD25Ad+8ZqH+f16QSAb5DQE3+ikkjyzFoqkwktsn\nxVdIkRVjEGkMsGhlX1pGZfu+QeoLmCfeYAda0KytnJMm3RqMvXXKi7v0Hh+e9xkJryzgQE+MGZhr\n4yLPddDnsoh28AJ/p2V0duCVny7qaLUYytPGZJxvNPKqSf9rPZUrli20bKMc0PqyeNdX+w3rOHoG\nE9SxatYZq17YYSIIkijg3JlNpnJabf7TxIJ4Yy9lMUQTXBAFAelsHmte3m3xJjNmk2m9mwBw9xMb\nucI0msqqcd+agffSi9tOCsEjMZZ9MqcrMtmxkmfWIofx+mze01fVoJ9UTnVJAnZ2D6HIaPgyZnaD\nPheVeI4m84gEPUxiU04VSNAn61YfaUr/aLFY3XJMO2zfN4h71mzUqwPOmRahkmLZxTYA1xAJeZDJ\n5i2quLXEy28cKvu3O/YPlZVdLChAj8XsXF2sWru+EwJpZnjm+KADqDHJe/DBB/HnP/8Z+Xwef/d3\nf4f58+fj9ttvR6FQQEtLC1auXAm3243f/e53eOqppyCKIq655hpcffXVtRxWHXXUcQYhnsxi5dNv\n4/CAvU8WDbIkQHaZTamP9ptf6JX6jNH6mRbOatIV/kbiWWpGTgugHlm3DYf7B03S2F+/agEzwCKz\nVJooi+ySmC85cp+lgEZehmMZ3P3EJtz0abX/aUtnn8WXSkPn4Sh1v/Y9efaZF8Bagreze9iS2eVd\nU7usX6m9VIeOj6BvRPVfkyUBt3/uPMw8K2wxp7ebZ7R5OSESwEM3X8T8TbmElab2unZ9p275oVk1\naP52RsJDu47xdN4y1ngyi1Uv7EB/NIW+YXNgNaU1aDJdBwx+eaks06vNOHYnCxfG70ZjaZ3QFRQF\n2/cPWRQMAdWqgJy7pPdjQeFnf7weCbGE+RmmGXjXqsSxISAjn1eYAjbxtPr32VPCJnuVgqI4EpfQ\nrs/dT2w02ZTwIIuwNSgn7121TNy+zBYAmhq9zLEEfS4UikWqvUI50JR8127orJmYTCkoKMCh3jFL\nkC9/ci7u/MUbGE2Zx/bOPqsHHolMNo+mBi+SDq9rNbDr0EjZv1VQfnaRZjgPgPqcGk3ksOal3ZZn\n1emKmpG8N998E3v37sWzzz6L4eFhLF26FBdeeCGWLVuGK664Ag8//DDWrVuHJUuW4NFHH8W6desg\nyzKuuuoqfPzjH0c4fOY4ytdRRx3VhTGAUhSl7Dp9LcD+4TPmjFEmm3ckzuEEJMHTYFRhtAtSeeVS\nNLBEWVjZqnCgshITVmnWcDyDn/3bTjx080Um4Rcr6MufpKIkCdp1JyX648ksOg+bgwPyV5ppNAt2\n5X5OSz/tCLRxnoWDbuQLRUt/FOv7dvPSiew/DyxVVye/X764HTv2D5oC3TRxjwH8nsVIaMzKgOdP\nR4XN44HcntbbebDXusBAihEKgOW8x5NZ3L16TEwjG8+AXPA3wiWoweHJzOoAwNeumo8NG48wz7lG\nUq67sgN7HnuzJFVQ8hltBK+3ymElZEnQMqLLF7cze6EBVZhlxbLz8Nwf9uN/3zlmKmV0iaWPbTSR\nw31PbrIQgdMBPYMJrF3fiaDPjdGUeXx2JfKAWtZ7Mgne6YiWsI8qtEZa4JzOqBnJW7RoEc49V2W6\nDQ0NSKVS2LhxI+69914AwKWXXorVq1ejra0N8+fPRygUAgCcf/752Lx5Mz76UbbJcB111PHeQyWl\nmMbGalEE5k4f67cDYFEzLCgwrVSXk93SwPIPM2Zp7LdPBib8mhCWKAvt7z6PhLazGvX/l5PpMZZm\nkQGjJq5hzAQdH0qaRFpmT6Uv2pGZGtJ2gEQk5MG9J1TPNKx6YYetl55mGs2CXSa3lJ4vHozzwIka\nainzkkWgnI5VmxfbDBkdp78P+tyYN6PJtP8UxSOOty0jUSBJNWn6TM5ZOxJuyXwfHXFsHu5yibov\nnKYi2zOUpBprs0AR8CsJkqhmtUvFho1H1AUaxvFqdiNBnxtz28YxVVJpIJVTZUnApJagSqIvacPK\np+nKqnanws5nTZYETBjnRzydRzqbRypT0DOigLUXWhBU83VdkfXEtidEfOgfSQOCgKBPxoSIl5lJ\nYo0pGs9yKw0AtfdbKSrUsslaYjie5mZXvbKIRr+M3hFDybQk6B6yTojgexkNJxZG7/zlRkuWlife\ndLqhZiRPkiT4/aoK3bp163DxxRfjtddeg9utPpibmprQ39+PgYEBjBs3Tv/duHHj0N/fz912JOKH\ny0WpqTjN0NISOtVDqOMkon69y8PuA0P49qN/KnuF9x8+fwE+tGAyvv+rTXht2zEUi6q8/3N/2I9/\n+LyaSVvx+ffjy//8X0ikxshANJEt+5oZfxdNWF/yzY1e3LLsAjQE7MvkAGD+rGZs3Nmj///cWc3c\nsd2y7AJ846H/wcDIWPnX5PEh3PjpBVj1223oHUpieDSNgZE0UhlVCCNw4nys/tUmU8Dr8bjwD59f\nhCN9cfzjY68jlswi5Hfj/q9chEmtwbFjBnDXly7EdfetN+23IeCG2+/Bcy/vRjSRxbSJjfjO9X+B\nX/+/XegdSmL8OD9u/PQC7rlwJ7LweFxwy5KF5DU3ehFp8DK3MzhKL+N1u0RMO6vB0f5vWXaBft60\n748msrjuvvWIJbOWAH7y+FDF9zs5bwZG01j98m7H58xue6WO1Tgvyvn9LcsusL3HJo8PMctzE5mC\n/l3ympKm0N3HR/Hj2y7Vzw957OR+yc+TaecZtYDPhZaWEPP8aPC4gBI2WxLKIXiAetyy10MlW26X\naHpG0e4B3vwjz6EoCvjJirHF+eawzzGRNsIji0hl2Qd89uQGjAsH0DuUxLEBsz1ONJG1zLGLzp2o\nvwdGElncQjw3mxs9iDR4caCXLbYjiQKKNtUkkihYiNGMiQ343s0fxtG+OG5e+cpJIU4zJjZgYksQ\nb7xzjPu9TL6IgZj5vigUFBTOIAJjRCTkxmgixzzHZJ+nHQpFBW1TmxAOeiwZeK9bOmPivZoLr/z3\nf/831q1bh9WrV+Oyyy7T/06TLeX93Yjh4cpk0k8GWlpC6O9n95rU8d5C/Xo7QzyZxc+ef8eiZFUO\nbv3sfN2UvPvgIDYTAdhbO3tw3+Nv6Kv+50wzr1SHA+6yrhl5rcNEIBQJeXDXF96HTDJDFWjREE9m\n8Yvf7cCug1EUFHWFujXix8TmAJZ9bJbt2O76wvtMJaDXfGQGMskMrr+iA4Aq2mEMZo70xtDfH8MR\nokTtSG8M23f34DuPb9RfgpmRNL79s9eovV+3fnYBHvj1ZsSSOYiCgLOa/Hho7SZs2atmgPYejiKT\nyZsyKXbngiz11DzvZk8N66p5rO0Mj1q3Gwl5TCIfdvsHoJ837ft3/Ox1Zqbimo/M4F4fJ9lSct5E\nYxl0H1PvC9o5tAO5PUAtU7UbqwZyXgDqefzEX0xxfJ/Y3WPXfGQGMpk8tU/V+F3aNTViYCSNHz39\nZ/38kMce8Ei47/E39PMf9JhDHb9HRiZn3YdLEiw2IcV8Af39MRw6zu8XqpTgRYIiRpPVzaAMDKfw\n7Uf/xPxcuy80lWK1TFxA0OPC4GAMmSSb5JHnsFhU8LWVr+jznTYfncCuNH/PoREUDtKvRTjgxiXn\nTsDGHcd1z8RLFk7Q59Uj67aZnomAOpfIv5FQFAWRoIerJEq7bsOxDF55Yz9+uI6vGFmqdYDPLWL2\n1Aj2HxvBqEFNdOGsJt364rVtfJKnKGrv5XsBAoDxYS+GY+ysaqlHmk7n8bWVr+D4gDUbGvTKp1W8\nxyOcNSV5f/rTn/DYY4/hl7/8JUKhEPx+P9LpNLxeL3p7e9Ha2orW1lYMDIyVh/T19WHhwuqohdVR\nRx2nB3oGE7j/V28hmSn9pUIG7DSs3dBpKdnL5ot6wHnjknkV9d3xQNuusbyLFujT+vhyBQU9Q0lM\nbGYfpxF2pXxO/a36hlO4e/VblpdgnOFxNiESwOwpEWza3aeLVfiJILrUckby+1PGB/V+RjuQano+\nt2Qp6SwHpMebIAiOx0SWB+7sHtJN3Fl9oKTyJs3PjAda36RdmaoRLHGd51/tdkw2WfcYeS9ovoys\nPlWWQqIRxjlD7jdfKJrOv1EESSsnfHr9Hot3GUnwAOj9jSxp/mrA75Ew/ayIvlBSLQzHM8zC72y+\nqPsZ8kzpWbjpU3PxvV9t1p8buYKiWzOkMjl8+a/nYtvePq58PQ35gsJVSWTl+CIhD5Ze3Ia7n3jL\n5Jmo9QwD9r3OLHg9EqZNCCLalTE9J8MBGeGQF33DKWrJeDqTx49sCJ5LEvC1q+fh4WecWwdkc0Vd\nrVi7hzRRJO2Z8X8JjUF3RQvHPrc1e1xQwKw6mNDk7B19OqBmJC8Wi+HBBx/Ek08+qYuofPCDH8T6\n9evxyU9+Ehs2bMCHP/xhLFiwAHfeeSdGR0chSRI2b96MO+64o1bDqqOOOk4BVj6ztWSCJ0kCvnVC\nldAOdl5e1ZLIp0HvKzuxj4ef3aYHmlrQdqAnhq17+3FWsx/jIwHkC0VqKZPRTFgLsEoZu/G7RrNw\n0t8KGBM7YfazcVZ5refb/F1akME7DpJgHOyN4bafvo4V1/LJPaC+cI29J5r0daXecaTHW8DH9mEi\nQZ4frWcol1cj3s7DURSLCrxuFxqC6nabQj6T8ibNz4wHnuWGE2jfJfsiSyHsTtVgAfV4aPfN8sXt\nlmtKA6/n9b4nzZ5l2/cNYlJrAOMjAVV05dVu7DroLODPF4Ge4QQ8NVwSn9vWVHafpx14T12NzNH2\n/U5XP37y23dMzw/SgJ617R3dw1i7vhOiaGVrTmTueZ+H/DJVwCbkd+H5P3ZbMmLxpDG7U57+fSpT\nMJFgbUvX/1UH5k1vYYpOOVHczBcUrHmxk/k5TY3U2FO+/LJ2puBSJfC4BGTKaCYttSyyUkiigEwF\nyqYCVBP57fuHbL8LjFnLnCmo2WPrpZdewvDwMG655Rb9bw888ADuvPNOPPvss5g4cSKWLFkCWZZx\n22234YYbboAgCLj55pt1EZY66qjjzELPYAJ3Pr7RtNr6Nx9rs2RFeJgzLYwbl8wriYTxpPhbwj5H\nmZVSQUqoT24N6C+KAz0xS3YrV1B0eWtJ5AcbxqCrFFNvUnxDlgQIgoCReBbxdM7ke3Xfk5u4wUBL\no5f9GXG+jYblLHLBOw7t+5rflqKoWYiVT2/FQzdfxCWIyxe3Y2f3EFUZsBJyv+LahXj4mW0YTWRL\n9qNjzcc9h6JmBcpcFtFEFod6E2jwyzopJzMDTglAJQJCpLqm8VgqxZgfmwrNaDjoc1PnBc2KQhKA\n9qlhpDIFXSHzkXXb9BLD2VPCuO5KtbSXPP9Gafm9h4eZkukAXWTjjp9vrPgcsCAIannulPFB5ndC\nPhdiqdpkEnsGE5jQFLDM10xeMS1SAXAsogOA2b8oikDA4zKVGZaCQr4AQbCuQR3tT2Igal04MwlA\nEVYRlrEJwKRm6wIDrSdSAfDDZ7bjx9/4UMXG8LzeRZbdxM5u9R7iKdbyYEe2z57caMl0O4ECVbTk\nZCnJFopKRfYVCgClWIQoqr6GNKhWJEUAAqaPP7P4Sc1I3mc+8xl85jOfsfx9zZo1lr9dfvnluPzy\ny2s1lDrqqKPG0ILpzXv6LOU0v/nvbkSCHlNWhAZjj12pYEnxa6tupOm2UY2t3KDYqC6XjWcwmiT7\nAdhvULu+G2NgzVJ2pBEY8ru5E/5SWQNhMu7DGNiRK7CTWs0vM7ssobFE1ZiV0UiVk+Mg5462OEAj\nAks/3MaUcNfOXykEmcSESABr7lpcVu8dSVo18JRDR5M5uCQRd31hUU2IllNUaidCWhU890qXJWjW\nsq3LL2unmtY7IaurXtjBLDFcenEbM/Ad4XikuQFkT3KbkqKogiHFnlEs6mjF0b4YeodTukH7OdMj\nGElkakby4uk81QKDBHn/hoPl9twBOQrB0/pw7ZRyExn6PVQo0v0AFUBfULjuyg4ceGITk4y5XQIm\nNAVwbCDhyHNNwVhG7d4bFuHu1VYrnVoheUK9ttwMsM8rIZ6iX+/5M8bBJXE8QWyQr4VPRg2hVlZY\n/+52iQj4ZEwY59Mz/1u6BoC6T14dddTxXkcpIiorrl2I+5+k9+Qt6mjVS07+7Q8HyiunPLFZsqem\nMeCmruxrIF+QpWR+yOwkSdymjQ+i88ioLaEjV6VJTzdWbx2NwPAymtFYhusNuPQStYyNFdyTvBb9\nHgAAIABJREFUK8aLOlotPWo8UhX0ml83QZ+L6TGoIeCTEU9mLURgW9cAtu7tN5VmGYVRjMdmRLVL\n4ljHq5GUe9ZsNJVguiS+UqKW8bIjWrUoP6b1zZW6zVKsCvqjKWovrRNCG09msX2fNSOjnb/n/9jN\n/C2vnIwvhl9bxFJ5LL+sHXev2aQTjIKiYPfBYXRMiwAo3bPMzo4AUMscaRYYJMjrwvOjKwcFhW3a\nXik0IqaVNN/35NtUsZV80ZqBbAjIyGYLSDNSar3D6nUJ+twI+VyOSZ4kCFCgWK6PJAiOBVG0Bbdy\nwCJ4AOB1u/TjKgc0z9Naw++R4JHpvbw0QSUjWGsb2XwR2VgGo4Q6b90nr4466njPgQwC84Wi42bn\nCZEAfvrNSwHAUiaoBXvlZlwAtkeYFpiwMn1k4FLKOMieLRJHB5M4d0YTtzwIAMIBD1MsI57MIpcv\nwO+RAAhjXk8AeofML+He4QT+/rPnAVDPKUn2FAB3r95kMhInj413zkmCtHlPH+5ZsxHjIwGdZPBI\n1ZF+s9z5kb4402MQUMu6JrcE8Ph/vksV1SFBE0ax87+rFHYkcnwkYCJ5PrcLmRw7kxRPq8dpl8mq\n9H4pZ5t2QkI0j70o5/5QjYbNc9h3YoGDti8o0P82kshSg27t/LHIvCwJ8LhFboB7qiACWPPybsv9\nkCso2LF/CF5ZQDrnPM0oAAj6ZIxyMpfAmFfe8sXt2L5vwHRefW4J48f5qQsNJytjVQ1opY1auXqk\nwUsneRQikErnuVmto/1J3Yi9FHGegqLA55GQIgiRSwJCHjcagrLp2UGDJrZSKmjlrkZs2t0HWaou\nia813C4RMYaCsiTySZ4dipaTdeaoktZJXh111EEFz5yc1nPGwt98rM30f1rgXWnGhfy+2yViwaxm\nPTAhTbdZGZJSxrHi2oVMw18ASGcKuO7KDigv7sL2fYOm8p9IyKOTLV4GjVS9UxRFH//xQbOVTCyZ\nN5GDLz34iiVrNBzLYDiWKZkYxJNZjBCmv8Y+J21bPFJFru5GEzls7mR7omp+h3b9ixpowiiVlh6u\n/tUmHDw2gng6j5DfZSK0AJ9E0gj64GiK2w8W8ju7p8h5uX0fXySjnG1u6xrAqhd2qEIlf+ymCjto\n84e1yEILJCVRwLkzm7B8cTvufsIskOJ1q1kl0ih+Z/cQPG7Jlliks3n0DCUsc1WDSxJqRvDcEjsj\n4ARzpoWZGQIFKIngab8ZTea48vzGqoGgz435M5tN13HejCbmM4JXNWCHoI9dKlgpaJnaZKaANS/t\nxnVXqEqix4gFJx5yBQW5AnusmlhW19ERjJTYk0cTDMnkFWTyWZw9JYzDvQkuncgXith/rPRrwBKv\nMaIUS4fTAbznaqXloyFisaR9ir0Y3OmCOsmro446THhr53E89h+7HHzT/iUwfUIIH3+fmeQtX9yO\nXL6gCybk80VEgh4cQPkZFzLgCPhkNUO4vtMU8BpJUDxpJXy0oJ0UWPnnmz8Et6BmJx+6+SKmslrA\nJyPoc0N2SRaCp0n89wwmsPLpsW1/+ZPnmLIjZJli5+EosxSGLIds8PN9nUoh0ms3dDraFo9U0TKf\nTjzBrKuoY9CEZWjCKJWWNJLEZTiW0QmtVl7cM5hAJOQxEUDj740E3SWJlsweifE2SqIayHmazvFF\nMsrZpmZBwiq53GHIjjiZS4IAzJ0egexSydra9Z3we0UMG+JtbQ7T1EmdlPKlMgWs/M1W5lzlmWxX\nCicEj6dYeNlfTMGq59+t8qiAcUE3huJZatBOWmyUsiiy9OI2S8m0U9Qyk9oYkKkB/ztdg1jz8u6q\n21RoKCezWVTUsve39/RZFkS27h2wfcPuPzZacmnkoo5WpDI57OgeLm2wpzHsMpOSCChF+9JlEm6X\niHOmR5DO5JBI5VCE2gJyzV/Oqmi8JxN1kldHHXWY4IzgqatZ6UxOL9mUJQGzJjeapMlpZE0jPtrL\naUvXgMXHihdckKRrxbULTcHJSCLrKGNFlqdp8vZkaaSxmT4bz+DOx17Hgzd+UN+Otu+jfTH0j6QB\nQUDQQDrIgFXrEwSs4i1GcZQ1L++mBLbsrBbp3bPi2oX4zs83MgOFcFDNmDghQXZBvHad48kcuo6O\nIJHKmRQ9tfHwMp8skKuoACC7RCyc1axnmfqjKTz3+y4IgqBns0gLC6A04kOWEmogy4sBYNakRsu2\naVnhL//1Ofr5Cfhk3PSpudiw8UjJmUaaoqgRpJql020CVgsFll9iKlPA6hd3QXZJ6BtOUr9jxPtm\ntwKA6Z6LBD2m72hz2EmWKOgVkUgXLfO70jJCjyygNezHcDxddTIiiiIA+jZ/9Ox2bqBaLmgEz+9x\nmUq/NZSizkqzKzCiWlL6pWxnXlsEAJClkJ+Cotj2UjX4JIxW+ZrbqVjeuGQevvrDP1ru5RyleZc8\nFwVegy8FAtSyfpoKqQafR0I2WzyjjNIDHhHx9Ni5CPpciBuEivw+N6KM7L4q+CNSybJLEnGwN256\npkTj2ZK8Q0816iSvjjr+jyGezOKRdVvRdcxcshLyy/j28vO5vxUATJsQYpICu3JIDWQQOjiSxr03\nfMDR+FnESHvo3vekWcijZzBBJTNkEP7OvkHLSl/Q57YIrMQIFc1yTckBq3iL8f+7DpizeKLAlgAn\nxVoANdP4vo5WExkxlomShtEAmwSxgm6fR8K8tiZ93zzSqmU+b/vp66ZMiyQKloxeOOhGQ0BWfc0u\nacM//mKjKVDyeSSq3L+GAz0xeGVzH82O/aWZi7P6a5yWF9Ou+/N/7B47P7EMNmw8UlawEPS5uXLw\nWm9aqduknlNOsMfLLAPm+UZTuQ36XJg1udHyvFi+uJ0r2gKASvCqgTnTxuFgb7zqBE+WBGRy7G2W\nmmVwAlGAmuYwnCm3S8RPv3lxxdvmLfzMmdoIr0fGO10DjlQqeZBPiBUVoVpJKAqoSqMhnws+j8wV\nj0nZZIMznLI+Xjkuj8jNn9mEA8dHqdnFBp8EwN7aQYMC9dknnFiE3LF/0PY35O/t+vyaG7wIeKWy\nzcVPtk+ezyNBlETAoM1cLOT1MmW3S4TPIyHKqNAtKAq++dkF+Oe1my0Km6wKglp5WtYCdZJXRx3/\nx/D4f7xrIXgAEEvmsPLprczfSZKAr181D69t66WWQgLOV4LJILSUoNRCuhIZE4kjSz/j6TyVzJCq\nZGSQpa36kmWGIX9pvU6llDAa+8pyRMAhALjuyg641ndaBGTIsivevrXv3bPa7P3FU1OjZY78HgkP\nfOVC035jCXNQTv4fGMvoadmsyS0BkxHtoo5Wyxxyu80CBbFkDqte2MEdM3n+UtlSzcWtSm2RoEfv\nobQTdKGde5Lk2AULtKy1Zg6vcEIpp719NJDjPjYQw9EB1jjZmWVjWTJA7+uc0BSgXoegz43GgJtL\n8qodSEqigPPbW5AvFJn7tSsL4+FU9DgJEOCRRdO9UFQUk8ouYFVKliUBt3/uPMw8i917RFv4EQAs\nnNUMCKhaWaSRWM2eOg65vNWYHAAyuaLt/WR3BTKMvkdJ4Jfj8ohcJptnlpxPndAAQH2u7/jp647m\niPYc3Hd0pCIxEZbyajydx0iCrTPrEgC/X0YsmaP33NooWbJAE6FxAq/sQjxtPu/qOqw6hmy+iL5h\n/rz48XPbmB55NJxMS5tKUSd5ddTxHsarWw7jqfV79f9PnxDEoT5203kilcONS+dg1fPmks0rL5yI\nT1/SYRFEAEoT79B6pNLE6lgpQSlJjARBMI2JLP3sHU6YgjYtELBXJVNfEiQpuf8rF6GUEJNGfLVz\n4XOLiEuCpcQTANyyZPKtcsuSYwEZ1r7jyaxOiGnCLbxjmNs2zrRKTiOWApE1oJ1jLaOnj8nBsQgE\nmVAUteyPLPczgjx/RhjV9mjoGUygZ8hagjgcz+D5V7uZxN2uD9CJ2qdxG0f743rgR2ZGWeVHAHC0\nL4Ebvv+K7rP2pb86xzZzqYOY2q3hgInkaX5ms6eGAQXMDISxLFm3yjDct5GQB0svbmOWDJOLNbXG\n5NYgblwyD/c9uYn5nTOogg2AmqVIEQto+YKC1S/uwtevWqD/be2GTlPmJldQ8MCvNuP82a3Mubx8\ncbulJ0+BOh94olxObB0EqMq6xwaTpix/z2CCqooJqAtklYjB8MDjLJGQB9d8dBYe+Be6SNmuQyPM\n3+47OqI/h+794vtx1y/fMhEknvQ/SzXV75HQGvGbnh1UMFJuIb8Lh/vYi2cKYBJtIU3Ei2USz3LF\nUYbjGVslULuq1lKy9j5K1czpjDrJq6OO9xjiySz+6ck30TtqDdoP9PBVxQI+GYtmn4VF3zqL+nkl\nKpgsBT7AueAEYCZdXo+kKpQZXiz90TS++8Wx0s+frHvHVKISCanEYHCEP3ZNQYskJS0tQa5BthNY\nPedaLESwY2rEFECrXlkqnGZMyUzQ5FZz1swIUriFhBNRhtaIH0cHjL5wIpdMOT2WmZMaqOM2lvtp\ncuJ6T16+yCQgmpEwa78rn9nKDJD6oykmx7ezIXByDnn3iTGLTQa0kZAHQa8LR/oTJp+17fuHuMdq\ndwzzpocRCXn0RY4Vy8ayifFUlmku3RL26YSVZrQd9LpUkZQTCzCar55W3slTNKwFjvTFseqFHbb3\nQa0gifbBKA0Br7qYwcpE0Kbx9n3mRQ7ac7yggL+gpwCiSK9T5InkOClLndgcQFOjF4f7zWTjSD9d\nbVKWBNz0qbkYH/aj68gIVySqmvB7JNx7/SKsXd9pq1ZJQypbVCtiLmvHc7/vshC6cjJic9uaqB6d\nFjA2PT4SwJE+tqonOSRy3pUrbZQrKGWrrgpQEA66MZLI1nwhZh6jauZ0RZ3k1VHHewDG1X9VeIT9\nkmXVzIf8VoVCEpX4jpGBhLbiWKq0vZF00XqySBEIsqxNOfEWIDNXkgB43GOiK9d9osPxmOxAZnjI\nMkNakKWVZpYj/6+B7JEbTbKzP6RwCy0rRSMKxu8liaxBKlvA3U9swr03LKroxciyUZjQFNCVLkkT\n73gqq5+/cNCNPYejpnKgnd3sHj2yJNiIlrCPSebsFkGcEFrewomxnNdIGDWCu+fQMPXeLmUxhvzu\n/uMxvTQ4G8uYRAc0c+m161WlUdJqYu16NmHtGUpaiDQpmHQyoUnhh3y1CYtkScCkliCGRtPULEzI\nzxaH4AW/iTQ/KKb1ixUU4M5fbsT9X/wAgj63owwYOS/WbuhEhmEQXikiQZlaksmK33MFBf+8djMW\nzGjGimsX4rnfd1F/z0OD34XREnzuAMAj09VgS0HPYAJ3PrGxLJJohCCo4kbac6Ep5OOSPBoZEkU1\no+b3lk62BAFo9LsR5ZR62qG50Y/mRpR8/2cLwILJYao/bDVA9hafSaiTvDrqOAOxvasfP1y3vazf\nzp0exo4DZpUxv0fCj7/+YdvfVuI7RgYS7VPCkF0Ss7/PCWgv11xBwW2Pvq4Hm0Mxc3mPFkiRPVcT\nmwOOxV/sQDOONyo9kmWGLBXSShW8SLJC9obwXl4kkdlzePhESY2A2VPCuO7KDgR9bkvmiRRSGY5n\nTJmkUqwNtO++e8Aq9631x5Hj7DoyopNK4/kjFwSSGXaPHs3uwei9yOqtq4b5OrkNlk2E8fhYAjTl\njMMa8JsJNo24Gi0l1MWTBNau78SxAXbAdUp61BwEojRRD80UXFPuLQeFgnLCAJ6uRNrcoIo80c5L\nJUlNr1tCgtLrNJrIYc1Lu/G1T5+rGnkn0iUpJbPUZ8uFJAiYMj6IlrAPe4/wVTBpKBbVUlGXS4Ts\nkkr+fakEDxh7tlVSJkpb7LCDKAINPrNVxMJZzaZnGK9nF6D3l2rn0Ocu/fwpChBNZCsSXonG0mg7\nq7GsMm3tfVJNkqepOJcTm5wuqJO8Ouo4A/GjMgne9AlBfPmT8/Ctx94kSmqcGU5XonZAEsRS1B1Z\nYD3UtYzAod4Ek1BNaAqYyoHITFYpsCN1ZI8KS1Ww2rCKxsiYPSVSlm2CcaV5S9cAXCeIG/k9j2yV\nozZ+x66k0Qhe6aLWH0funySVGozzr284ZZr/5DZWXLsQd//yLVPwtcAQRLHIXCmLICyyyxPLYYGX\nSZg/Y1xJ88tynxJlr33DKax6YYdpXCxPQZtWmZMORQE8sv33SGTzRbSEfSgqbFEWOxQBLhHvPh6H\nJImgPWSzFWTMaARPw+5D6uJJ0OfG5y+fgwee3oxYMqeWVCoKzju7WS9/JucQqyesXLjdor6fv3/0\nf8vezra9fRWZ0pcK0hpFURTTc4PsWSNRzmKHogD3ffEDll5m4zPFTmyEVzZr167OI3KVLN1EEzm8\ns688wR7tHOTyBew+OIQ0Q0SnFJDE+UxEneTVUcdpDO2hTZZClfr4EgDMmzFOF2AgJZtnTx1TUYsn\ns1j90i7drJyVtSmVmJGZFVLgoJySl+WL25FKZ7HrYJTZHM+Tadf2Wy7R0q6PUe2SRuqKRXPUEUtm\nIUmi4yC+XJCiMTctnYsNbx1BoVDEnsPD+IfH3lDluA3XWIPdqigre9U+JYyDPXFTltSYBSilr9Nu\nTrBWb2nCKrzMF5mlmBAJ4KGvXoTn/rAfR3pjlvmh/Vu7L3uHEzrxcaQuqwmRGPvRGBlIJyDPgSAA\n4aDH1D/nFBaxnhNlr9ocT2bG1Gq177GuU+2sx8tHb7T0cjKtlJNRNaxDk22nwS7DUVAAkdFQ5JKA\nBp+nYg9AElmDOfzKZ7bqCzkFRcGuQyNY1NGKu76wiPrbZKq08ygKwOTWAGKJPLVnLpUp6POKlkkX\n4Ey5sRYEj3ftDvbGcPcTb1GvuyypIkVxSna4EogQqM8Ju4y+U0wbH0TQ78GWzj7Q9FDKoU8CAL9X\nsi0vLifBLwmC+kxWgIO98aoQPAHA0kvaAPBVjk93SPfcc889p3oQpSLJ6Ss5XRAIeM6IcdZRHVT7\neu87EsXf/+x/8fLGQzg2kMBoMod0toCRRA7HBuzLZB75xodw9aWzcGwgoX+/bziFgZE0FnW0Ym5b\nBAMjabhdIs6eHMbfXjEbblkt0XjixV3Y3DmAXEFBrlBEz1BS/93Lbx409Y24XSIuWTiprGN898Cw\n6VjOnhzGoo5W7jn59s/fwPN/6sZLbxzAOTMimBAJ4MJ5Z+GvP9RmOlYjZk+N4MYl83DJwklY1NGq\nH6dblrCooxWXLJyEOVPDWLuhEy+/eRDvHhjGnGlh/XskjNf6iRd3YdPuPssLXnaZg72gT0basBqf\nzhURjWdxbCChn9tqIZ7M4okXd+HlNw/iUG8c37j6XHzqkplY/P6pePb3Xdi0uw+jyRwyuSLyhmv8\nxs4ebHy3Vz/+BbOa9DkiQECaiJ606zVnWtg0l75wRQcuPX+S6W/LF7fr57OU605+NxL0mMahbfv1\n7cdN/UG5gsI9r+SYjePT4JYlXPbBNixqbzbNG+2zRR2t2H0oin3HRvX70sm1JAmehnS2UPZc0I4n\nGkvr8y6dLWA0kat4bmnH+vaefua9T16nWsMjCxAFoSbecjzY7Y6nHCmJgq0oBOu3AZ+MSNDDVVQt\nBx5ZwJUfVAPZf/vjfhSJAbgk4CPnTab+9t9f62aej3DQDbcsmu5JBYAoiFhx7UIMjqQxmsiiWLSe\n057BBG781DnYtKvfdD7OO7sZ0ViWahJea8yZ2ojJLUH0Daeox8y6bkVFzQJXG6Io4P3ntAIK9Ge9\neg/GuCrJThGNZ3HT0nnY+G5fWX2XbolO1nL52tywoYCM988Zj/uferuq98hoIocpLQHc8fhGpLMF\nFIoK0ll1MeLyD0yr2n4qRSDAVpmuZ/LqqOM0xIO/2cL9vDkkYyBGL5f5m4+1MVXTtP/zsgW0Vflq\n9ByR5WnaKpnT0rbv/Xqz/oLNFRT801Obsaij1VTmRvNy48m0a6BlKElBD9rvWBkMY7+hJrRC81Di\nbaNc8HrUePuKxrOIxrOmDK3eR5fKYvWLhuzu1LB+vVhziSXSkssX4PeMCdzwrjuZbdU86shrMnNS\no8WXi3es1eh3pO3DybVcu6GTmZHZvq8fX/3hqyAz6AC/l1E7nvue3GS6P0uZW7zt0zzujPf+8sXt\nFlXDcpXynCCTU3DrZ+fj4WfoZeu8jFot4ffK1DLGhoCMaeNDTGVbO4R8rprYA3RMGwdAvb40CftR\nTsDscokoEARAEscsO27/mbXkUiuxll2SpaRbQ1EBfvkfu+ESzVm7gWgKtbDZdtJD1nl4FOfOajrp\niwosFIoKHvj1Zsyc2GhqC7CzEnCKfEHBd36xseyzHfB7kK1y1pmH0UQO//j4xrKygDxoGTza/s4U\n1EleHXWcIvQMJnD/r95CMjP2ZJozLYwbl8yzDVDaJkVw12XtuHu1Wb58UUcrPv6+Nv3/pNeUZh8A\nsIM6WjBRTs8RCbtST6OHm0UOv1CkvnCMZWMsL7fn/9htW2JKBsM7uwex5uXdphfozu4hzG0bh1uW\nXWA6L+S5ioQ8uP7KOSZCuOqFHUyls5F41tZmgAQvICcFEYw9ak4DRUu5owLILrMaajklpms3dJpU\n71yS6NhegXfMNNJUiWGttq9oIouARzLNReN+y1n04BEvtcxIDX63dA3gwOpNujAO2ecJWOdxJYsw\nvPtz7YZO03NGEgXk80V9jnQftcrWl0vwfB4JuVyBWiZmxH+9dRR+j4sq1z97ahiHemIYrXKZHA+S\nJCAcopO80UQOf/PxsyGVofoIAIlUXu836jwcZRKkksYrChAgqD6VGzqpz9d0lmOFQDAeWRLw8xWX\n6v8XGbWtThYeaEbbx4eSmDUxZPLzqwac8IKComD3Qav4UzXA88LjIZbMYc8hs0BNNRc2WFuy8zmU\nBAF+j4jhkyyQW4s1naMDidOG2JeLOsmro45ThJXPbDURPADYdTCKtes7mSvRU8cHTPLkpLkwSbpY\n9gG0niBADeqMwYTTrI0TkC/3bV0DJgEHlsgGrceNtV1y7Pl8EX3EfjX7Aq33kNakncwULC9QrRdp\n1W+34forOvT9kdlDowm0cVzaWMNBNw70xPSyEpZQCMDuBeAF5LRynf5oSs+i0STVSZA+cpX0YpLj\n4P2fBlbfo3EMNM+4SsRseHPRuN9yFj0s/XNQlV2HYxkLYTFaCpD3AM0CopJFGN61IT8rFBVs6RpA\n7F+3ousY33uzVKQcEhheViyeynPVIxp8EkarnGUsFBQc6qUrZwLAc7/vKkv1EQAy+SKCPrduYP7w\nM1uwg6I4Wwq0a+ha38lUyhRF9ngVhf5u0dA+JUwltC1hH+I2/Xy0stZ8QUHXsZNvraGB9HmsFgSh\nPD1KsczfVQqvm52FBQCPW0Qyczp245YOZun1aSYoxUOd5NVRR43x1s7jeOw/dun/d8si5k4bhzjD\ni6s/msLtnzsP//TUZtPf3RJwz3UfMH3PCCO5YEnPa8SCVjJmLOXUgoly4DRDmM2r6ppaOSE/4Ge/\nzIzZiqDPbSoF2tI1YClh0UgQmVWy7JHRQHOsfyyopWUPjeMhz4Xm4Xbfk5tMvQOsYyd97lY+vRUP\n3XwRNyAnrSEANVu45uXd1ON1u0ScMz1i8ZHjBfnllpiWk2liEa6ewbHA1FLWeXGbRXmulMyjEzEY\n1jy3s4hYvrgdXUdH9OuqQCV5E5sDXNEEcj7SLCAqWYThXRtWBrjaBK9aCAfdONjLJgQxG/GHWmDX\nwSFkKhSE0ObWvmPmbFYl5an90RSzj8soyEUi5PeYnjP5InDD919Bo9+N2z93Hq756Czq8+bDC8fj\nx8/y1aG9smjqYdb3YXOMdlmmWqHBT8/gOkHQK5dl3h7wuTBxnI+b2fS5JUSCbvSPpFFUFIiCgNaI\nH7FktuzxZrIFbvaxfUoY/dF0VUWCwkG2h6QTVHtetITZPXCnG+okr446agQtU0S+6LK5IpV8aGgJ\n+zC+0W/xG3O5XJbvsYIyVmCsfYcWxFZS3mYEK+ujBeLbugZMzejD8QzWvLSbW0po7HEjSzm17WoB\n0LYuc28WGRwHvep5PNbPXxWWZRHzZjRh854+U+ZrlPDY4mVPWOfCKdkhfe60/7N+H09mqUpuw/EM\n0ofogZxLUn2lOqZETIqrvCC/3LlSTqaJRbjiBuN1nifegZ4YcvmCqUdSU2KjKdcuX9yOcJBNCLVj\nZ11b8u9ama9G9oI+NxoDblMQ1B9N4dbPLDBlod2yaApsZFlkZhOq0dfJujb7jkSroth3MiEIfJET\nOwGUWqASgie7RAAcS5EKsjotYR8KhaKJaBj9wVjQlHuN81jzSvveU5sgy3Svih8+s912pLMmNVi8\nXJ2gqJz8fkxZEvCt5efjOz8vvYctHHTjpk/NxT/9arP9lwmMJnJ8bwaoJF12STg2pD4fClAwsTmA\n5YvPwy2PvFYW8SkoYJaCuCQB1185B3c98VbpG64hqk38KRXipy3qJK+OOqqEf31lN15+65j+f7vV\no5ZGL6KJtKUnTyvFLBA/JldVeQEzGfQZjZyB6pe3GUHL+hizGzR57D2HonjgK3+hf59G5OwyMawA\niFxxPjaYxE/WvYO+aNryXSPCQZU43P3ERpOfXihgHkcpIjba/52SHfJcBXwy9/dk75QRRrl0QO2d\nKCiKXoa6cFYTFnW0UsdUDbsJwGyc3R9NYe36ThPhomW/WOQ/5HeZ5pVxzpAeUXsORXWCdKAnhnyh\nCJckUr3dAK2EygqfWzLZJxih/Z+85jTLARppJjPo8VTWlI3sHU4wG/6rsUBDm8fbu/rxwzI9OU8V\nOqY0WEqtqwEBQHPYi36b5wbv96zXwaKOVmzd288kJ24ReGTdNmblAU00xQm05/7a9Z2mZ9zCWc3q\nfcrJhgc9MmZNasTbe/ospDmeLgJp+nNIAf9cREIee6M2Dk624M5ZzX5VTr9Enn3e2c247hMdWLu+\ns+x922WkBUGgvoOCPjfOndlUVn8oDx1TGhFP5qquAlvt7VWKkP/MoU5nzkjrqOM0RM/XUKpBAAAg\nAElEQVRgAg88vZkafNmtHk1qDeH+JRdSPyMfzH6PhOs+0WH6G49ckEHkAsLUk+xdmz4+xB9sCaAF\nsDxTaxWK6QUpu6SKS+w0Yrv0kjbTirPWi2IXRow/4YNDmqZPagk6HhMrA+a0rI70uVuxbCH397yM\njuwCzp/ZaiINRjGYwZE00xDebrx2JYrG79F6QQEwe/40UmXsyQPU62M/r1SQMuZ7DkXRGqETI945\n9HpcYyXRafNy7uH+BPYdjzJJKdk7qv2NRZpp2Unj9YqEPLooC2mEXE6JKrlIVQ3UqmvIJQCCaM3Y\niCLQM5SmirFUCgVALld+mWeIUdKnPYe+dvU8ZpZrMJbDQIwekJcr3DHf4JtKm49r17P7cFk2IE7B\nmxeNATf2H6OXINZSsbVcaO+JUrPDew6p/fdaj3g5EATzfsn/a4uktHfQ9VfOwa0/fb2sucPC0GiG\nqkb5XsP4M8QjD6iTvDrqKAk0RcxS4ZZFzJ0+jpsNIR/Mc9uaTAGbk74fYCwrli8ULSINZO+aiyH+\nUSpoAcPDz24zfccrCyaxk/Yp4bLFPTRxkiiRwXJJaolT0CtbyuMANdNKvt/IwJl2PDd+egEySUJJ\nkHE9Ks2ATYgE8NDNFzn+Pq/k1et2meYJSRri6bzp/G/d2497v/h+R6avTq8drRe0dzgBURBNfyNF\nRW5cMs+S2aLNKyP8njE10B3dg4Sgh8I8V1oQRPvMKH4S8rssx/Lgr7fgoa9ehFy+gO37Bk3zi+wd\nLfVeo80lUsG1XHGcfUeiZRO8cEBCNEEPvGuVUwkG6D06xaJaLsgDGQiXgniZfUzhoBsTIl4qyVOg\nLnDk8gUsmEXPrvCGW26QblS2pc1HVqYa4NuAOAEv7xgJeSyZeA2nkuCRxJSsjikVWoY/Eiy/vyvo\nk00LzI3EfaH1J3cdHUEskYEgCDg2kMCqF3Zg6cVt8LqAeAmn1O7e6R9JM6sgzmQEfRJS6QKKABr9\nbt3+6UxAneTVUYcNKiF2kgB43GOeYNd9osPR6rodObALqo0vbVbwVy0xDRK0gIEMqDumjbP0SJEB\nO7MXiyBUe49EqQGfsUyOFtDPmRbGof6xEjifW8KkJj9kWTKVEpLH0xBwo58geazrUS0/NqdYvrid\nWfYVTeRMipnkHOsdTpgCt1xB0YVe7MCbS8brRQveYsk8Zk1qNF0flqgIWepJWoQYMbetST9WstSt\nfcqYYiytJ0/D5s5+U9m0MUM0PhKw2GLkCoq+gGK8BNUohybtJH7x7zuw62AURQAhr8tyzUu5n+18\nOXmYflYY+49Gq65WSUKA6s0W9Mnwe1xll3AFPKJaTlgGyvVyjiVyyNhkAatljeAUdiWtZKba+P9q\ne3sa0X1sBDMnNZTtKVgrhIPmsn+yOqZccY+gz4VCsViWEEqj343ZUyJUH1Ftcff+p942zCsFRwcS\nODqQQNfREcRLjGnsFkfUZ9AZ7jlggN/jwty2cSb7mmgii+df7T6p7/VKUCd5ddTBQc9gAt95vHxT\n0O9++QOOMiEk7MhBKQSN9d1yxDS0gJ0WGPPIq10WopTxkITKbuGQJmphJNwaCU5lCyZZ8lKyIbUi\nzKUi6HPj3i++Xy/xLBQVE0kxq3DyywEBq/ALC+WIAOnj8LpM86NvOGUiU8Yxk9d+4awmRIjgS3sx\nG0nV9VfOofYX8a7tjUvm4bu/ehvdhtKxdCave8MtX9yOt3f3mZ4NmpgST/nWKWjZYa13kSxdpfnB\nldKnV0kfUzSeRb5ovQnLKSMUBTVEbAy44ZUl9BgWBRQAuXxRXYioII5UbQFqJ/FOsygpKIqtNcTJ\nF4Ph79DvMWeqjVls3uJKpYgmcpguCgh6hJJJCClWVi1Iglo6rxEo2sLr3LZxZRHTCU0BNId9OonQ\nIAhAyOfCtAkNiCVz1MqCCU0Bi9eshoO9cW62lfdslyUBLokt9PR/Ba0RH5Zf1o5v/fxN099P1fu9\nHNRJXh11nICmhvlu9yCyhbFeiXJfGYs6WssieE7ghBBpQWLfsNm7qRJjczJgN4pV8AJmJxktp+Mh\nH7AiNPtoOsJBN9MWIp7MYmc3+8Xs9GFeLfXJasBY4mnM4gL8cdGygJrQC8C3DMjlC/B7xjLWPBEg\nMgie0BRgZp4B9fqtemEHNRMYjWdx7w2LbO0SSs2o6sdK7C+VHfMPDPrcuONvz8eDv96CXEGBLAm4\n/XPnAbCfD9qzRl90mBLGdVeas/y07DAARz2IggCTWbkdKlEk9MoCMpRgMF9Q0BCQmWIxNBQVIBxw\n47pPzMaPnmMLviRSGZx3djMGoilTv6wTxBjBrSgAn7/ibDz50t6StkeilNNoJLWFogLUIKhmZZja\np4wJeRk9Q3N5taUgXzATYePCC+m/SsJuPs1ri6iqj30x9I5YiUg0noVLloGM82xtOOhGOpNDoQb8\nPeCV8K+v7MNANIWRZBa9w0l867E3Tfft33zsbBz5zdaSylgFAEsvacMv/v1d09+nTwjhri8ssjwL\njZAlgVvhY39MVgE0DWc1+9EU8pnUlk8GZkwMYv9pZMvSN5zC3Ws2WXp8T+X7vVTUlOR1dnbipptu\nwhe+8AV87nOfw/Hjx3H77bejUCigpaUFK1euhNvtxu9+9zs89dRTEEUR11xzDa6++upaDquOOkzY\ndySK7/16s+W15eRd7ZIEfP3qeXhr1yD2Hx5G/0gaEAQEfXLFddu8vjsnhIh84JMZDl7gy9o3i/Sw\nyvNKEYBwGoiTAfTZkxu4XkG8HoG1Gzq5Ig0tYZ/leG5ZdoHle9VSn6w2eOOiXSdjFtAo9AJYScfW\nvf0npOoVU0B34Lh5xZm0I5gzLQyf162XFKUyOXz1h69CIztX/+VM05jzhSIzcNFUKSspnaEZzj//\najdzn8a5PvOsMH6+4lLLd1jnXQumyX69LV0DyP37Dv28aOWzrP3aQVHUbW758WtwuwTccwO/t3Jy\nix/dPXSyZGccvu9YDAVGGipH8ToDVIEUr+yi3nvRRBY/eo4vs58tqD1l997wAdzwwCslLcSxMmZF\nBfi3Vw+UsKXSQS5waOSrlh5gHllEilDWDfpcuOYvZ+n/Jz00aRmceCqHVS/swPLF7bbjtVsw8Hlk\n/Z69Z81GSwVBS9iHowPW+bhwVhN2dg9Zti9AJS0s79lKMZoqWDJtgHqP7XnsTb2kr9Q+RQXAc7/v\nsmRGIyG1T493z7c0ei3vVafPiEjIg5uWzsVPfruduggTjWXR4HdTs9K1gs8twe8+vfJOyUze8oyS\nBNR78gAgmUziu9/9Li68cEw98JFHHsGyZctwxRVX4OGHH8a6deuwZMkSPProo1i3bh1kWcZVV12F\nj3/84wiH2SacddRRKfYdieLB32wpe/U65HPhn778F/pD9tJFM3Df42+c8KNRMBzLVFy3zeu7cxLY\nkg98cmWWBZL08vzdNLDK80oVgNDAI4qXLZqsZ5xkSYAgitxt8V685DnyygLmTG8yWTeQKnOrfrsN\n11/hXOn0VII2Lu3cGkv+jNeJ1oPXM5jA5s5+099Y/RfD8Yyp948k2e8eimLBjGbc+pkFWLvebEi/\npWsAew5HMbdtnMk43gijoEo1yDTNcL4xwF6UcLKKq5137Vw//Ow2nbCyZMt3HYzqARXtHouEPHBJ\nIvUzCexsdjZv31t5qDfJ/CzocwNinpmR4z1DSVVTDYoCbt+Vk6eyJs5TiZAKiVKyjuWgFgGzJAoo\nMjYcCXnU5z5B8uKpPFb+y1bce8MiBH1uR5YTuXxRF4jhCTw5Qc9gQr83BghLClkSsPSSNmzda37e\nCFDLrv/+0f8FOUMUgEoKTwa03m9jOWsp6DwcNWVVAWDH/kHcs2YjYgn2AmT/SNqSqXd6XRoDbmx4\n6whzvo8mc9jRPUz9rFbwuCXsO16bEuBqoqCg3pMHAG63G48//jgef/xx/W8bN27EvffeCwC49NJL\nsXr1arS1tWH+/PkIhVQJ9/PPPx+bN2/GRz/60VoNrY7/g6hEPEUAIIlqsNoa8Z8wE7Vmp3hqZOXA\nrs/LLmNGPvCz+bGMCO8B9eBvtliCLNLfrWcwgZFkFrl8EQIEU2lYNfrTeETxZy/s1APLXEFB5+ER\n7rZ4QTl5jubPbLGcG3L8vUNjAXGlsvWnAqySHlLR0ngcK5/ZWlKvi/GckSS7WBxTc6XNDS1o0kzE\nQ36zqXIuX8SXP3mOnpmq9BrQDOdJIZhS7QqMiq+KgbjxAkG7JRhFUfT7j7x+dkV+dr2VRQ6tSuWK\nzIwcwJfDd4mgls8pCnCwN1a2WAUwJs5zJkAU1cWJWqhDShQrCQ28BS7zYgz997IkIF9UTCS683AU\nD3xFXbzf1jXAJPI8DMfTuO3R16njzhUUPP9qN1oavbqJN06McM1Lu7llhpWiXDsKACgWy722giUz\nmisoluwmiVxBMS2mAeYKArK32Yhw0M1tU+Ch1BJsp0hlcifd49ApyF7Pek8eAJfLBZfLvPlUKgW3\nW30RNjU1ob+/HwMDAxg3bpz+nXHjxqG/37yCU0cdlaAS8ZRw0I3brz0PQY+sB3Us8NTIyoFdX49d\nxkx74G/p7IPxPWxHPmkPWpq/m7FfwGjBUI3+NB5RJAPWImMZf+r4gEktkRaYOymzJI9n/Di//m/e\nNTiVBJC3b9YcNipaagRL+50dSSADfeM15/nG8VaeNbLXECBIHqH6WWnmmGY4r8mOJ9M5+L1q2aqx\n3JFUrDWeLyjA3avfot5HvF4mFydYB4CtXYP4+o9fc3xcpv0qCrc/r9EvI8oI3NLZPDJ5dgDb2uih\n9lUB/MxVOlOA100v2awElRBHAAgH2OcCKM+rrVgEkjbG1Q0MHz07pDkE3A7as6B9SpiaYW6N+DEc\nyxDXSNDfA7yeMR6S6QL3GvVHU5jUGjKRPADYdWAIsyY1qIsn2miqmMmtxDPOLbuQzpV+/WZMDOFo\nPzuTzoP2Ltee90f7YnrLCOukREIeCIJgLUNkLMhYUCOFoExOgXiauS+IInBBeyvy+aKpP7Hek+cA\nCmOisP5uRCTih8slVXtIVUdLS/UMpusoDSOJLB777Tb0DiVx8PhoSQRPFIHz2ltx67IL0HCibOv7\nv9pkCuo8Hhf+4fOLTL+LhDymldNIyFPRHLhl2QVYdeIYxo/z48ZPL9DHA1j9oKKJrGl/LQDu+tKF\nuO6+9RgYGSuJSWUL3HG5XaJpdVYQ1LE0ECVsrP3bjdsJJo8PmYL/yeND+pgbAm7T8YSDqmiBcXVx\nwdnNuP8r5vK01ZRr+JVPL4DH44IsS/B4XGhqClnGyjse3jWg7Y+cM8Z5Wu65ooG3b/LcAtaVSo1g\nab8jz7kRbpeI7910EV54dR/1OG5ZdgG+8dD/WH4/eXwIN356AR55djN27h9CKpOnZgtpoh7JdE4/\nz4Oj5u0OjqZt7zvjeW+bFIJwXF08CPnduP8rF+HX/2+Xfi9nchm89OZh07Ujr7t2vkRJgOySmGRN\ndgnI5QBa8kMUlJqZh+cKCp77w37L/NPwwFcvxle+/3vqZ6lMAZLIHtnZ05swKZ3D5j3WxVm1VJf+\nu4aAGzMnh7FxZ4+jY3AKfwW9WZIgIGfDEMvNxvE22xiQceuyC3D342+yv1QDaM/VFZ9/P25+8PeW\njFImV8D8Wc2ma3TurGa0tIRwpC+OrqPsMk+PS0CG4TlhR8Injw/hc5fPwabd5jmZyRWx44B5nydf\nldSK5kYvUmUsVjQ3euHxyCZ14FKQyOTR0hIyPe9VqCeFdvfl8kWMULwknQrWjCaruyhjhNtl9s+t\nJnweyVbhloTHJeIbyy7AT57djKBPhgIF82c042ufOa8q7+mTgZNK8vx+P9LpNLxeL3p7e9Ha2orW\n1lYMDIwx5L6+PixcuJCzFWB4uLxVj5OJlpYQ+vvPjFKS9wLiySx+8bsx3yi7VXEjBAB3/O35mHlW\nWC+z2t41gK8++ApWXKuu4B88Zi4JPHhsBP39sbH9HhqxBKhNDV59DpSa1SG/f81HZiCTzJj82cLE\nQyYccOv7M4pJkL14fq/EnZsrrl1oUQwk983af/fBQdtxO8E1H5mBTCZv2o425ls/u8AiDhL0yhaF\nReMxxpNZbCZWnI/0xvDjp/+svxz3Ho4ik8lTs0DGHrwGw3nmXYMjveZzfKQ3ZjnvxpVw3v5LBW/f\n13xkBjbv7jOt5HpkkerRpf3u7z55Dh78F3oP68TmANxQkMnkkcsVEE9k8IO1m0x9jXd94X1Y/eIu\nk4XFNR+ZgcGBGIoFBc2NXoSDbgiCgD2Hhk1j8XtkZHJkyaeC7kODCPrcGCJI3v5jo/jMHS9SFSs1\nkBmIhbOadN/GJ/59u0X0hLx25HXXsL1rAK0RP/UzAMjlFIiiqKZ2CFQ5oWUBbf5pcAtqOSHLp02W\n2EFgIpnFsT76dvOcUr5svoAPzmvB2+/2VLVXbdakBmzrGiyLLAtQkLbJuJULXoYxEvLiR8+U71VY\nDmRJMD1XaRUR8RPXNhLy6HY5yz42C/39MXz70de4AixZjqkgjXy4JAETm/0YF/Iikczilof/x/K7\n04DP6SBLuL/12Bslb2NgJI0ko+JHFIFGv4dLAFPpPPr7Y5bnvQba+YqncnBJp1nK7AS87vKyoU6Q\nLSPjncoWceM//xdiBouakXi6rJimluAtap5UkvfBD34Q69evxyc/+Uls2LABH/7wh7FgwQLceeed\nGB0dhSRJ2Lx5M+64446TOaw6zkDsOxLFA/+yWQ8OQn4ZMUOpixOCJ54wKu+YEsH4sBqY0UQYHrr5\nIkvp5bHBJFa9sAP5gnVlURIFnN/eYir9K7WkzMn3eaWGDzy9mVk3P97G1oGlGEiCtn9SpIQ2bieE\nlydkYrQIMMLufJLlKbS+hFJr7XnXwEnZaq389Wj7Nsr2ZwghhvYpYcguyeK/po15w1tHmPdUS9jH\n7PMzzgGahQVJthZ1tOKBr1xoIuxLL2nD0+v3mO4zYz9KmsKOkpm8qYSYBHmejUbUB3piiAQ9lmM0\nYvniduzsHqKUGgrcElRBEBDwumrWU8SDXYkRq2QPADqmqS0VtM9pqoMaeE/h0UQOP123o6oEb1FH\nK5Ze3MY8DjsIYvk9WSyIIrBgZjNyObMPpxEtYR+OVVk4xK6MkbyfaVmOdK6oW1TMmtRoupfsFDZ5\nZ5FG8vIFBeMjAeTydCXL0w1a765Wou2SrGY+Po+Eaa0B7D0yqs9z67ETSqGCaryuLV5yS7RPcLVS\nhXCSqWzNqgbKhUsSEPC5uaXSlYDXU+53A0nGdI4RHqS7DtqLFJ1OqBnJ27FjB77//e/j6NGjcLlc\nWL9+PX7wgx/gW9/6Fp599llMnDgRS5YsgSzLuO2223DDDTdAEATcfPPNughLHXUYYaw7J2v1Yza9\nDOQDTSutTGUKpmCQJsIAACG/2Ri2UFSYilqSKNiKd9hZDjgJ/nlEiHY+pk8IVVXen7Z/J8fJUnV0\ninJ63cg+RJ9bovYlaNLVTsG7BuX0+xkD8Up6+owCOfF0Hr3DCdy9ZpNFiMFoqxH0uRFPZS0ZUe0Y\nzL8zK1w+/Ow25li039KOh7wuR/tiVM+7Wz97Pu57cpPpXGnbFTmNHGRGToM1KDJvI+hzYdqEILqO\njqJYVCyec0GfG3PbxlmIreYRmMsX8M6+QUvmxiUB4yP81flywcsUnXd2s+19rxnGb9/XbyqZCgdk\n/bNqoxyhBZ9bwuypYWzfP2jKLrpO+IZVMs5qCz/IkoCzmv1wSSKu/uhM/OPjb1mCTU2SvevISFXJ\nv5MyRm2hJH5CRIuHaopNsIZWTn/fqYImZNZ1ZASTWvz0fkoF6I1mTAsZLsJDUFPWpHlm2vXPyy5V\nWVq7t409efk8W07pdPQ4zxcUJNK1VbelQRbZBO+9gJqRvHnz5mHt2rWWv69Zs8byt8svvxyXX355\nrYZSxxkKMijMF4olrfDJkoBJLUHdc8qoVkWSOe0FRhNhANTsF13tyvoYNRpIa+AF87SsXSlm5zQS\nIAqCybtKEgXc9QV6P041QY57JJ5FPJVVxSgoJAMoPXgoR2iDzMRm80WqbPjug8O6F1SlIimVGsBX\nIihCCiOwVfYU07GyxkxeVy3z1x9NYe36TovPE/lb1vGQ16V/JK0v4BzoiSGXL+j7GSEyB9p2eRmo\nWDJvK7gTDrpxoCcGY/XNhCY1o6D1dm3pGoDy4i5TNnLpxW3Yc3gYsWQOoiDgnOkRXPcJNTiTXRKV\ncI0m8xhNsj0dKwGvz8kliY7Lw8mSqcmtQaxd34ltJ8kYWct89Q2nqLL4HdMicEmipXw0X1DwzZ+8\nDreLb6lSKUrJgGgqidq749wZTRaDaU2SfcW1C3HnLzZWJBpTKrRn79oN9sSYfAd5ZBGZCkRfqo2G\ngIxMJs/sA6wEEgAwPOOG4xmMUnrcALX/nfQcNBK8SMijL6BoC59bugZw4IlNuPeGRVj5zFbuuBr9\n7Of2V37wh7KUT08lyGf8yYDXKyNXouART8TqdMPp5TxYRx1gZ3zsfGiCPgmpdAFFqD4wt197nq6I\n98i6bSaSRgr8jCSyuO/JTZjU7IMCBcl03mQGrQWFZDlb+5Qw8vkCdh6IQoEaoExuCVgeAjxzZFrJ\n4K2fWUD9vhE8EnDO9IjJg+qc6RHuuSsVLIK5fHE79hwe1ktFh+MZrH5xF2SXxCQapSpV0bKF2ni0\nzJXWP6KNy++xZmJpqn6pbMGRzUS1wCOCpZZy0s7BQJSfGUhmChYZbhqWL25HKp3VvdyMPU8HemJY\nOKsJizpaqZLq6Wwe8VSWejxkhhyEUIexjBJQsx5FqIsY2na1IKlnMIEj/QlTAB70uiz3CakcuuqF\nHabSs0jIQ+2x2b5v0HRfP//Hbn2eFxQFXrfLVsH0VMFuPKxyWwDYd3SUao5dDcyaGETQ7zGZwxeL\nKiltCXupJG9n9xBTha9QVGo2VkAtv2sJe23l7WnQnuvKi7uwbd+gKdO2aXcfPrRgPDyyVNPxk9Ce\nvaz5EQ661XehV7YYQHvcEpfkyZIAQRDgdglIZsxqmuXSMFa2WpYEfOtz51vKunmQJQEKnClqFgDu\noHkWJDw0BtxU2yHN3sJOQGhC01jrBflO9sriGUfyTkX5qJ1yNA1O3pmnC+okr47TDuyAg/0IOHty\nA4I+t0nswUiySEPmXEHRG6eHYmkMxzJ6sLlwVpOlf0g3N6aUswV9bqx+eTde23YMxSKwff+Q5SHA\nCuZpvWItYZ/p+/EkfZ88EvClvzqHWnZHotySQBbBDPrcFrGFzsNRqhiFJAo4d2YT1+KANhZalpOc\nM8OxjB6I3bhkHrMMRGKszp4OQXqpVhS0c0CiIaD2rhoDTCfHGvS5cXQwpZ8r8pRF41nces0CasmZ\ndj+wjscYMFtNnc33rfZxQVGwff8Q7l69SRc/WLHsPFNPKKAGQeTxaUqYgDo3yM8zWe1+tO777hMr\n7EGfG71D5kC/d1g1eH5k3VYc6ImjFijXx8tu7pDHYkQlgWJDQAYUMK0BvG41BCEP6dhADK2M3uGT\nGbiSfW3z2poAoCySFw66sXZ9J6LxLMIBa8nuj57dflKDXG0xA6D3dDX4XfriRzaewXO/7zK9F7M2\nZFTNWCnIVlFQ6NyZTeg8PGJ5Z+YKCu5/8s9wu/iCIqIAeN0SBFFA+6QwdnSX17tJIuQvzzuud1jt\n7adVQvRHU9ya20jIg6UXt2HVCzvQH01hKJbWx3CgJ4aQjx/ey5IA2UUX3DrTEAl58NmPzcAvf7e7\n5JLrcjLnp0N84BR1klfHaQfWDaSViB3ti6F3OKWv6J8zXS3f0Uo5aaVttIBXa5zuJdRa1dp4Olhk\n7Wi/OajbsX/Qks1z0nvn90gWQsYiVDwS4KRUkLdtO/CzTOSLli5GUSgqpjIyp2OhZUVZPWFaTxZN\nnAMA5s9swvZ9Q6bSVuDk+eDwiK2Tnj4jWPcN2T9HEiGnx8pb8dSINqvXjJWdjqdy6Do6ot+f2nXw\nuSXMm9Fk8ScioS3OaPOFJQbE8unTxm78XMtuzp4StuzbaCAdI6TEY8k8Vr+0C13Hyid4dmIZXhcQ\nLyEm83tcep8gD+SxjP1eQqGocEULWBAA3PD/dWDNf+5mfufdg1FqkHVsIAVJqm3ZpRMoihoMQxAQ\n9KnZrKBXxp/39JnGLUAtX6R51glQMzaZbJ4rCFMrgscqL53cMkaitT5So/rt7kNmkRjyvcjrha0F\njKWNtEXgZCYPO8FDRYGpLJKGcnz3prYEcFRMMatVWBnIVEatHFk4qwmRoJn4t4R9yOXzODpgfa5H\nQqowy7++so/ZwhJP2bBrRWESPIYA8GmLe69XF97m3NyE1S/twrvdg1XrO6TdP3WfvDrqoMBYTjZy\notFbIBqNAWvQRYpDAGOqfNqKPlnKubN7EPc9uQktYR8uWzTZQsKAscZpiXhZZbLFkmuuY0RNfipb\n0MsUaT2FrN67uW1Nlv2yCFWpJIAGXukjK6MWT2aZ/VEALMGxMcgky/mM+3dankgjsCx1MS14JQMS\nQQDeN7v1RFnem6aVYUlQBRxYJaC3LLuAOq5ywCO2evb4xDgefnab5XoYrxWrn2FuW5MpK5zLF+D3\nSNCCOafzhuxX1aBlBFY+zZaAbwn7AAXI5QvoGYzjcG8cO/YPwiNLFs85QL0+WubctX7s+HiCJf3R\nFHVuaMbm0XjGFLyFg2qp5lGK/L9GSg8/+bbF32/7vn785LfvWMZirAYoF3bBJU1tXRIFhPyyRe1Q\nFICffvNiR/sN+lzUczu3rQmb95QnhqEAeOI/d3MzHCzuqACIJWrsKeEQWkZqOJbBA2v/jJmTwpbr\nJIiAW5aoJE+B6qtIm+cnA6wpZaw4CfrcuP4Tc/RniUsSKT80P0N5vbCVgEVKtdJGjZAaS3ydwsnX\ny/Hd23UwitZx7MC/fXIDdh9m9+JG41nce8MiS/XNmhd3U0necCyDlf+yFekc+2LX52sAACAASURB\nVB6xOwxWpe2k5gDGNXhM7R6nO77+49cwZ1oYB3tiVc1MemURRQUW3+BqidedDNRJXh01hSkITWSp\nQRApdU4jL3bEh3ykJTMFHOiJ4UBPDFv39nNT+G6XaOqDKCgKteaaR35oZtGkLDtJRJ323rEydkGf\nG8sva9fHtHZ9J/Vc8cZtV/pIy6iRGRtj2Q8AXHdlhx6YG/dnFAIhj4V3nHaIJ7NIpbPU0sugVz3n\nZECyYOYY8SFJ6bmzmvReLVoJ6KrfbsM1l8woW/nSCCfElnc9yBLNSMiDoNdl6Us0bst4HuwEOYxY\nce1CrHx6K2KJDARBQGvEj4nNY32PpIgKMJZJumzRZNz26Oum+5AmSjAGNaA0zvFCoYiCUtQXh9yy\naCI2rPny/B+7Tc8dQQDCAQ8KRQVbGX1oWsn0j2+7FF998BXTfE/nlFMm8U4r1SwUFaqablEB/u4H\nf0DQK+t+nyxMaAroUvkaBKiqj1u7BlAos0SynBI2DSziqSEcdNvK+Fcbo8k89doXi+ySVKeQJefe\nrtXCzu5BqjDWgZ4YwgHZdH/OnhrW/x1PZpHPF5jl7kDpxyO7RCyc1Ywte/up89z43vv6VQsQT2Vx\n92qrmJfWt0sjaz63uefRLQEBvweJVK6iMuCCAvQMWp/dPo+Ejqn2/fB9wymsfnGXpa0klWHP70oU\neiVRYGbnk5k8WkRv2duuBcIB2dZaoRbWBl6PC8WiYpobZFLgdEed5NVRdfQMJnDfkxtRihquMbh1\nUmrIU/vrG06ZMjN2L5rZU8OWOn+nwfbyy9rxi9/twP5jtFU68mFgLQmspQKjE8sCJ6WPdkREW2HV\nUK6tgJPMpNHkPXAieH3+1W5ms73WmK6V+dC2rZFSLWM3OJrCqhd2MOX3e4eSFSlfarDLiGrgnX/a\nteCpqFbiy8fyJ9RAiqj4PBJaIz64JBGPPr+jpIAvnc3jqz/8I2acFcKRgYQpmF/U0Wrqj+0ZTGBw\nNIlNu/uw6YFXAABzpoX1DAV5jIqiBkiZHJ1gapL2gHrHNgYkDNemxa5qYAVsuXwRw/EM7v7lW3jo\nqxcxCf3yxe2WEjgFqupj0CvXxPLBDhOaAugZTlGl/TumNMDrkWuSSTpVONkEDxgrTQasLQ3pbB7n\nnd1s6nPXsHZDp63ASUujF8PxrGMhmcKJ+sAC5Tz4DG0MRr9P0ttP5JDOhbPU8m+jV6HXK+ulftef\neHaUC3K3PreE8RE/FEXBHkYLiFbGmcyYS3kP9MTw9u4+CDXiE7zy62Q6i6FYmvn5qcCU8SFET0Fm\nMeCVMK7BZ8pq5gv0JMDpijrJq6PqWPnM1pIIHlB6jTMv20dmYHiS15GQB1deOA07u82lZk6D7TUv\n76a+7FySgEnNPuw9OkZEJzb5EGnwl1xeWa4CI0vAxo5Q22XUWDYJdhkhuzJQJ4SXZlavZetIRIKe\nMUU4Xvx04rPB0TSS/397Zx5fRX3u/8+cOUvOlpwkZAESlhAwLMrW6LUWaC3u7f1J0YIsLni9v7q0\nahVr06uotL4QN1r9Fa0KbXEBS7HtfWkL3taWtlcBy6LBQAyrBLKcJCc5+zq/Pw5zODNnZs6cPQnP\n+x8NZ5bvzHfmO9/n+zzP5/GHYx47cUFsnqoyE051SiTJKyB17ck8ojxK/ZGq9zNdb2kyXJ5AQnid\nN86bnmyyUqRjEAwBHDhEuHMTH6ni0Qfa7LEyF7x3WOyFajnhiIVLd4lybs8h/VCEOaDp5V3KDc4j\nUbEILXyBkKJIgNI4F0w2MZHZsdvhxcqlM7Dq1d1ZN0JklRLPenR4pV6xkXdhXZkgB5vIDLmxyxeM\n5kxLLRqpWRwa8AYQkFlIkSISka+TF69cK45GiIeRSajj8/k2vNsibKM7mLUJu9hz6Q2EkxYoV3qf\nOaQXOpop/iAHh3NwFY5rzoOB19hQib2HuwSLBB5/BKzEAtepbvWF5wsNGXlE2kh57FgNozihYxkG\no0aYhDl5KeQF8aTiLTrV7cQZiVAKk4HF4ysasWrDHsHgrDtbVFdMkU54YfZ+b4JoC4+GYRIU9k50\nutF088XKF5YiYlWu+GLecop5NouyMZbMo7b8qkkCsYx4MQolsuH9kitWL0Wfy493/nYMd14/LaWQ\nRx6LUYv6mpKEnLw7F07Hujf/lbbyJb+fvKqjkEy9n1LHii+SzhtM4JA0F1Pud7HBKg4HUjJAGAaC\n4tvJiC9C/PjtjbITzsMnHQIvAiuqHRkv5MTX5isUGgaYMMqKzj4vBkQiKLzBm4xkd1BpYi5XJ63f\nFQ3l02lZBMPZzZHjOGDaOFvCIpm5SBt7NyMi9Qfe4JXzshcapYL0hcJiZOHyyhtb/NglZZCclihh\nwe+TzICRO6dcDqkSPn8olmOv1PdaVjoMkR9bpc4ZC1lVOCaQGCqtZwEO50R57vrWVOzYdQodPW6c\n7vGkJVY0WJD7FhWKfNzJYCic8O5aTVrJ3GCp0NzBChl5RFq4PAE88uquhNCIZAPbRfXl+O7Ci3LY\nskQDcP3vmiWNPF7kRGwoMAwjmdd2WJQ47fKGwMpYtGajLiH8JZsr4fyEu+WEcEWT47jYb+3d0h9D\ncdy/mGQeNYtRjxKzXnB98RNIqZDK6tJEKXvx32pKKJgMWgRC5z7IpiJtYq01iXPInVuqTiFPdblZ\n8j4Um/UZK1/y+0mpOorPqdQfalVUxdvHF0mPl4NXqienZCiLr8+gE0pzK65Ip/la8IsLchNOnyhM\nbESxHoFIdGGgyMDC7Q3g6GlnyuINuYDVMLCYDALPf7ZRWojo6JEeK/pcfjz91n5ZIzOTPDIOQLvE\nuOyNWzUUh+NFuOgzKudlLzQ6LQN/CgsW+aC61IijfpekWqLNcm4si1+44zltd8eMK7HyL6/GGQqF\nEQyrf431Og0eWjoTa379MQYUjM94eK/Y8Q5nVO1UBrm6ffzYKjVW8L/JGegjy0y4+doLsPb1fYJn\nPRAGGhsqYjnDb2z/HBU2I0bYjAmRBUONXBSUH+xIeYerSs0Ih5wJ4fpD6e4UXqOYGJJs2tGqODkq\n0gn/Nug0mDlxBG67tiG3DZNg+VWT0NhQiVFlxlhtmGKTDr5AdHVQXBg9HOGw/nfNgtW9TTtaJV9s\nncQySbE5WkRd6mMkPq4cLk8A63/XjCd+uUdyH37CLfaAOFyB2G9y/dPn9J+t53UA9zz/N9zz/E68\nsPUTVe3ikQrhBKKTxR+9sgt9Tj8CZ/OBnn5zv+I+4ms63uHEnkNdsVyReGoqhPX2akaYUKUgKMGf\nQ+7cUnUKTQYtGhsqFQ033lh69NbGWO6XElLnX37VJEkxnnwgZXTK1ZPj+0HJSBdf36RaGxobKjGu\n2opSq0H2o6hjGVjNOplfozkRSrR3OXH4i8SQTgAJEQWd/f7YczngDuLz9twYeEYDC4V5qCTBMIfD\nJ7MvHMAjFwrMIyWaw+N0y+fjVZQURWvhpQED6dI2oTCHjh43Hvh//0RYRgvDYtSmbeil2jepUAgD\nz6BTvqC209IGHgD4g2FYjPrYwp0YDoiNx/Ghjrz4yYv3z8P0iZUpTXq9/jDWbNob9YKlQbqLCh09\nbiyYO17yee12eDF1fJn0fr0eVNlMeHnl1zCu2pqwn/i7lcv3mMgfRn00D9QpUYpCaaFhsEGePCIt\nlCajOpbBzx/4Wh5bowyv0Ldq456YHHYwFJGVCA5HOOw51IVQOILvLrwIR045ZHMFGsaWQaeNysDb\nznp4+An/Q8tmJqz+xRdhVkLsNdn/eTcYhol5xuTuf4XNmNRQ4BU041eu4hVO1XjU5ML+Pj/lSPjg\n857SZN4vcbvjc69iJQN8wpVfly+M//w/545rs+jBMEyCWIDcuaXqFK75zr+lpZSphPj8C+aOP2s8\nFaY+n1xuXir15Nq7Xejoc8Ni0CWUZbjt2nMlUR7bsCtRAU/D4KIJ5bjxaxOw+pcfy7bTF1BWvOvq\n98kWBzfoWNWiD9lE7H1SSy5DpMTiSGKUvOFRz7/0Pe7s86ZlKDMAqsuNkhEWeh0ryL2Voro8qup6\n70//kfKq+viRFhw57RpSq/FKGPRaTB5bnFZJAa8/HMunThaCKVc/Vi4toEimbiCQXIlUSf0xXVy+\nEN7ZeUxS8TW+pub+NrsgDzQ+n1UqHz3CCa8xEsnemFNsVi6yrhQGz/+ONOr+JUMDgJM4roYBLqgt\nwaGT/UP+/fIFwnD5gpLCTw8tm1mAFqUHGXlEWih9EAr5AkgZKGJ5aLXwK3Jr35Ku/zV5rA0rrpsc\n/UBWWNEtSsadMNKGl1d+DU/8co/gXqmpRSc2PnjjlBcbqR9dIltLUK74c3Q7VrZ4OH9ONblzcmF/\nUpGgZqNOsI8c4meKz70CgAVzxuPpzfvhEPVhqdWgKmRRbhs1dQqzgVQIcfzCQXz/5QMlgztejRU4\nZwAumDseHx/qin28g2EO//XKLpSYDYJ3S1yWQVxoW8cyMaXH9b9rVjTEIklmJ2IDj2GAsVVWFOkY\nxbpUhYLVQNY7FeZyl9OVbPGgqtQsCNvl0bEMyoqL0NknvXCUjoFXbNbhx/9xCTZtb5U08vwhpdIa\n0YkrP66nQybF6gcjVmN0GpeuV5o3YJZfNQnNR+3wyi6sSHsvxO83z7hqS1rvIAPgorpyQVkbHctg\n5AgTTts9sos6QDR/Tu53k0GTEJqv12ow/azIj1yZHwCxPECpfHRxBEwq+cXJiISUF36SnYlTs1Ea\nRGSOG+GAtvYBlJj1BasLmS04AI++uhs6VhjwaNSzmDDSJr3TIISMPCIt+Jh8cRyzyaAt6AsgZaAA\n0mFByfAHQnB5A5LhISPLjaqNASlxlGSGlJIR7XD5Y6qRvCfNZNCgrb0fz2zehzJrUUz6WlxAmjdi\npI7PTwTVeNR4xNtqAMRPzxgAK5fMkLkzQpQKpsut7ItDbVMlGwXl00F83ypLjXmVZJYzeuNLE4jv\nyTs7jyV81yORxHdLfG3iemdaVhMr7J5MQEMDYFZDJbodXpzodCZdkeY4aW9kqiRbIU+XZO3PhYGX\nLPQYiL4Hew93C4RpACAU4dA7kF059QF3EA+/9BHqRloljVq50EKepltmwWLU42dbDwwab0E2npd0\nDXyPPyIbIigjNimAf18tRj2m1Y2QjVqJr5MXj/j91mk1mDquFM0yuc7J4ADc+PUJON7pjI0twTAH\nu8MvWV4hnsqSIngDEcmSHx5/JCE0PxCKYP/n3Thtd8dqfi6YOz7hHpyxe2IeT3E+ejDMKRqXmeDy\nD5YnXD3BMAePb2gbeDyhMIdQWLjgpNMNrSw3MvLOc9SE5knBx+S/sPUTwYqb3IcgX2RSB0xMmIuu\nckqJC5zp8eJMjzcW0qlEULQaFwyG0NUrTnAXTkwXzB2PlhM9kgplHIeYauQ5T1r0N96j1thQiUdv\nbZScsLs8AQRD4ZhsvV6vQcOY0thEUMmjlqzcwuSxNrT3eKOiK8ZobqJSEeZ4lAqmy6m8ZVoMWU1B\nefE7ct+S2RmdE8hdKYNsIGUAKgnUiLFZoh46/n6VmPUCIYJ4EYVkeVVVZ41flyeQUEw9lyQ7i9Kk\nnmWiAhxSK/qFENxTs3hgMeph0LMJk2COy039Nr48BqtJLZas1GJAlS2alysXPpgr9CxkBUaycYfS\nfTZcHj/kKhWoubX82MN/F/iw6zGVJnT0+eDxhWAu0uHGyydI7l9dbha83zPqRwBI9LKnwjt/O5Zg\nTKlRmB1daY1Fs4hVkTv73JILhcEwh3a7G+12N4KhMI6fSfQ+BsMcfvGHgzAadJIlWQqlpKkUGSCH\nXqsBx0Vkn5lsUIAo+bwx4A6io8+tel5TaMjIO8/JVNaeLySdb0+IHKnkGsWjYxlwHAdx+HW3w4uH\nls3ET361V3I/NUnWR884E/4Wx3l39fkExkS/O6Aoey2nGin+XWrCvv53zQIP7LTx5YJtlDxqYpTq\nFaaL1DHbTvUjILE6mw3jKNk7IP59/W8PYMU1mQkIFcqDqAa5mn5Kk6xSqwEl5qiH2OsPxp6v4x1O\nFJvkhTm8/gBsFr2ssV5ZZsL63zXj4LGeghSLlkOpJWaTch5NPmEYqKphCQAX1NoEC3Y86XqYZk4c\nkbSWnU5G8l4OYbmW/IkfaJjBO3HNZLJebNbFxh5xnvaR087YOxdw+fH2n9ug07IJY71UfrbdkXrk\nTDwHj6Ve5F7HMtEIl7OPE8tqUD+6JNbOn209IBmSHI9SXmPLcUeCp5unEPXsAKDKZsToSiu6HV44\nnD44VIw70+tHSCqpDmUy8aSns+/Tb+7Hs3dfluYZ8wsZeec5mXq+UpVwzyUuTwBeXwAsE40ZLzHr\nsWDeeFjOSn2Kc40AYS4UnyMk9iJNGGlDqcUgGQKiZngQfwAkhRkYRrZemxTxqpFSBmx8LTzxpF0c\nIpcYXifvUROTzf4Xt/P7i6bHJqcrl87A02/uh9PtB8MwqCw1xcJrpPZNxdhM9g6I/+7slSuurZ7B\n9N6IUVPTD4g+Y8VmHapKzYL7fc/zfxNs51SoZegLcvAFhQYeLxagYRgcPTOQE4Mpl5OCdIVXcgHH\nAff+9B9oumVW0jD6265rAPduS8JE11LEKkrdy90PLZs8rMkXjCiGFJoMUfGc+N/5umZyRmkuyIej\nptikSypIkm2c7iAsRj1cngCajwoNK/GiSusXjtj3U7AYdnYze78P3kBYlfGQbOFA/J2OR67uXzDM\n4e0/t+FEpyvWhuMdTrS190dzxJzJw46V1pEiCm+9QcsUpOyAyx+Kjb1r3/g4qZFXbNahs88NXxKv\nKMsAk8eVou2UI6s5hrkikxaWKCwyyqFUn3ewQUbeeU6uwsYymXSny6YdrYLCug5XIBbWyOcabXi3\n5WyYT6IKICDvYeGNDPEHbFJt8vBUg16o8ic1IFmMOtlaVfGIBTr4/zYf7RGcI74WnnjSLg6Rk+vz\nfHublDxq1aVmxZWzTDzSyd4B8e9VZcIyDsMNNTX9GhsqFe6v0MOiAYNw3FOfTDmPFwsIc1zOPGLJ\nJgUajXxuWNIJRaGW9WXgAKx9fR9eXqmseGwxRpVp4ye6Gk1yo3WErQjdjsQJ9Gm7O6k6ICB/u4qN\nLNbdOy8hJcDjD2PDuy0IhQaPMZ0pOpbBw8tn4fHXdmfdWNCxDEIRTvI+8/+0aUerCiVa4XstJdSl\nlinjStFywpEwDmg0Z1VxZZ45hgEm1pTKeojjDVGePqc/qeE5UkbpNR5zkRYuCTl9AJg8rgwHj/Xm\nPdpgwB3EhndboNOyqkRuBtxBVWPqw8tn4d3/PYHgIKmXxzCASa+B259ibKoKqkuL0O8OpDRs82Jy\nQwEy8s5zFswdj7b2/ljhal7QQy1yha8zDQNNBylvQ/y/8XmESsh5WHgjQy7HbcOv9+BUpzPBoP20\nrVt2lYhloiElZqMOdy2YirVvSKt4CuEEx+fbK1bw5GvhbdrRigOi1W6LUYv6mpKkxlu+vU2ZeJUz\n2TeZMSv+/c6F0+H3DJ9QFzFSRq/accLlCUArqiE0qbYYFpMhFs7lC4QGlbcrHoaJqhVGOE4xXFoO\nk4FFqVWPdnvi88fflUJMm9ROPsXh55HIWSU9BewSBh4AtNvdqC41pm2oD3jDuP2pv0hOvtIpFzCY\nGTnChOpSM0xGPfxZDqNT0/dy46XNrIPNWoQKmxGhUERgbMsJdalhyZWT8Js/H0nwxEYigI7VwAvp\nd0+rYdAzoHS+9EJ4q8vMikYeywBumVqSRj2Lb19ejx/9Ylda585UtOfwSUfWS8Ws2bR3UL1feq0m\nI48iy8h7aT8/NYASU2pqoGrF5AYDZOSd57yz81hslSvg8sc8X2qJVz3k5f2fvfuyrAqgqEVJMTJb\niA0flyeA/3ptV2wic7zDieajPZhWV47lV03Cuq2fyh6r2HIuj+m9D0+q+hh7/OG4nJRziK/dZtHL\nlo2oLjdnZLwl89Kq8eJKbZOJVzmTfZMZs+Lfi816dA9jI0/K6N20vVXVOLFpR2tCyJlBr5UM/zUZ\ntKrEFPIJxwEDMpLwatCyDPolw7oLY9zxqC3ey6XRSqU95EovqD62zMEH0wQ0G1SVmuHyBAoSBuby\nBuTVnOMiQm78+gRotZqExbCiJMXYpXjnb8dw23UN2C9R51CqLlnstzAHhzNxMq7RAFPHlUGr0SiG\n8FqMLLy+cMLzc6DNrmhsKT1voXAEv/ngSPrh3xnWsQso3K90GWzvl/9sWHe6KF1PmANGlMgbeeIw\n6hn15UNGdAUgI2/IkKvwRyVjTM05xR8l/u9CqAfyZR3iwzF5T1umRonctqFwJGGl2hsIxyazcmOL\njmViYSTHO5wwGdS/imoEUELhSIKBF18TKBNSFSoR/y63TSbhofH72ix6hMIRPPHLPSm/K7l6zwoR\nvpxue6SMXvEzt+dQFz5e8xdwiD7L99wwDf840JngNQbOKaCKiyYX2sBLR5kuGZkaiLmQYQeACaOs\nqrZT8qKkg9LV3HbtRPz6T20FUyYcLNjOip9s2t6akwl7MnhF4f2fdycsNDpcAThcAcVonCOnUy9Z\n0u3wxsoRiCfXTJLZvEvCEI5EgM+O92HymBIUm7Sy72FthQUtJ/sT98/gEQyGOVUCbHJkcm6rSYdQ\nODJoIyOySS6j4I+dkU6VYTUMRpUbAXBwekPQMNFUA7ViVoMBMvIGOS5PAD/bul9QwDWb4Y9Kxpia\nybq5SCdQPeRjlQuhHigXjhnvQUjXKAGioamPvLYrNjE83uGEQaFmSrfDK7s6mOi1E/5dbNZhwqgS\nyVp3agRQnvjlnoRtptePyMozk6pQCf93vGHR1Ze4jZJHLZmRFL9vsv5WQtL4jCuxkG4JhUKELwPy\n902uPXLbS630809sMMxh3ZZPZSf0/POqJuc012iYaLu1msSyKIVGx2oSajIB0ZX+GfXJlSqVUBPq\n1NHjhjOPwh/7WntRbNLLCFqdP9isRbAY9QmLINlCqgRQPPzY+/h/XIxVr+6W3TZ+XI9P05Dbvtis\nQ93IYnx2rCdBmZQfE4otOoGRZzSwSQV15IyicIQT5ORL0ZpGcXY1pOMB58lksWnCqGIASKhXrIZc\n1QIFoCoXV4pctkkJOdXUcIQT5DqGOQ6fHu2VjKYarJCRN8iQ8hTFG3g82Qp/VDLG1IRc8oIk8XXR\nAPX5XPnwcCQr7q3mOl2eAFZt2J0wGPuD8qNze7cLtVUmnOxMrsY4qdYmKU/t8gSw4b0W+L8IId47\nmQzxpLzUasiaoZ2qUAn/u1KCfjJPbypGUrZz+7JRQqEQ4cuA/H0Tn3/v4S509Lnxzt+OSW6/YO54\nHP6iT/bDLfWJZDUMLppQjlEjDFix5i9ZuqL0iVf0G2wGHgDZcCSOU6dUqYSaSIqnN+9Pa4KlVAJD\nyTuZzsR0ONLe7UJHnxvODLzAcpgMLP7r1i9Jiobx8M9GdakZz95zWSznXLy4eKLTiQde/Gf0m79Z\n/nhA9HvD10gVh2mXWg1YMHc81v+uOSGfkwEDDpyiNy4TlBQy5dBpNYohpPw26XjTis06BIORtHPq\nTnUO4NEVl2DT9tYE9XAlg6nUYkCYS4xCyhbpHrdQo7JSzp4U+fp+ZwMy8gYRLk9AkEelFMaXrfBH\nJWNMarIuZZSJVQ9TMdzy4eFIVtxbTWjpph2tKU8Mg2EOp7rlDTybRQ+bxaB4j8S1i7SsRpURLBbK\nWLlkRtZCFlMVKon/Ox6TgUVlqUmVp1e878FjPbLhmJmECseXnuD/zkYJhUzalM3yEPx96xdNysNc\ntPZPiVl4XH7/33xwRPHDLTWhCEc47Pvcjn2fq2pqzslWVKBBx8CfA1nxupFWWU9EquqF8cTqhyUh\n3XywcdVWHD7ZB29AOBE2GbSwmXU43Tt0JkSFIBjmsPb1vbDmwKvp9Yfh9gVhNWoTjDJ+ESZ+7I2f\nD3T0uvH0W+eMOY6L1inkF3Xl0GkgmBOIx6ASsx7v7Dwm+Ux7/CHsb+tJKX0hFZQUMuUIqQihLTHp\n0zJsLqgtTasmII/dGYz1mVgU7spLamTr+/a5/Jg2zoaDbkdBc4UHA40NlQnq5MnIR/pRtiAjbxCx\naUerxOqY9CuYj/BHOQGGdPKtcuF1UUuy4t5qQkvTbZecDDsA1Iww4fuLZynun+79yURQR9x/baf6\n8fjtjYo5W/HI/Z4Y8seoNlrE+3r8YRzvcEo+X+mGCrs8ARw/IwznYRgmKyUUMglfTuV9EhuEpRYD\njiPxvknh9gZRP7pE0hhVyjlhAGiALGZyZY9SqwEDLn9WhQRyYeBFawPmprh3MMypev9NBlYwPmo0\nALjkxnFPvw/T6kYkTNr1Og3KiovIyFOBwx1EdZn0xNGg0yhGjCjBl8+QGl/5XEj+N6koIilvHb9w\nGJAxSHU64bRSaoEr2XcsV/m6XhmFTCXUvO0ubyitnNrTdudZL336o+dzm/fi4HGhsXa8w4nDX/Qp\n7ufyhWGzGoZVUfR0WDBvPA4e61W9PcvkZ/6dLcjIyzMuTwA/f+eTWJyvjmXw0LKZmDDSJjnwTaq1\nweXxx0I2GQD3L74wL0mfagQYkpUtABLDI+PJh0BLsuLeakJLZdXHksAAKNJrEla5AeDoGfnj8R/c\nrj6h10jt/clmyGKfy5+VGHR+YOTDSjz+kMCjqmZfPp8vfhIgV8w9VTbtaE0oJtvn9OP7i6bHzpNu\nCQWpNqn10KXSl2KDsKG2OGlODo/ZqFMwRpXr2g1GAw8A/IFQ1pXicpE3MmqEGUdP5yZfCEj+/rs8\nAYRCwgmw0gKVYF9fKCZ6FV/awOEKDLqagYOZNhkBk3QNPJ5gmIPFqJX0EsYv3ojHDlYjvejAp2Ws\neX2vpPfqgjHC2rFXNtbERF10LIMrL6nBjl2n0vqeZkquorT7XH5o01ij6erzZRw6Luf9H3AHFcMQ\nK2xGRDhpQ/58YtWru1FbaVGcj8XDMMjL/DtbkJGXZzbtaBUkckZDNaKFT5ky/wAAGoRJREFUasWG\nRLFZB4ZhEIowaGyoLLgiH6DOKEsWHhlPPgValM7F577FlDlrbbjtunOF0vlt/3W4K6Wwr6njS9He\n7YE3IDWQMrFziyf74vw1cRH0ZGSzHAGQHQ+rXE0/NceWE1bh25uN3E6pdtgs+oS6iGpLKCRrk1oP\nXSp9KRZvSFYgl2WiddBKzPpYSG+8AMtzWw6gwmZE3chiNB9XXhkejIgLI2cDs5FNq4aeEqVWfUaT\nLbNBuVCwmpxXlz+9yabL48f3fvoPyd/cGdz/QokwFIpcKasyAMpLivBFd6Kwiz8QiikFisc/seop\nwwA2y7lcuwtqSxO8t0Y9i9uubRCMfe3drpghEwxz+Pm2g3h8RSPaTvUPK9GddEzxXOcGh7mohz4S\n4aBlAY8/mpVYYtbjyotr8IJCiaehhsnApjXeB8OcagMPAAoggJsRg8bIe/LJJ3HgwAEwDIOmpiZc\ndNFFhW5STpCaSPIvupQMPq+olk9FPiXEbbyysQb3vfB3OD1BaBgGU8aV4qYrJgKQD4+MJxWvS6YT\neaVziXPf9rXZoY3zXvH7PrZxF052nvtYxos5iDEaWPznv0/F02/uk/yY1Y2y4mdbD+CTIz2xYxzv\ncEqGyVSWGlPq+0zLEYg/wNn0sGbqvU03jDjVdpVaDQiFI7Hn4niHE8FQGKvv/ErSY0nl1/JtkitS\nL34/+O06etwotRpgNWlRVWqOXb/LE8Av/tCMlhOOqKFm0qcsLMDPMcaPLBbU/hEboLUjilI67nCm\nvMQIlzdRDCsTmo/1QcZxogolA0+N6FImizhBhXlVJIMaFeeTgZdLGMiXJQhziEVpSC3usQxQW2WV\n/N5KPTOBYAQPv/QR9FqNbN0xtzeaR3bXgqn4ySbpnLGhyGCtBBIzfOKcrg5XAD99ez9cviFmschg\nM+vRn0Ix80xQW3N0sDAojLzdu3fjxIkT2LJlC44cOYKmpiZs2bKl0M1SjWRhZ5ltpQZS7dmHJpkM\nvlLYY74Qr/SveX1vbKLIy8t6//sgjpx2JXyk7f0evPDbT9Dn9Ksy0qRyBJSM3t0Hz+Cl/26J/V03\n2or7bpgOcNFJ68kz/ejq94ND9OM1aYwNXn8YliIWn51IDHloPtaTUA+l3GoUGHlKA3uFzYBVG6QL\nkht0Gpzqckt+CD9p68GE0cK6Vic7nbjn+Z0xDyN/Td0OL4p0DD4/NRDrh8ljbVh+1QXw+gKxvLU9\nh7qgZRn84GxosBIWox6LLq/DS384dy97nF7BvZAzuI+ccmDNG3sFbbnz+mmx/T5t6xas/jIM0Hy0\nB89t3gedjk36bIgNG4fTD5cvmDSkMVm7AGnj8eGXPhQc59MjPRiI6zOpEidAVNRAvBK+51AXmp/7\nGww6VrLfO3vdgvd74x8PCWTzx1Vbz4ki9LixaoNQ7tzhDiDdz0/zkejYwl/7iTPCWlJf2H0ye55/\nnOhQNvDGqFTUFZOrSaI/kDwPSSw4lC0GoYjpsELDAFPGluLwyT7IRXVGAMXyGx09bnT0uCVzuCIc\nEA5H0Nbej2c274stMlmMeliK2ITtwxwHjz8EpUCHQCiCPYfP4K0dbckuj8ghw8XAAyC7oJALDHoW\nHX3uIVMQnX3sscceK3Qjtm7diunTp2Pq1KkoKyvDa6+9huuvvx56vfSHx+PJX4eq4bV3W7DnUBcc\nrgBO292w9/swb3atZDsnj7Xhj7tOCv6tSM/g2ksT1c8+O96H0/ZzBkU4wsWO39hQmf0LSQH+mqW+\n4b1O6f4JhDh09HoE90npOsT3dcAdQDBuZViv1WDejNGxvx/ZIDSK+5wB2Pt9+ORID/Yc6hKEDnEA\n7P0+OFwBdDl8ktcRCnMJbdz1WQc6VAoJ9LuD8MkoNoUjHHwyS+AcgJ4Bf8K/BcMRdPR6BNfkcAVg\nH/AL2m/v92Fvqx0nu4ThOREO+Ki5A9+8LLnS3qOvSd9L/l5IPfONDZX44csfCsIZ7P0+wX5Nv9iV\ncK5QmEOXw6fq2Xjt3Rbsb+uJXa8vGMbeVjtqKy2Cd2VijU2wf7J2AYBex6KxoRLzZoxGY0Ml9DoW\n7310UvDMcQC6ej2YOXFErD3NxxInR3KpSKGwfL+HwsL3e9P2w4JzD7gDuPbSsQCAVRv3wC0hIpCu\ndkeEA07b3bH7n0mY3flOf45kydMlKDGOidnd0oWONFRjidyj9EpzALocvowWCFhWg/9t7khQ3OUZ\n8ES/Y/3uoGB8+s1fj8h+35Lx8SE7/EMt7o0gEF2k2Ntqx1UXjyl0U2KYzQbZ3waFJ89ut2Pq1Kmx\nv8vKytDd3Q2LxSK5fWmpCVpt4ipSoRCvIvB/V1RYE7atQKJaVjjCSG5735LZWP/bA9jzWYdge4c7\nILl9PsnGykmy6xCfQyOKZ6qpsia9D5m2U9zGwTD5VXNNHp/0RDMU5lQ9O1Jzhvh7IfXMV1RYJfNK\n4vdTOxeRezakrt3jC8belc5eD6rKTLhz4XQUx5UDSNYuOS6sH4FdBzsE/9bZ65G9D9mAb5f4eddo\nzo0Tcv1rs+gRCEXgTlEmfDChFAJNpEeyZ92VhuogkV1GlptwpifR0NZnoK6phlKrAe3d6sOP+WfJ\nm6ECpoZhZItQE0Q+0WpSy7Xz+IIFn4OrZVAYeWK4JC9+X9/gWnG0iWpL8X93d0snc5oMOviD5zw1\npiKd7LYrrmmAP06FkD++3Pb5QnzN8ahNmE92HeJz1I8uFhQM//ZX65LeB6V2qkHcxkyPJ6bYrEMg\nEIJPJMuudA/VtEH8jPFoWUbVsyN1/vh7IfXMd3c7oZVQcozfL9NnQ+raTUU6+D1+QYFyv8cvEEdJ\n1i45ls6vR+uJPkF+YlWZSfY+xKNYjFZB2p9vV/3oYkGeaP3o4th5pfrXZtFj5ZKZgoLmahG3NV+i\nF1LnKTbpElROs42OZWAs0uasGPBgI9WxVi0mAwNPmoItxDl4L6uUkWcq0iEQ9Cu+j1LvkcmglSxF\nwIqMq/LiIvQN+CW/F1Lwz5LcN0Ytk8fYhqSYUzaZNs6Gk11uDHiyPw4lU1W2GFOvGThcsZoNcHkC\nqoVwlObshUDJ4BwU4ZoHDx4EwzCYNu2set769bj99tuHTLjm5LE22Pt90Gs1mFhjw/KrJqG0xCTb\nzukTy7G31Y5IhENxnKpdKsfX6wrryYxv07hqK0aWm1GkZzGxxoZF8+vwUbNwkqnRAA21JaittMa2\nS3Yd4uu+9ZoGXHbhSEE4XTyjKorw8aFzuQcTRlvxn/8+FdPry2Hv9yEcDMWSkFkGaBhrg8WoQ80I\nE3yBUGy1VMMARQYWF9aV45ZrLhCcZ/JYG77oHEBPvw9ggGKTFmMqzQkhqgyA266diBMdbsmQlqoy\nI6aMLcP9356OBXPr8fXZowXXumh+HT5u6Y55NIp0Guh1LKbVleGWay6IXZNeq0F1aRH6nOcmAZPH\n2nDnt6ahs8eNLse5XCo+J6/MmlxEY0KNBR/G9eGk2mLc8c0psXsh90xOqSvF/35yRtCW278xObbf\nhBqL4Nkw6DQw6FhcMKYEoyssSZ8N8f23WfR4aOnMpDmqydolh17H4rILqwXX+t1FMxE+G3I5eawN\nn3/Rm9D/FqMWK5fOgNMdgMPpQzgifK7u//Z0fGX6SOxttSMUCoPVMBhZbkbDmNLYtU8dX5bw/PPt\nFY8hj972JSycVw+LUR/rG5YBwEQ9gHpt9B4Xm7QJbWU1wH2LLkQoBMHzt/vguXDsiTXFGFVuwoDb\nDz6ClL+ehjE2lFn1sA9ILyqUWAy461tTcOhEPwJn3wUdq0GJRY87vzUFB4/1IRCKgNUwmDa+DN9Z\nMA0D7mDC2FJdWiQIYzYXsRhXZZEND6+tMGFMlQUubxAMOGg0DFhWgxKzHj+6ZTa+clH0/ovfTxbK\nBu6k2mJ8Z8FUNB/tlXy371wwGS53QPJ+1Faa8d0bLkTz0V6EQuEEj6Welc9jUwrbqxtlAcuF4AkI\ndy6z6jGtrlzVWPtF5wC6HYm5l3WjLHB7AgntKjbr0HTzlzBpTLFg3I1nbLUZXm9Q8poMuqgcv5SX\niu87h9Mnez8MWiAdXRele5wJ40daEAqFEAhJH3xiTTHGVlmjwg1x72X8mH7stEPw3FhNOvxg2UxM\nn1iW8E0FomqWF9aV46YrJwje18ljbfjhslmYPL4kYRz//uIZsfeLH2sbp1QmvAv8N9KoZ8GyGlSW\nFmFS7bnxafrEcnzYfFpSeIcfL7oknicg+o5cfclY2Pt9QCQCp8jYsBi1AtE2Hg0D1NcUw+cPgQGX\n0I8sy+D+RReir98n+f6xLCMbSn/dpaNwpscj2X+Tx9rwf6+fgn2tXQm/83Ob6jITevt9kiqb4ndX\nr9Xgognl+I9vTsHls2skvyEGnQaTx9pQWWrEgNsPjmOg1zGwmvSxvlgcN0+In9NMrLHh5msviI0z\n8des0QDTxpfhrm9Fx1mp+w9E1SrljJ5yq1ayLBR/r268fLzsmHDFl6pwqtOd0Hd6LWA16WEza+EP\nRhLGxrpRFlgMGgx4JBYuWAa3XjMRn7b1yo7d08aa0NWfaEzzc4iLp1QK5ghWkw7VZUaMH1kMm1kX\n1VZIYc6RT5TCNRkumdssD+zduxcvvPACNm7ciIMHD+LHP/4x3nrrLdntB5MFLUdFhXVItJPIDtTf\n5w/U1+cP1NfnD9TX5w/U1+cP50NfK3nyBkW45qxZszB16lQsXrwYDMNg1apVhW4SQRAEQRAEQRDE\nkGRQGHkA8OCDDxa6CQRBEARBEARBEEMeTaEbQBAEQRAEQRAEQWQPMvIIgiAIgiAIgiCGEWTkEQRB\nEARBEARBDCPIyCMIgiAIgiAIghhGkJFHEARBEARBEAQxjCAjjyAIgiAIgiAIYhhBRh5BEARBEARB\nEMQwguE4jit0IwiCIAiCIAiCIIjsQJ48giAIgiAIgiCIYQQZeQRBEARBEARBEMMIMvIIgiAIgiAI\ngiCGEWTkEQRBEARBEARBDCPIyCMIgiAIgiAIghhGkJFHEARBEARBEAQxjCAjL01aW1sxf/58vP76\n67LbPPvss1i+fDkAwO1245577sHy5cuxePFi/P3vf89XU4kMSbWvI5EIHnnkESxevBjLly/HkSNH\n8tVUIgso9ffll1+OJUuWYPny5Vi+fDk6OzsBAE8++SQWLVqExYsX45NPPsl3k4k0Saev1YwHxOAj\nnb5eu3YtFi1ahIULF2LHjh35bjKRJqn2tdfrxb333otly5bhxhtvxAcffFCAVhPpkM57DQA+nw/z\n58/Htm3b8tncvKMtdAOGIh6PB6tXr8all14qu01bWxv27NkDnU4HAHjnnXcwfvx4PPDAA+js7MQt\nt9yCP/3pT/lqMpEm6fT1n//8ZzidTmzevBknT57ET37yE7z88sv5ajKRAWr6+5VXXoHZbI79vXv3\nbpw4cQJbtmzBkSNH0NTUhC1btuSjuUQGpNPXavYhBh/p9PVHH32Ezz//HFu2bEFfXx8WLFiAK6+8\nMh/NJTIgnb5+7733MG3aNNxxxx1ob2/HihUr8LWvfS0fzSUyIJ2+5lm/fj1KSkpy2bxBAXny0kCv\n1+OVV15BZWWl7DZr1qzB/fffH/u7tLQUDocDADAwMIDS0tKct5PInHT6+vjx47jooosAAGPGjMHp\n06cRDodz3lYic9T0t5gPP/wQ8+fPBwBMmDAB/f39cLlcuWoikSXS6et09iEKTzr91tjYiJ/+9KcA\ngOLiYni9XhrHhwDp9PW1116LO+64AwBw5swZVFVV5ap5RBZJdzw+cuQI2tra8NWvfjU3DRtEkJGX\nBlqtFkVFRbK/b9u2DRdffDFGjx4d+7frrrsOp0+fxhVXXIFly5bhBz/4QT6aSmRIOn09adIk/OMf\n/0A4HMbRo0fxxRdfoK+vLx/NJTIkWX8DwKpVq3DTTTfhmWeeAcdxsNvtgkWbsrIydHd357qpRIak\n09dq9iEGH+n0NcuyMJlMAICtW7di7ty5YFk2H80lMiCdvuZZvHgxHnzwQTQ1NeW6mUQWSLevn3rq\nKTz88MP5aGLBoXDNLONwOLBt2zZs3LhREP/7+9//HqNGjcJrr72GQ4cOoampadjHAg935Pp63rx5\n2Lt3L5YuXYoLLrgAdXV1gg8JMXT53ve+hzlz5qCkpAR33303tm/fnrAN9fXwQKqvr7766kI3i8gB\nSn39P//zP9i6dSs2bNhQ4FYS2UCprzdv3oyWlhasXLkSf/jDH8AwTIFbS2SCVF/7fD7MmDEDtbW1\nhW5eXiAjL8t89NFH6O3txdKlSxEIBHDy5Ek8+eST8Pv9+MpXvgIAaGhoQFdXF8LhMK0MDmHk+rqp\nqUkQvjl//nyUl5cXsKVEtrj++utj/z937ly0traisrISdrs99u9dXV2oqKgoRPOILCLV12TkDU/k\n+vrvf/87XnrpJbz66quwWq0FbCGRLaT6uqamBuXl5Rg5ciQmT56McDiM3t5e+m4PcaT6mo+u+utf\n/4qOjg7o9XpUV1fjy1/+cgFbmjsoXDPLXH311Xjvvffw9ttv48UXX8TUqVPR1NSEsWPH4sCBAwCA\n9vZ2mM1mMvCGOHJ9fejQIfzwhz8EAOzcuRNTpkyBRkOv2lDH6XTi9ttvRyAQAADs2bMHEydOxGWX\nXRbz6B08eBCVlZWwWCyFbCqRIXJ9TQw/5Pra6XRi7dq1ePnll2Gz2QrcSiIbyPX1xx9/HPPU2u12\neDwe0k0Y4sj19bp16/Db3/4Wb7/9Nm688Ubcddddw9bAA8iTlxbNzc146qmn0N7eDq1Wi+3bt+Py\nyy9HTU0NrrjiCsl9Fi1ahKamJixbtgyhUAiPPfZYfhtNpEU6fT1p0iRwHIcbbrgBBoMBzzzzTJ5b\nTaRLsv6eO3cuFi1aBIPBgClTpuDqq68GwzCYOnUqFi9eDIZhsGrVqkJfBqGCdPpaap8XXniBjIBB\nTjp9/fbbb6Ovrw/33Xdf7DhPPfUURo0aVcArIZKRTl/7/X786Ec/wpIlS+Dz+fDoo4/SwuwQIJ2+\nPt9gOEogIQiCIAiCIAiCGDbQUgVBEARBEARBEMQwgow8giAIgiAIgiCIYQQZeQRBEARBEARBEMMI\nMvIIgiAIgiAIgiCGEWTkEQRBEARBEARBFIDW1lbMnz8fr7/+uuJ2mzdvxsKFC7F48eJY6SYlyMgj\nCIIghh2///3v0d3dje9973s5O0dbWxsOHjyYs+MTBEEQwxuPx4PVq1fj0ksvVdyup6cHGzZswJtv\nvolf/epX2LhxI3w+n+I+ZOQRBEEQw4pwOIyf//znqKiowM9+9rOcnef999/HZ599lrPjEwRBEMMb\nvV6PV155BZWVlbF/a2trw80334xbbrkFd911FwYGBtDe3o66ujoYDAYYDAY0NDTgwIEDisemYugE\nQRDEsKKpqQnt7e1YsWIF2trasHPnTjz88MMoLS3FkSNH0NbWhgceeAB/+ctf0NrailmzZuHxxx8H\nADz33HPYu3cvfD4fGhsb8dBDD6GrqwsPPvggAMDn82HRokWYMGECXn/9dVgsFhQVFWHKlClYtWoV\nWJaFy+XCfffdhzlz5uCFF15Ad3c37HY7Dh06hDvuuAMtLS1obm5GZWUl1q9fj927d2PdunUYNWoU\n2tvbYbVa8fzzz8NisRTyNhIEQRA5RqvVQqsVmmOrV6/GE088gXHjxuGNN97AG2+8gZtuugmtra3o\n7e2FwWDAvn37cPHFFysfO5cNJwiCIIh8893vfhcffvghnnjiCSxZsiT273a7Hb/4xS+wbds2PPHE\nE3j//feh1+tx8cUX44EHHsA///lPdHZ2xvIi7r77bnzwwQc4efIk6urq8Pjjj8Pv9+M3v/kNZs6c\niTlz5mD27Nn45je/iV27duHee+9FY2Mj9u3bh9WrV2POnDkAgKNHj2LTpk3YvXs3VqxYgT/+8Y+o\nra3F17/+dRw6dAgAcPDgQaxbtw5VVVVYuXIltm3bhptvvjn/N48gCIIoKJ988gkeeeQRAEAgEMCF\nF14Im82GlStX4q677kJFRQXq6+vBcZziccjIIwiCIM4LZs2aBQCorq5GXV0diouLAQA2mw1OpxO7\ndu3C/v37sXz5cgCA0+nEqVOnMGfOHLz55pt4+OGHMW/ePCxatCjh2BUVFVi7di2ef/55BINBOByO\n2G8zZswAwzCorq5GeXk5xowZAwCoqqqC0+kEANTX16OqqirWzpaWltzdCIIgCGLQYjQa8etf/xoM\nwwj+/ZprrsE111wDAPj+97+P0aNHKx6HjDyCIAjivCA+JEYcHsNxHPR6Pb797W/j9ttvT9j33Xff\nxZ49e/CnP/0Jv/rVr7B582bB76tXr8Z1112HG264Aa2trfjOd74T+41lWcXzxv+X/3/xx50gCII4\nP2hoaMDOnTsxb948vPvuuygrK0NjYyNuu+02vPrqqxgYGEBLSwumTZumeBwy8giCIIhhhUajQSgU\nSnm/2bNnY+PGjbjlllug1Wrx4osv4hvf+AY+/fRTjB49Gl/+8pdxySWX4PLLL0coFALDMAgGgwCi\noaATJ04EALz33nsIBAIpnfvo0aPo6upCZWUl/vWvf2H27Nkpt58gCIIYWjQ3N+Opp55Ce3s7tFot\ntm/fjvvuuw/PPvssXnnlFRgMBjz77LPQarW4+uqrsWjRIjAMg0cffTRh0VAMGXkEQRDEsKKyshIj\nRozAwoULEYlEVO935ZVXYv/+/Vi8eDFYlsWUKVNQW1sLr9eLVatWQa/Xg+M43HHHHdBqtfi3f/s3\nrF27FhzHYcWKFXjooYdQU1ODW2+9Fe+//z7WrFkDs9ms6tz19fV47rnncOLECZSUlOD6669P9/IJ\ngiCIIcK0adOwadOmhH9/8803E/5t6dKlWLp0qepjM1yyrD2CIAiCIHLGrl27sG7dOrz11luFbgpB\nEAQxTKA6eQRBEARBEARBEMMI8uQRBEEQBEEQBEEMI8iTRxAEQRAEQRAEMYwgI48gCIIgCIIgCGIY\nQUYeQRAEQRAEQRDEMIKMPIIgCIIgCIIgiGEEGXkEQRAEQRAEQRDDCDLyCIIgCIIgCIIghhH/H5Dp\nQGsnugqiAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "w8t3iSAmok4e",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "**bold text**## event counts / time"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "2SxFUNRVoslM",
+ "colab_type": "code",
+ "outputId": "096e5069-9b29-43d2-e5de-95b331ee70bc",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 351
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "sample.plot(x='timestamp',y='event_id', figsize=(15,5))"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 212
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3wAAAE9CAYAAABQj2DCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XtglOWZ9/HvzOR8niSTEAhiCIdw\nCohy0HAuEQVFRRGVKFVsq4ZWa5Zis+5CXRbKKthqfVfU2KK2NZYGkVUBbcGKBBQjESMBOcUQIJmQ\n4+Q0x/cPtqlZCwEhmSTz+/xF7nlm5npyZYBf7vt5boPH4/EgIiIiIiIiPY7R2wWIiIiIiIhIx1Dg\nExERERER6aEU+ERERERERHooBT4REREREZEeSoFPRERERESkh1LgExERERER6aH8vF3AxbJa671d\nQrvM5hCqqxu9XYZ0AvXad6jXvkX99h3qte9Qr32HL/TaYgk/62Oa4esEfn4mb5cgnUS99h3qtW9R\nv32Heu071Gvf4eu9bneGr6GhgSVLllBbW4vD4SAzMxO73c4LL7yAv78/0dHRPPnkkwQGBvLSSy+x\nefNmDAYDixYtYvLkydTX15OVlUV9fT0hISGsXr2aqKgodu7cyZo1azCZTEyaNInMzEwAVqxYQWFh\nIQaDgezsbFJTUzv8myAiIiIiItITtRv4NmzYQFJSEllZWZSXl7NgwQLi4+N56aWXCA8P5+c//zlb\nt25l1KhRvPPOO7z++uvYbDbuuusuJkyYwLp16xg7diz3338/ubm5vPjiiyxevJjly5eTk5NDfHw8\nGRkZzJgxg6qqKkpKSsjNzeXw4cNkZ2eTm5vbGd8HERERERGRHqfdJZ1ms5mamhoA6urqMJvNrFu3\njvDwcJxOJ1arlfj4eHbv3s3EiRMJCAggOjqaPn36cOjQIfLz80lPTwdg6tSp5OfnU1paSmRkJAkJ\nCRiNRiZPnkx+fj75+flMnz4dgOTkZGpra7HZbB14+iIiIiIiIj1XuzN8s2bNIi8vj/T0dOrq6li7\ndi0AeXl5PPPMM0ybNo2xY8dSUFBAdHR06/Oio6OxWq1UVla2jsfExFBRUYHVav3WsaWlpVRXVzNs\n2LBvvUZYWNhZ6zObQ7rFutxzXUgpPYt67TvUa9+ifvsO9dp3qNe+w5d73W7g27hxI7179yYnJ4fi\n4mKys7PJy8tjzpw5zJ49myVLlrBp06ZvPc/j8ZzX2Lmcz/Hd4Y47Fkt4t7ibqFw89dp3qNe+Rf32\nHeq171CvfYcv9Pqi7tJZUFDAhAkTAEhJSeH48eNs374dAD8/P773ve/x6aefEhcXR2VlZevzysvL\niYuLIy4uDqvV+q2xsx37zfGKigosFsuFna2IiIiIiIgA5xH4+vXrR2FhIQBlZWWEh4ezdOlSysvL\nAfj8889JSkpi/PjxbN++HbvdTnl5ORUVFQwYMIC0tDQ2b94MwNatW5k4cSKJiYnYbDaOHz+O0+lk\n27ZtpKWlkZaWxpYtWwAoKioiLi7unMs5RURERERE5OzaXdI5b948srOzycjIwOl0snz5cux2O5mZ\nmQQEBBAbG8vDDz9McHAwt99+OxkZGRgMBpYtW4bRaOTuu+9m8eLF3HXXXURERPDkk08CsGzZMrKy\nsgCYOXMmSUlJJCUlMWzYMO644w4MBgNLly7t2LMXERERERHpwQyeC72wrovpDutxL8W64VOnTlFV\nVcnQocP/6eOnT1eSk7OWn/3sX9uM/+Y3v6J//2Rmzrzxot5fzo8vrBGXM9Rr36J++w712neo177D\nF3p9UdfwSddQUPAJ+/cXnfXxmJjYb4U9ERERERG5NPK/OMXJ0w3eLuOCtbukUy6cy+Xiv/7rPzlx\nogyn08mNN85i8+atPPPM8wC8/PILhIdHcNVVY3n66f/CYDAQEhJCdvYybLZ6/vM/l9G7dx8OHfqK\nQYMG86MfLeLll1/Az8+P+PheTJgw+VvvefLkCR5/fAk5Oa+yZcs7/P7367BY4gkMDKR//+TO/haI\niIiIiPQYf9p2iHd3f8200X3IuHawt8u5ID0+8L3x10N8UlxxSV9zTEoct08bcNbH33tvMzExsfz8\n5/9OTU0Njz76EM3NLdTX1xMeHs6OHX9j1ao1LF++lMWLs+nb9zLy8v5EXt4bXHvt9Rw4sJ9f/GIF\nZnM0t9wyk8zMR7j++huIior6p2HvmzweD2vXPkdOzquEh0ewcGHGJT13ERERERFfcOh4LdaaJmzN\nDt7d/TUAIwfEermqC9fjA583fPHF5xQWfsbnn+8FoKWlhfHjr2H37p0MHz6SwMAALJY4vvyyiFWr\nlgPgcDgYMmQoAH369CUm5swPU2yshYYG23m/d21tLSEhoZjNZza2HzFi5KU8NRERERGRHsvpcvPB\n3hPs/OIkR0+2ve7v3utTGNE/xkuVfXc9PvDdPm3AOWfjOoKfnz/33HMf6enXAWcuoty27SP+/Oc3\nqK2tYfLkaQAEBQXx7LNrMRgMrc89efIEJpOpzetdyH11PB4PRuM/Xs/tdl/MqYiIiIiI+IzdX5bz\n+/cOAnBZfBjjh/YiKiyAsBB/hl4e7eXqvhvdtKUDDB06nB07PgCgurqKNWvWMGzYCI4dO8LOnR8x\nZcp0AAYMGMiuXTsBeP/9LezZ8/FZX9NoNOJyudp978jISGw2G/X19TidTvbtK7wEZyQiIiIi0rOV\nVtjIeXs/AI/ePpJl947lunGXMX5YL4YnxWD8xiRNd6LA1wGmTZtOcHAIDzxwHz/72U+58sorMRgM\nDB8+koYGG7169QLg4Yf/hVdf/S2LFv2Qd975HwYNOvsFoMOHj+D3v3+FrVvfPed7G41G7rvvhyxa\n9EMef/xnumGLiIiIiEg7HE436zYXAzAxNYHh3XDp5tloH75O4At7f8gZ6rXvUK99i/rtO9Rr36Fe\n+45z9brF4aK5xcnGj46x/bMyggNN/PonE/Ezda95sXPtw9fjr+HraTZuzOO99zZ/a/yBBxYxfHiq\nFyoSEREREel+cv/6FVs+Lm0z9tO5o7pd2GuPAl83c9NNc7jppjneLkNEREREpNva/lkZWz4uJTTI\njyGXRxMUYGJgYiQDEiO9Xdolp8AnIiIiIiI+43RtM69sOQCcuaP/xNTeXq6oY/Ws+UoREREREZFz\n+M2GfQBMuaJPjw97oMAnIiIiIiI+Yt+R05ScqicyNIC5U3zjbvYKfCIiIiIi0uO5PR5efufMPnvX\nj7uM4EDfuLpNgU9ERERERHq83769n1qbnaGXm0kf09fb5XQa34i1IiIiIiLic46cqGP/8VrKK23s\nLDoFwJxJyRgMBi9X1nkU+EREREREpMc5VdXI8lf2tBm7Y9oA+veO8FJF3qHAJyIiIiIiPUpTi5PV\nr38GwLD+MYwfEkdIkB8j+sd4ubLOp8AnIiIiIiI9htvj4eW393O6roWQQD8ev3csTQ0t3i7La3TT\nFhERERER6TE+/rKcTw9aAfj3e8cQFhLg5Yq8S4FPRERERER6hKMn63hh05cAZN4ynLioYC9X5H0K\nfCIiIiIi0u2dqmpk5WufAvC9KxMZPcji5Yq6Bl3DJyIiIiIi3VJTi5OdX5yivtHOjn0ncbo8JFrC\nuHP6QJ/aeuFcFPhERERERKRbemPbIT7Ye6L168iwAB6/50qMCnut2g18DQ0NLFmyhNraWhwOB5mZ\nmVgsFp544gmMRiMRERGsXr2a3bt3k5OT0/q8oqIi3n33XZ5++mmKioqIiooCYOHChUyZMoW33nqL\ndevWYTQauf3225k7dy4Oh4PHHnuMEydOYDKZWLlyJX379u24sxcRERERkW5p085jfLD3BBGhAfxo\n9jBCAv2wRAUT4G/ydmldSruBb8OGDSQlJZGVlUV5eTkLFiwgNjaWxx57jNTUVFatWkVeXh7z589n\nypQpAJSUlLBq1Sri4+MBePTRR5k6dWrrazY2NvLcc8+xfv16/P39ue2220hPT2fbtm2tAXLHjh2s\nXr2aX/3qVx1z5iIiIiIi0i3tL6lmw9+OAPDjW0eQ3DvSyxV1Xe3etMVsNlNTUwNAXV0dZrOZ559/\nntTUVACio6NbH/+7Z599lkWLFp31NQsLCxkxYgTh4eEEBQUxevRoCgoKyM/PJz09HYBrrrmGgoKC\n73xiIiIiIiLS81TVNfPkH89sqn7zhCSFvXa0G/hmzZrFiRMnSE9PJyMjgyVLlhAWFgacmanbuHEj\n1113Xevx5eXlVFZWMnTo0Nax1157jXvuuYef/vSnVFVVUVlZSXR0dOvj0dHRWK3WNuNGoxGDwYDd\nbr9kJysiIiIiIt3bs3n7ALh6WC9mT0jycjVdX7tLOjdu3Ejv3r3JycmhuLiY7Oxs8vLyaGxs5MEH\nH+S+++4jOTm59fg333yT2bNnt3590003ERUVxZAhQ3jhhRf4zW9+wxVXXNHmPTwezz9977ONf5PZ\nHIKfX9dfp2uxhHu7BOkk6rXvUK99i/rtO9Rr36Fedz/PvrGXklP1mMMD+cmdowkL9j+v5/lyr9sN\nfAUFBUyYMAGAlJQUKioqsNvtPPTQQ9xwww3MmTOnzfHbt2/n6aefbv366quvbv3ztGnTWLZsGTNm\nzKCysrJ1vKKiglGjRhEXF4fVaiUlJQWHw4HH4yEgIOCc9VVXN57fmXqRxRKO1Vrv7TKkE6jXvkO9\n9i3qt+9Qr32Het39uNxutn1aCsAPbhhKk62ZJltzu8/zhV6fK9C2u6SzX79+FBYWAlBWVkZoaCg5\nOTmMHTuWuXPnfuv40tJSevXq1fr1j3/8Y0pLzzRm9+7dDBw4kJEjR7Jv3z7q6upoaGigoKCAq666\nirS0NDZv3gzAtm3bGDdu3IWdqYiIiIiI9BilFTaeev0z/vXFXfzsv/NxON1MTE0gpZ/Z26V1G+3O\n8M2bN4/s7GwyMjJwOp0sW7aMxYsXk5iYSH5+PgDjxo1j0aJFVFdXEx7eNl3Onz+fRx55hODgYEJC\nQli5ciVBQUFkZWWxcOFCDAYDmZmZhIeHM3PmTHbu3Mmdd95JQEAAv/zlLzvmrEVEREREpEurbbDz\nxO8+weX24GcyEBkaSKIljLQRCd4urVsxeM7nQrkurDtMz/rCNLKcoV77DvXat6jfvkO99h3qddfW\n2OxkyfM7aWh2ctVgCw/cPPw7b6buC72+qCWdIiIiIiIincXt9vDyO/tpaHaSaAnl+9cP+c5hTxT4\nRERERESki/B4PGz48AgFB60ALLo1lZCgdq9Ck3NQ4BMRERERkS6h6GgVb+eXAPDY/NHERQV7uaLu\nT3FZRERERES8pqqumc0ff01Ts5OPvjgFwI3XXM6gvlFerqxnUOATERERERGvaGpx8sz6z/m6wtY6\nZg4PZObV/bxYVc+iwCciIiIiIp3O4/Hw23eL+brCRnCgH8vuHUNggImQQD/8TLry7FJR4BMRERER\nkU735w+OsKe4ggB/I7+4bwyxkbperyMoOouIiIiISKf69ICVd3aduTnLoltGKOx1IAU+ERERERHp\nNNX1Lby4qQiAWyYmMbx/jJcr6tm0pFNERERERDqUx+PB7nDT4nDx1OufYXe6uWqwhRvTkrxdWo+n\nwCciIiIiIh3G4/Gw/JU9HD1Z3zpmDg9kwfUpXqzKdyjwiYiIiIhIh3nxf75sDXtXDbYQFODH1NF9\nCA3y93JlvkGBT0REREREOsSJygZ2FZUD8POM0QxM1GbqnU03bRERERERkUvO6XLzH6/sAeCu6QMV\n9rxEgU9ERERERC4pj8fDK5sP0GJ3ER8dwjXDE7xdks9S4BMRERERkUtq+2dl7Nh3EoDMW4YTEqQr\nybxFgU9ERERERC6Z41Ybr249CMCP54wg0RLm5Yp8m6K2iIiIiIhclLLKBl5+ez8NTQ4qapoAuHZM\nX64YZPFyZaLAJyIiIiIi31ltg51fvVHI6bpmIkIDiDMHExcVzC2T+nu7NEGBT0RERERELsLGD49w\nuq6ZPpZQfnHfWIwGg7dLkm9Q4BMRERERkQvWbHfy8tv72XPAislo4F/vvlJhrwtS4BMRERERkQvi\n8Xh4cdOXfPZVJREh/iy4LoWgAEWLrkhdERERERGR8+L2eGixu/jj+1/x2VeVBAaYWP6D8YQF+3u7\nNDkLBT4REREREWnXH94/yPt7jrcZe+yu0Qp7XZwCn4iIiIiInNOuolO8v+c4ESH+XJ4QQaC/ifHD\n4unXK9zbpUk72g18DQ0NLFmyhNraWhwOB5mZmVgsFp544gmMRiMRERGsXr2a06dPc+ONNzJ8+HAA\nzGYzzzzzDPX19WRlZVFfX09ISAirV68mKiqKnTt3smbNGkwmE5MmTSIzMxOAFStWUFhYiMFgIDs7\nm9TU1I79DoiIiIiIyFnV2Fp4cdOXANw3ayipyTFerkguRLuBb8OGDSQlJZGVlUV5eTkLFiwgNjaW\nxx57jNTUVFatWkVeXh6TJ08mKSmJV199tc3z161bx9ixY7n//vvJzc3lxRdfZPHixSxfvpycnBzi\n4+PJyMhgxowZVFVVUVJSQm5uLocPHyY7O5vc3NwOO3kRERERETk7t8fDv+d8jAe48ZrLFfa6IWN7\nB5jNZmpqagCoq6vDbDbz/PPPt868RUdHtz7+z+Tn55Oeng7A1KlTyc/Pp7S0lMjISBISEjAajUye\nPJn8/Hzy8/OZPn06AMnJydTW1mKz2S76JEVERERE5MI4XW6efqMQW5MDc3gg6WP6ersk+Q7aDXyz\nZs3ixIkTpKenk5GRwZIlSwgLCwOgsbGRjRs3ct111wFQWVnJT37yE+644w7eeuut1rHo6GgAYmJi\nqKiowGq1to7BmdBotVqprKzEbDZ/a1xERERERDqPw+lm6csfU3S0ivAQf3525xW6OUs31e6Szo0b\nN9K7d29ycnIoLi4mOzubvLw8GhsbefDBB7nvvvtITk7GZrPx8MMPM3v2bOrr65k7dy7jx49v81oe\nj+eCijuf483mEPz8TBf0ut5gseiCVl+hXvsO9dq3qN++Q732Hep1Ww1NDn739pfU1DdTU9/CydON\nBAWY+NVPpxAXHeLt8i6KL/e63cBXUFDAhAkTAEhJSaGiogK73c5DDz3EDTfcwJw5cwAICwvj1ltv\nBc7MzA0fPpwjR44QFxeH1WolPDyc8vJy4uLiiIuLo7KysvU9/j7u7+/fZryiogKLxXLO+qqrGy/8\nrDuZxRKO1Vrv7TKkE6jXvkO99i3qt+9Qr32Het2Ww+nimfWfU3SsunUsONCPf737SgwuV7f+XvlC\nr88VaNtd0tmvXz8KCwsBKCsrIzQ0lJycHMaOHcvcuXNbj9u1axcrV64Eziz1LC4uJikpibS0NDZv\n3gzA1q1bmThxIomJidhsNo4fP47T6WTbtm2kpaWRlpbGli1bACgqKiIuLq51+aiIiIiIiHSM9duP\nUHSsGgOw8kfjWfsvU/jNIxPpHRvq7dLkIrU7wzdv3jyys7PJyMjA6XSybNkyFi9eTGJiIvn5+QCM\nGzeOBx54gDfffJN58+bhcrn44Q9/SHx8PHfffTeLFy/mrrvuIiIigieffBKAZcuWkZWVBcDMmTNJ\nSkoiKSmJYcOGcccdd2AwGFi6dGkHnrqIiIiIiOz68hTv7SkF4BcLxxJv7t7LN6Utg+dCL6zrYrrD\n9KwvTCPLGeq171CvfYv67TvUa9+hXp+x/1gVT76+F4Af3DCUq4f38nJFl54v9PpcSzrbneETERER\nEZGexe3xsO/waX69/nMAbpnUv0eGPVHgExERERHxCbUNdl7/y1d89pUVu8PdOj7r6n7ceM3l3itM\nOpQCn4iIiIhID/fx/nJe2XyAxhYnJqOBQX2jCPQ3ceVgC5NG9vZ2edKBFPhERERERHqwN7YdYvPu\nrwGYmJrAndMHEhSgGOAr1GkRERERkR6kvtFOjc1Os93Jn7cf5uDxWgzAv9wxiiGXR3u7POlkCnwi\nIiIiIj2A3eFi/fbDbPusDJf7HzfijwjxZ/GdV9DHov2tfZECn4iIiIhIN+Vyu/lo35l99MqsDa3j\n44fFYw4LJCTIj8mj+hAW7O/FKsWbFPhERERERLqRvV9Vsnl3Cc12F+XVTbQ4XAD0jg2lb1wYd35v\nIBGhAV6uUroKBT4RERERkW7A7fGw8cOjbNp5DICgABNBgSZG9I/mhmsu57L4s2++Lb5LgU9ERERE\npItzutysyd1L8dc1ACycNYS0EQlerkq6AwU+EREREZEurLbBzi9/X0B5VSNRYQH85LZULu8V4e2y\npJtQ4BMRERER6WKOnqzjcFktLQ4Xm3Yew+5wExsZxCNzR9I7NtTb5Uk3osAnIiIiItJFuNxuNn10\njLc+OtZmPDU5hoduHk6Av8k7hUm3pcAnIiIiItIF1Nha+MXvPqHWZscA3HDN5ST3iSQ02I/+CREY\nDAZvlyjdkAKfiIiIiIiXNTQ7WJO7l1qbncF9o1g4awixUcHeLkt6AAU+EREREREvcLrc2B0ujlsb\n+N27xZyqauSyuDAenptKUID+my6Xhn6SREREREQ6kdN15jq9d3aV4HJ7WsdTLovi4dtGEhig6/Tk\n0lHgExERERHpJI3NTp758+ccLD2zn96oAbEEBZq4LC6c68Zd5uXqpCdS4BMRERER6QS1DXae/fPn\nHDlRR4CfkX/7/hj6aIsF6WAKfCIiIiIiHczW5OCXr31KeXUT/eLDeeT2kUSGBni7LPEBCnwiIiIi\nIh2gsqaJkvJ6mu0ufv/eQZrtLgYkRvIv80ZpPz3pNAp8IiIiIiKX2MHSGlb9vgDPN8aS+0Tw6O0j\nFfakUynwiYiIiIhcQkVHq1iduxeAKwdbGNE/hqAAE8OTYrTdgnQ6/cSJiIiIiFwCHo+HHftO8rt3\niwGYOb4fN09Mws9k9HJl4svaDXwNDQ0sWbKE2tpaHA4HmZmZWCwWnnjiCYxGIxEREaxevZrg4GDW\nrVvHpk2b8Hg8zJkzh/nz5/Pss8+yadMm4uPjAZg9ezZz585l586drFmzBpPJxKRJk8jMzARgxYoV\nFBYWYjAYyM7OJjU1tWO/AyIiIiIi31F9o53GZictDhd/LTjO3wpPAnD71AHaZkG6hHYD34YNG0hK\nSiIrK4vy8nIWLFhAbGwsjz32GKmpqaxatYq8vDwmTZpEXl4ef/7zn3G73Vx33XXMnj0bgHvuuYeM\njIw2r7t8+XJycnKIj48nIyODGTNmUFVVRUlJCbm5uRw+fJjs7Gxyc3M75sxFRERERL6joqNVvPXR\nUb46Xttm3GQ08NDNw7likMVLlYm01W7gM5vNHDhwAIC6ujrMZjPPP/88YWFhAERHR1NTU0OfPn34\nwx/+gJ/fmZcMCgrCZrP909csLS0lMjKShIQEACZPnkx+fj5VVVVMnz4dgOTkZGpra7HZbK3vJSIi\nIiLiTXUNdtZ/cJgdn5+ZyYuPDmFQYiSB/iaiwgNJG5Gg7RakS2k38M2aNYu8vDzS09Opq6tj7dq1\nrQGssbGRjRs38utf/xqj0Uho6JmNI3fs2IHZbG4NdJs3b+Yvf/kLAQEBPP7441itVqKjo1vfIzo6\nmtLSUqqrqxk2bFibcavVqsAnIiIiIl53qKyWp98opKnFSWCAiYduHs6I/jHeLkvknNoNfBs3bqR3\n797k5ORQXFxMdnY2eXl5NDY28uCDD3LfffeRnJzcevzevXtZtWoVL7zwAnBm9m78+PGMGTOGt99+\nm+XLl/OjH/3ovIrzeDztHmM2h+Dn1/VvbWuxhHu7BOkk6rXvUK99i/rtO9Rr33E+vX5vdwkFBypo\ntrvYs78cgNQBsfzs7quIDAvs6BLlEvHlz3W7ga+goIAJEyYAkJKSQkVFBXa7nYceeogbbriBOXPm\ntB5bXFzM448/zvPPP986u/fNm65MmzaNp556iri4OCorK1vHy8vLiYuLw9/fv814RUUFFsu51z9X\nVzee56l6j8USjtVa7+0ypBOo175DvfYt6rfvUK99R3u9bmx2sDq3kKMn69qMf+/KRO6aPhB7kx1r\nk72jy5RLwBc+1+cKtO3eI7Zfv34UFhYCUFZWRmhoKDk5OYwdO5a5c+e2HudyucjOzuaZZ54hMTGx\ndXz58uXs2bMHgI8//piBAweSmJiIzWbj+PHjOJ1Otm3bRlpaGmlpaWzZsgWAoqIi4uLitJxTRERE\nRDrVicoGfvqbjzh6so5e0SEsuesKnvvpJF782RTmpw/CYDB4u0SR89buDN+8efPIzs4mIyMDp9PJ\nsmXLWLx4MYmJieTn5wMwbtw4Ro0axfHjx1m6dGnrcxcvXszcuXNZunQpfn5+GAwGli9fDsCyZcvI\nysoCYObMmSQlJZGUlMSwYcO44447MBgMbV5LRERERKSjHT5Ryy9fK8Dl9jBqQCw/uHEowYHaulq6\nL4PnfC6U68K6w/SsL0wjyxnqte9Qr32L+u071Gvf8c1el1bYqKpr5rjVxp8/OAJA2ohe3Hv9EIxG\nzeZ1d77wuT7Xkk79ukJEREREfJLd4eLVrQf4aN+pNuPpV/Xlju8N0NJN6REU+ERERETE55yotPGL\n333CydONmIwGrh9/GZGhgUSFBTB6kEVhT3oMBT4RERER8SlHT9bxqz8VUt/oOHNTlvmjtVm69FgK\nfCIiIiLSo7ndHipqmmixu9h7qJKNO44CcMXAWDLnjMCo2TzpwRT4RERERKTHanG4+M9XPuW41dZm\n/J6ZQ5iSmuClqkQ6jwKfiIiIiPRIlTVNrPx9AdX1LUSEBjB2SByB/iZGDojl6lGJPf7OjSKgwCci\nIiIiPdDeryr5f2/uw+nykGgJ4+HbUomJDPJ2WSKdToFPRERERLo9t8eD3eGixeHmf3Ye4y+fHgdg\n0sjeZFw7CD+T0csViniHAp+IiIiIdFsOp4s3dxxlW0EZzXZX63iAn5HvX5/C+GG9vFidiPcp8ImI\niIhIt+PxeNh7qJKX395PQ7MTgOH9owkK8CMqNICZV/cjKizQy1WKeJ8Cn4iIiIh0K812Jy/9z34K\nDloBGDUglu9fn0KE9tIT+RYFPhERERHp8o6dqmP3l+W02F3sOWDF1uQgPMSfhbOGkpoc4+3yRLos\nBT4RERER6dL2FFfw/MYi3B5JCjjPAAAgAElEQVRP65glKoh///4YQoP8vViZSNenwCciIiIiXVKz\n3cnL7xSzp7gCgPSr+jJ5VG8C/U1EhgXozpsi50GBT0RERES6nD3FFfzu3WIaW5yEBfvzo5uGMezy\naG+XJdLtKPCJiIiIiNfVNthZv+0QJ0430NjioryqEYAJIxK4bWoyESG6IYvId6HAJyIiIiJe4/F4\n2LHvJH94/yta/ncfvdAgP3pFh3D7tAGMGhDr5QpFujcFPhERERHxisZmJ8+/9QVfHKkCYNLIBOan\nD8Lfz+TlykR6DgU+EREREek0TS1Omu0uyqw2XtlygMraZkIC/XjgpmEM76/tFUQuNQU+EREREelw\nLXYXuX/9iu17T7QZH9AnkkfnjSQoQP8tFekI+mSJiIiISIeqsbXw6/WfU3KqHoAxKXEEBphItISR\nflUiBoPByxWK9FwKfCIiIiLSYfaXVPNc3j4aW5zERgax+M4rsEQFe7ssEZ+hwCciIiIil0xVXTNl\nlQ202F0UfGVlV1E5cGZW775ZQwj01w1ZRDqTAp+IiIiIXDSX203uXw+xraAMl9vTOh7ob2LhrCFc\nOdiipZsiXqDAJyIiIiIXpaK6kaffKKS8ugmT0cCkkQn0sYQREujHqIGxhAb5e7tEEZ/VbuBraGhg\nyZIl1NbW4nA4yMzMxGKx8MQTT2A0GomIiGD16tUEBwfz0ksvsXnzZgwGA4sWLWLy5MnU19eTlZVF\nfX09ISEhrF69mqioKHbu3MmaNWswmUxMmjSJzMxMAFasWEFhYSEGg4Hs7GxSU1M7/JsgIiIiIhfO\n4/Gw7bMy/vj+V7jcHvrFh/PT20cSERrg7dJE5H+1G/g2bNhAUlISWVlZlJeXs2DBAmJjY3nsscdI\nTU1l1apV5OXlMWnSJN555x1ef/11bDYbd911FxMmTGDdunWMHTuW+++/n9zcXF588UUWL17M8uXL\nycnJIT4+noyMDGbMmEFVVRUlJSXk5uZy+PBhsrOzyc3N7Yzvg4iIiIichdPl5nRdMyWn6rE1Oaix\n2WmxuzhYWkNJ+Zk7b14/7jJumdQfP5PRy9WKyDe1G/jMZjMHDhwAoK6uDrPZzPPPP09YWBgA0dHR\n1NTUsHv3biZOnEhAQADR0dH06dOHQ4cOkZ+fz4oVKwCYOnUqDzzwAKWlpURGRpKQkADA5MmTyc/P\np6qqiunTpwOQnJxMbW0tNput9b1EREREpGO12F189MVJvjpeS4vdRWVtM8ettrMe72cy8tDNwxk1\nMLYTqxSR89Vu4Js1axZ5eXmkp6dTV1fH2rVrWwNYY2MjGzdu5Ne//jXvvfce0dHRrc+Ljo7GarVS\nWVnZOh4TE0NFRQVWq/Vbx5aWllJdXc2wYcO+9RoKfCIiIiIdr6yygTW5e6mub2kz3scSSkJMKEm9\nwomOCCIiNICQQD8C/I1EhgYSEqTbQoh0Ve1+Ojdu3Ejv3r3JycmhuLiY7Oxs8vLyaGxs5MEHH+S+\n++4jOTmZ9957r83zPB7Pt17rn42dy/kcbzaH4OfX9W/va7GEe7sE6STqte9Qr32L+u07enqvHU4X\nf9x6gI+LTtHU4sTpcuNwenC6XDS1uAAYPTiOBbOGEmcOJjDAD3+/nrlMs6f3Wv7Bl3vdbuArKChg\nwoQJAKSkpFBRUYHdbuehhx7ihhtuYM6cOQDExcVx9OjR1ueVl5cTFxdHXFwcVquV8PDwNmOVlZXf\nOtbf37/NeEVFBRaL5Zz1VVc3XtgZe4HFEo7VWu/tMqQTqNe+Q732Leq37+jpvd5fUs0rWw5QXnXm\n/08xEUH4m4wEBxgxmQIICvBjTEocU6/og9FooKmhhaaGlnZetXvq6b2Wf/CFXp8r0LYb+Pr160dh\nYSEzZsygrKyM0NBQcnJyGDt2LHPnzm09bvz48fz2t7/lxz/+MdXV1VRUVDBgwADS0tLYvHkzDz30\nEFu3bmXixIkkJiZis9k4fvw4vXr1Ytu2bTz11FNUV1fz7LPPcscdd1BUVERcXJyWc4qIiIhcJLfb\nw2tbD7B97wkAkhLCybxlBNERQV6uTEQ6msHTzrrJhoYGsrOzOX36NE6nk4cffpjFixeTmJiIv/+Z\nPVXGjRvHokWLePXVV9m0aRMGg4FHHnmEq6++moaGBhYvXkxNTQ0RERE8+eSThIeH88knn/DUU08B\ncO2117Jw4UIAnnrqKfbs2YPBYGDp0qWkpKSc8wS6Q1r3hd8qyBnqte9Qr32L+u07elKv95dUk190\nCrvDxZETdVTWNmMyGvjBjUMZOyTe2+V5XU/qtZybL/T6XDN87Qa+rq47NM8XfsjkDPXad6jXvkX9\n9h09odcut5vX/3KIv3x6vM344L5RZFw7iD4WrZ6CntFrOT++0OuLWtIpIiIiIt3DsVN1PPvnfVTX\ntxDgZ+SO6QMZmRxLoL9Jd9IU8VH65IuIiIj0AOXVjfzHuj14PGdm835w41BdoyciCnwiIiIi3VVj\nsxNbk53Ttc08+fpeAK4Z3ov7Zg7BaDR4uToR6QoU+ERERES6oQNfV/PkH/fi/sbtGC7vFc7dMwYr\n7IlIKwU+ERERkW7my2NVPPW/M3qX9wqnf+8IIkIDuH7cZfj7mbxcnYh0JQp8IiIiIt3I/m+EvWvH\n9GXetAEYDJrRE5F/ToFPREREpJvYf6yq9Vq9uVOTuX5cPy9XJCJdnQKfiIiISDfw6YEKntvwBQC3\nTVHYE5Hzo8AnIiIi0kVt3v017+0ppdnuoqnFCcA9MwYz5Yo+Xq5MRLoLBT4RERGRLsbldvO7d4v5\naN8pABItoQT6hzB6kEVhT0QuiAKfiIiISBdSXt3I/9vwBaUVNkKD/Hh03iiSEiK8XZaIdFMKfCIi\nIiJe4vZ4+GDvCU6ebsDpdNPscLGrqByAAYmRPHjTcMzhgV6uUkS6MwU+ERERES+oqG5k7VtfcvRk\nXZtxo8HAjHF9uWVif/xMRi9VJyI9hQKfiIiISCf7aN9J1m0uxunyYIkK4s7pg4g3B+NvMhIc5Edo\nkL+3SxSRHkKBT0RERKSTtDhcvLL5APlFZ27GMuvqftw8MQmTUTN5ItIxFPhEREREOlDJqXo2fHiE\nhiYHp6oaaWh2EhLox6I5I0jpZ/Z2eSLSwynwiYiIiHSQ/SXVPPnHzwAwGQ0E+psY0s/MD28cSmSY\nbsYiIh1PgU9ERESkA7z54RHe+ugYALPTLufmif29W5CI+CQFPhEREZFL7E/bDvHu7q8BeOCmYYwd\nEu/likTEVynwiYiIiFwkp8tNXYOdFoeLN/56iMLDpwn0N/HgzcNITY71dnki4sMU+EREREQuQlll\nA//1hwLqGx2tY5FhAWTNG0WiJcyLlYmIKPCJiIiIfGeHymp56o+fYXe6uSw+jKSECIICTEy5og/x\n5hBvlyciosAnIiIicqFcbjdv7yzhzR1HAZh+VSJ3fG8gRoPBy5WJiLSlwCciIiJygd7O/0fYu33q\nAGaM7YtBYU9EuqB2A19DQwNLliyhtrYWh8NBZmYmaWlprFmzhvXr17Nr1y4Atm/fTk5OTuvzioqK\nePfdd3n66acpKioiKioKgIULFzJlyhTeeust1q1bh9Fo5Pbbb2fu3Lk4HA4ee+wxTpw4gclkYuXK\nlfTt27eDTl1ERETk/DldblocLgoOWnnzwzNhL2veKIYlRXu5MhGRs2s38G3YsIGkpCSysrIoLy9n\nwYIF3HzzzSQkJODxeFqPmzJlClOmTAGgpKSEVatWER9/5hbEjz76KFOnTm09trGxkeeee47169fj\n7+/PbbfdRnp6Otu2bSMiIoLVq1ezY8cOVq9eza9+9atLfMoiIiIiF+bTA1b++80vcH/j/z7z0wcp\n7IlIl2ds7wCz2UxNTQ0AdXV1mM1mMjIymD9//lmf8+yzz7Jo0aKzPl5YWMiIESMIDw8nKCiI0aNH\nU1BQQH5+Punp6QBcc801FBQUXOj5iIiIiFwyjc0O8v52hOc27MPt8TBqQCxpI3pxz4zBTBvdx9vl\niYi0q90ZvlmzZpGXl0d6ejp1dXWsXbuWsLCz32K4vLycyspKhg4d2jr22muv8dvf/paYmBj+7d/+\njcrKSqKj//EbsejoaKxWa5txo9GIwWDAbrcTEBBwMecoIiIicsFqbC08+cfPOHm6EYCpo/tw97WD\nvVyViMiFaTfwbdy4kd69e5OTk0NxcTHZ2dnk5eWd9fg333yT2bNnt3590003ERUVxZAhQ3jhhRf4\nzW9+wxVXXNHmOd9cGno+499kNofg52dq9zhvs1jCvV2CdBL12neo175F/fYdFks4xSVVLHtpNw3N\nTvrGh7PyoTQiwwK9XZpcYvpc+w5f7nW7ga+goIAJEyYAkJKSQkVFBS6XC5Ppn4es7du38/TTT7d+\nffXVV7f+edq0aSxbtowZM2ZQWVnZOl5RUcGoUaOIi4vDarWSkpKCw+HA4/G0O7tXXd3Y3il4ncUS\njtVa7+0ypBOo175DvfYt6rdv2H+sil3FVk7XNPLlsWoAxg6J496ZQ7A32bE22b1coVxK+lz7Dl/o\n9bkCbbvX8PXr14/CwkIAysrKCA0NPWvYAygtLaVXr16tX//4xz+mtLQUgN27dzNw4EBGjhzJvn37\nqKuro6GhgYKCAq666irS0tLYvHkzANu2bWPcuHHnd4YiIiIiF+GdXSU8+fpePtxbxpfHqgkMMDE7\n7XJ+NHsYgf5dfyWRiMjZtDvDN2/ePLKzs8nIyMDpdLJs2TL+4z/+g4MHD2Kz2bj77ruZNm0a9957\nL9XV1YSHt02X8+fP55FHHiE4OJiQkBBWrlxJUFAQWVlZLFy4EIPBQGZmJuHh4cycOZOdO3dy5513\nEhAQwC9/+csOO3ERERERW5ODl9/ez95DlfiZDGTeNpKhfaPw92v3d+IiIt2CwXM+F8p1Yd1hetYX\nppHlDPXad6jXvkX97pn2HqrkxU1f0tTiJCYikJ/cNpLRwxLUax+hz7Xv8IVen2tJZ7szfCIiIiI9\ngdvj4YsjVdia7Bw5UcdfC8oAmDG2L3Mm9ce/G9wETkTkQinwiYiISI/ndnt4ZUsxfys82Wb81sn9\nmTm+HwaDwUuViYh0LAU+ERER6fHWf3CYvxWexGCAuVMGEBUeQExEEAMTo7xdmohIh1LgExERkR7t\nL58eZ/PurwFY8YPxxEeHeLkiEZHOo8AnIiIiPZLH42Hzx1/zp22HAfjhjUMV9kTE5yjwiYiISI9h\nd7ioqGmixeHirR3H2HfkNH4mI9+/fjDjh/Vq/wVERHoYBT4RERHpEU5UNrA6dy/V9S2tY/5+Rpbc\nNZr+vSO8WJmIiPco8ImIiEi3V3KqnpWvfYrd6SYmIpAxQ+IJ9DcxakAs/XqdfX8qEZGeToFPRERE\nurX3Pinlj3/5CoBRA2J56Jbh+JmMXq5KRKRrUOATERGRbsPj8XCwtIaKmiaaW1zsO3KaL45WAXDH\n9wYy/apEjNpTT0SklQKfiIiIdAu2JgfPb/yCL49VtxnvHRvKvdenkNwn0kuViYh0XQp8IiIi0qV5\nPB4+/Pwkr245gMvtITjQj5snJGEODyQiNIABiZGa1RMROQsFPhEREemymu1OfvtOMZ8UVwAwYUQC\n91w3WNfoiYicJwU+ERER6TI8Hg+795fzyf4K7A4Xh07U0WJ3ERhg4qdzRzKob5S3SxQR6VYU+ERE\nRKRLOFXVyIubvuToybrWMYMBUpNjuG/WECJCArxYnYhI96TAJyIiIl7V4nCxccdRtnz8NR4P9OsV\nzh3TBtC/dyR+JgMGXZ8nIvKdKfCJiIhIp2psdvDh5yc5XddMs93FJ/sraHG48DMZuOHqy7nhmssx\nGhXyREQuBQU+ERER6TRHTtTx9Bt7aWh2to4ZDHD1sHjmfW+glm2KiFxiCnwiIiLSKT78/AS/facY\ngNGDLFw39jLCQvwJDfIjXEFPRKRDKPCJiIhIh3G53TQ2O3lzx1G2FZQBMGdSf2Zd3U/X5omIdAIF\nPhEREbmkmu1O/rTtMB99cRK7w9067mcyknnLcEYOiPVidSIivkWBT0RERC6ZwydqefGtL6moaQJg\nSD8zgf4mYiODmD6mL3FRwV6uUETEtyjwiYiIyEWzNTl4Y9shdnx+EoDhSdFkzBisgCci4mUKfCIi\nInLBDh2v5X/yj3GisoEWh4v6RgcAQQEm7pkxmHFD43WNnohIF6DAJyIiIufN4XTxu3eLyS8qByA4\n0ERUWCCWqGCGXm4m/aq+uuOmiEgX0m7ga2hoYMmSJdTW1uJwOMjMzCQtLY01a9awfv16du3aBcDx\n48e58cYbGT58OABms5lnnnmG+vp6srKyqK+vJyQkhNWrVxMVFcXOnTtZs2YNJpOJSZMmkZmZCcCK\nFSsoLCzEYDCQnZ1NampqB56+iIiInA+Px0Ph4dO8tvUAVXUtRIYGMGdyf9JGJGDUTJ6ISJfVbuDb\nsGEDSUlJZGVlUV5ezoIFC7j55ptJSEjA4/G0OTYpKYlXX321zdi6desYO3Ys999/P7m5ubz44oss\nXryY5cuXk5OTQ3x8PBkZGcyYMYOqqipKSkrIzc3l8OHDZGdnk5ube2nPWERERM5Lyal6dn15isZm\nJ18eq+J0XQsAowbE8oMbhxIcqIVCIiJdXbt/U5vNZg4cOABAXV0dZrOZjIwMwsLCeOaZZ9p9g/z8\nfFasWAHA1KlTeeCBBygtLSUyMpKEhAQAJk+eTH5+PlVVVUyfPh2A5ORkamtrsdlshIWFfecTFBER\nkfPn9ngoOGDl7fwSSsrr2zwWEeLPwhuGMqJ/jJeqExGRC9Vu4Js1axZ5eXmkp6dTV1fH2rVrzxrA\nKisr+clPfkJFRQV33XUXs2fPprKykujoaABiYmKoqKjAarW2jgFER0dTWlpKdXU1w4YNazNutVoV\n+ERERL6DMquN9/aUcrq2GYfTjdtzZmmm2+PB7f7Gn/8+7vZQUd3E39fvDOgTydXD4hlyeTSB/ibC\ngv3x9zN69ZxEROTCtBv4Nm7cSO/evcnJyaG4uJjs7Gzy8vK+dVxUVBQPP/wws2fPpr6+nrlz5zJ+\n/Pg2x/zfJaDtOZ/jzeYQ/PxMF/S63mCxhHu7BOkk6rXvUK99S3fqt8vl5g9bD/DG+wfbjBuNBowG\nMBoMZ/5sNGAwGDAaDJiMBgwGiI4MYtBlZm6c0J8RPrpBenfqtVwc9dp3+HKv2w18BQUFTJgwAYCU\nlBQqKipwuVyYTG1DVlhYGLfeeitwZmZu+PDhHDlyhLi4OKxWK+Hh4ZSXlxMXF0dcXByVlZWtz/37\nuL+/f5vxiooKLBbLOeurrm48/7P1EoslHKu1vv0DpdtTr32Heu1bulO/6xrtrN1YxP6SagDu/N5A\nplzRG//v8MvR7nLOl1J36rVcHPXad/hCr88VaNtdl9GvXz8KCwsBKCsrIzQ09FthD2DXrl2sXLkS\ngMbGRoqLi0lKSiItLY3NmzcDsHXrViZOnEhiYiI2m43jx4/jdDrZtm0baWlppKWlsWXLFgCKioqI\ni4vTck4REZFzqKxt4g/vH2Tpyx/z2Np8HnlmB/tLqvH3M7Ls3jGkj+n7ncKeiIj0DAZPO+smGxoa\nyM7O5vTp0zidTh5++GHef/99Dh48SEFBAaNHj2batGncfffdPP744xw9ehSXy8Wdd97JrbfeSkND\nA4sXL6ampoaIiAiefPJJwsPD+eSTT3jqqacAuPbaa1m4cCEATz31FHv27MFgMLB06VJSUlLOeQLd\nIa37wm8V5Az12neo176lK/Z7f0k1731Syt5D/1gZExUWQKC/iSsGWbh+3GXaD+876Iq9lo6hXvsO\nX+j1uWb42g18XV13aJ4v/JDJGeq171CvfUtX6rfb7WHDh0d4O78EgJiIQCaN7M30q/pqm4RLoCv1\nWjqWeu07fKHX5wp8+pdBRESkC3O63Hyw9wS7ik5R22Cnsra59bEF1w1m0sjeGLTxuYiInIUCn4iI\nSBfkcLp4b89x/vLpcarrz2x4bg4PJCEmhPBgf+6+LoU+saFerlJERLo6BT4REZEuwO3xUFXbTIvD\nxeETdWzccbQ16A1Liuau6QNJiFHAExGRC6PAJyIi4kVNLU4+PWDl3d0lnDzddquhq4fFc8M1lyvo\niYjId6bAJyIi4iUf7TvJH94/SFOLC4D+vSO4LD6cQH8jVwy0MKhvlJcrFBGR7k6BT0REpBM4nC72\nHjpNVV0zLXYXhYcrOXryzF3jJo1MIP2qvvSxaO9ZERG5tBT4REREOpDH42FXUTl/eP8gDc3ONo9d\nFhfG3dcNJrl3pJeqExGRnk6BT0REpIOcPN3Aus0HOFhaA8C4ofFcOchCcKAf4SH+9I0L05YKIiLS\noRT4RERELgG3x8Oe4gr2HLDSYndha7K3LtmMNwczP30Qw/vHeLlKERHxNQp8IiIiF6m6voX/fvML\nDpXVthmPiwpm6ug+XDumr2byRETEKxT4REREviOH083WT75mw9+O4vZ4iAjx50c3Dad/QgT+/kaM\nCnkiIuJlCnwiIiLnoby6kbd3lnCorJb6Rjt2pxuH0936+LVj+nLThCSCA/VPq4iIdB36V0lEROQc\nnC43r727n9z3D7aO9Y4NJdDfSICfiYSYEK4b34+4qGAvVikiIvLPKfCJiIh8g8Pp5uDxGppbnFhr\nmtn88dfUNdgxGgxcP/4yZqcl4e9n9HaZIiIi50WBT0REfJrD6eaLI6cp/rqG03XNHPi6+lv75Y0Z\nGs8tE5LoFR3ipSpFRES+GwU+ERHxKSWn6vl4fzmVtc20OFwcOVGHrcnR+nhIoB9jUuJI7hNJoL+R\ny+LDGZvaB6u13otVi4iIfDcKfCIi0uOVVzfyxZEqdn5xsnVvvL8zGgyMHRJH2ogEEqJDiI4M0t01\nRUSkx1DgExGRHsXj8bBj30m2f3aCZrsTW5OD+sYzM3gGAwzvH82YwXEMS4omONCPAH8jJqOuyRMR\nkZ5JgU9ERHqMr8vreW3rwdYN0MOC/Qn0NzKgTyRXDbYwdmg8UWGBXq5SRESk8yjwiYhIt9Rsd1JV\n10KLw4W1pomCg1Y+3l8BQB9LKPOnDyKln9nLVYqIiHiXAp+IiHQrbreHD/aWkfe3I9+6m6Y5PJCZ\n4/sxdXQfXYcnIiKCAp+IiHQTbo+HDwtP8OaOo9Ta7ACkXBbFZfHhBPqbSOlnZnDfKIxGBT0REZG/\nU+ATEZEuydbkYPeX5diaHDS1ONlzoIKquhYARg+ycNOEJPrGhXm5ShERka5NgU9ERLoMp8vNF0er\n+PxQJR/sPYHn/zw+MjmGWycnk6igJyIicl7aDXwNDQ0sWbKE2tpaHA4HmZmZpKWlsWbNGtavX8+u\nXbtaj123bh2bNm3C4/EwZ84c5s+fz7PPPsumTZuIj48HYPbs2cydO5edO3eyZs0aTCYTkyZNIjMz\nE4AVK1ZQWFiI4f+3d+/BUZVnHMe/Z/fshWwuJCEXkiBysxSoY1W8VaSlQaO2HTpIEyGRFodpR1u1\nRaxNVVSoIwwoVaeKeBmrUqAah85AodTaUTsotggWSpoGWi5RciGBbJK97+kfmyygXHMlm99nBrJ7\nznvefTbPkPDs+573NQzKy8u5+OKLe+iti4hIX6trauNgfSuBUISD9S28/8ln8S0UTLuNwssLmDAi\nA5fDTnqKi4xUdx9HLCIi0r+cseB76623GDFiBPPmzaO2tpbZs2czbdo0hg4dimUd++z1wIEDVFRU\n8OabbxKNRikqKuI73/kOALfddhulpaUn9Lto0SJefPFFcnJyKC0t5YYbbqCxsZF9+/axZs0a9uzZ\nQ3l5OWvWrOnmtywiIn0pGIrwj3/X8/a2g+z9tPmEc4YBV43P4fL2ffJcDnsfRSkiIpIYzljwpaen\n8+9//xuA5uZm0tPTKS0tJTk5maeeeireLj8/n1WrVmGasS7dbjctLS0n7fPAgQOkpaUxdOhQACZP\nnsyWLVtobGyksLAQgFGjRnH06FFaWlpITtbUHRGR/qrJG6DFFyIQivCfA0fY8MG++Oqaw3NT+NKw\nweRmJOFy2PnyhenaJ09ERKQbnbHgu/nmm6moqGDq1Kk0NzezYsWKkxZgNpsNj8cDwPvvv096enq8\noNu4cSNvv/02TqeTBx54gPr6ejIyMuLXZmRkcODAAZqamhg/fvwJx+vr61XwiYj0M4ca29i6u5Yt\nOw9R2+Q74ZwBTBybTdGVFzBiaGrfBCgiIjJAnLHgW7duHXl5ebz44otUVlZSXl5ORUXFKdtv376d\nxYsX8/zzzwOx0burrrqKiRMnsn79ehYtWsQPf/jDswru+Cmjp5KenoRpnv9TfrKyUvo6BOklyvXA\noVzHfk4frGthe1U9/mCYVl+IHdUNVB84Em9z8eghsa0TnHbSkl1cOT6XvKz+90Ge8j1wKNcDh3I9\ncAzkXJ+x4Nu2bRvXXnstAGPHjqWuro5IJILd/sUiq7KykgceeIDnnnsuPrp3/KIrU6ZMYenSpWRn\nZ9PQ0BA/XltbS3Z2Ng6H44TjdXV1ZGVlnTa+pqa2M72FPpeVlUJ9vbevw5BeoFwPHAM515ZlUXXg\nCB/8q5ZP9hymyRv4QpuCLA9TLi3g4lGZJ1loxep337uBnO+BRrkeOJTrgWMg5Pp0Be0ZC77hw4ez\nY8cObrjhBmpqavB4PCct9iKRCOXl5Tz11FMUFBTEjy9atIiioiIuv/xytm7dypgxYygoKKClpYWD\nBw+Sm5vLO++8w9KlS2lqauLpp5+mpKSEXbt2kZ2dremcIiK9JByJEgxFCISitPhC1Da20RYI4w9G\naPOH8AUiBEIR/rn3WJGX5DK5eFQmo/PTGJ6bgtO0kZORpPvwREREzhNnLPiKi4spLy+ntLSUcDjM\nww8/zMKFC6mqqqKlpYWysjKmTJnCmDFjOHjwIAsWLIhfO3/+fGbMmMGCBQswTRPDMFi0aBEADz/8\nMPPmzQPgpptuYsSIEQP69QQAABMiSURBVIwYMYLx48dTUlKCYRgn9CUiIt2nYxuE/Ye8/PeQlz01\nR/ns8NnPmBh7wWCuHJfDNROG4jBtPRipiIiIdIVhnc2Ncuex/jA8OxCGkSVGuR44zvdcW5aFPxjh\n08Ot7D/kZed/G6k/4uNoa5BgKEogFDmhvd1mkDfEQ2aqG6fDRpLbQVaam1SPE7fTziCXicftwOmw\n4XE7SPU4++id9Y3zPd/SfZTrgUO5HjgGQq67NKVTRER6T9SyOHzUTzAUIRyxCEejhMNRDjf7qalv\npS0QJhSOEgzHjgfDEYLhKKFwFF8gjC8QJhiOEghGTtp/TkYSGSl2XA4b+dnJXJCdzIW5qeQN8Wik\nTkREJAGp4BMR6SXBUIS6Jh+HGts42hokFI4SjsSKNW/7PXN7ao4SDEfPqV/DAIdpY5DLJHmQA6dp\nx+mIFW+ZqW7GFKSRN8TDyLxUHP1gVWMRERHpPir4RETOQSgcpeGoj8NtIQ4fbiUSiRKJWoSjFuFw\nFG9bkNomH3VNPgKhCKH2gq7NH6LhiJ8zzaHPTHUzuiCNJJeJ3W7gsNuw220kD3IwPCeZlCQnTtOG\nw2HHYbfhdNiw2wwMw+iV9y8iIiL9iwo+ERmQopZFKBQlEI4QDEXwBSI0NvtpbgtS1+Tjv581U9vY\nhgWEw1FCESs+GncuOkbf3A47Y4YNJjdjELkZHjJSXThMGw67DdNuI8ltMiRtEElu/VgWERGR7qP/\nWYhIvxeJxgqxUDhKMBTls8ZWahtjC5Q0Nfvj972FI1FCkSiNzYGT7h33eXabEZ8madptOEwDp2kn\na/AgsjM9BIMh7LbYCJvdbmC32UhJcpCVNojczCQGuezYbbovTkRERPqOCj4R6XOhcJS6I77YSFo4\nSqh9IRJf+x5wwfZjHYuVhEJRWgMh9te24A+GaWw+c/HWwW4zSB7kYHR+GkluE6dpw+mw43TYGexx\nkp7qIiPFTd4QD+kpp95LbiCs+CUiIiL9nwo+ETkn0WhsamNstMwiEoniC3ZMiwzHR9rCkSj+YITP\nDrfhC4aJRCwi0dj9bpH21Sdb2kI0tQQ42hLsdDym3cZFwwbjdsbuaXOYNtJTXQzLSiY9xUVKkpO0\nZGd86qTNpnvdREREZOBQwScyQFiWhdcXoq7JR6svRLi9AOsozpq8gdgiIx2jbJFj0yRrG9toagkQ\nDltEu3HrTtNuIz3FyUUFaTiddnIzknA5jhVubpeJ22mPrzrpsNtwtH9NcpukJDlxObTqpIiIiMip\nqOAT6ScsyyIYitIWCMf2XgvF9mALhWLTHL1tQZrbgtQ2ttHqCxOIn4vgbQtxpCVIOHJuC450sNsM\n8od4cDrsmHYDs320zDRt8eeBYIT8IR4cjti5jhUkczKSSB7kiN3nZrNhtxuY7Y+dDptWlxQRERHp\nQSr4RHpR1LKob/JxoK4Fry+Ety14whTIQChCoP2etWDo2D1rbf4wR1s7V7A5TBtO00ZeZhKDU1zk\nZiSR5nG2F23HircUjwOP2xEfXfv8Hy0+IiIiItL/qOAT6QLLsmjyBvAHIwRCEf5b18r+T49wtDXI\nvkNeDjW2EQxFCIRiBdy5bqhttxmxBUVMG/lZHlKSHCS5zPgxp2mPFXSO2KbbGSlu0pKdDElz43TE\nztk0giYiIiIyYKngkwGtowiLjaTFpkk2ef20+sP4AmFafCH8gdjm2ZFIlHD7YiOhUJSDDa00ef0E\nQ6cu4lwOOylJDlI9zvhqkBkpLvKzPGSkuuPHj58C6Xaa8SJOo2oiIiIi0hUq+KTHWJZFOGLFl9hv\n84cJhCJELQsrGts7LWrR/jy2GEgkamFZsZUgrfY+oh3HrFgb64RrYo8j7a9z/ObY4UhsT7ZQJEq4\n/XnHPmzhsEWT109zW6jT789p2shOH0Rmqpv0FBdOh52UZBdOu0Fepoe0ZCf5Qzy6R01ERERE+owK\nvh5Qua+J/XUtYMUKEo/HRUuLP17AWBbxx7QXLABRC6D9vAVW++MT28QW7gi2F05AvL+OJ+3dHHuN\n9jYc//xYc6z2xtbx15/smpO1ib9W7GSLL0SLLxS/L6371nPsPnZb7L61lCQH4y5Mjq0K2TE90mHD\n43aQkeIiyW3idpp4Bpk4zdhiJXa7LbbgiN1G8iDzCyNw2ptNRERERM4nKvi6mWVZrPjDLo62dn5f\nsf7AiP8FBgYdg1imaWNIqju+UEhswY9YQeVxx+49s9kMbIbR/pX4c7vNwGg/bhjE2hhgtJ8/dqz9\ncUf79scOMzYt0mz/6mifKul02HF0LE6ie9pEREREZABRwdfNDMPg3lu/yqHDbdgMwIDBg5NoPurD\nMGLnjfZ2GGCLXUTHXtBGezETL6Laixw49tVh2nA77ce1jfURL2Paj3VMJYy3Oa4wO3bcOK792bRR\nsSQiIiIi0l+o4OsB+UM85A/xxJ9rmp+IiIiIiPQFLQEoIiIiIiKSoFTwiYiIiIiIJCgVfCIiIiIi\nIglKBZ+IiIiIiEiCUsEnIiIiIiKSoFTwiYiIiIiIJCgVfCIiIiIiIglKBZ+IiIiIiEiCUsEnIiIi\nIiKSoFTwiYiIiIiIJCjDsiyrr4MQERERERGR7qcRPhERERERkQSlgk9ERERERCRBqeATERERERFJ\nUCr4REREREREEpQKPhERERERkQSlgk9ERERERCRBqeDrBlVVVRQWFvLaa6+dss2yZcsoKysDoLW1\nlR//+MeUlZVRUlLCe++911uhSheda66j0SgPPvggJSUllJWVsWfPnt4KVbrodLmeMmUKM2fOpKys\njLKyMmprawF47LHHKC4upqSkhE8++aS3Q5Yu6Ey+z+bngZx/OpPrJUuWUFxczPTp0/nTn/7U2yFL\nJ51rrn0+H3fffTelpaXMmDGDd955pw+ils7ozL9rAL/fT2FhIRUVFb0Zbq8z+zqA/q6trY2FCxdy\n9dVXn7JNdXU1H330EQ6HA4C33nqLESNGMG/ePGpra5k9ezYbN27srZClkzqT67fffhuv18vq1avZ\nv38/v/rVr1ixYkVvhSyddDa5XrlyJR6PJ/5869at7Nu3jzVr1rBnzx7Ky8tZs2ZNb4QrXdSZfJ/N\nNXL+6UyuP/jgA/7zn/+wZs0ampqa+O53v8v111/fG+FKF3Qm1xs2bGDChAnMnTuXmpoa5syZwze+\n8Y3eCFe6oDO57vDss8+SlpbWk+GdFzTC10VOp5OVK1eSnZ19yjaPP/44P/3pT+PP09PTOXLkCADN\nzc2kp6f3eJzSdZ3J9f/+9z8uvvhiAC644AI+/fRTIpFIj8cqXXM2uf68LVu2UFhYCMCoUaM4evQo\nLS0tPRWidKPO5Lsz10jf60zeJk6cyK9//WsAUlNT8fl8+jneD3Qm1zfddBNz584F4LPPPiMnJ6en\nwpNu1Nmfx3v27KG6upqvf/3rPRPYeUQFXxeZponb7T7l+YqKCq644gry8/Pjx26++WY+/fRTpk6d\nSmlpKT//+c97I1Tpos7k+qKLLuL9998nEomwd+9eDhw4QFNTU2+EK11wplwDLFiwgFtvvZWlS5di\nWRYNDQ0nfHiTkZFBfX19T4cq3aAz+T6ba+T805lc2+12kpKSAHjjjTe47rrrsNvtvRGudEFnct2h\npKSEe++9l/Ly8p4OU7pBZ3O9ePFi7r///t4Isc9pSmcPOnLkCBUVFbz88ssnzBdet24deXl5vPji\ni1RWVlJeXp7wc4cT3alyPXnyZLZt28asWbP40pe+xMiRI0/4pSL901133cWkSZNIS0vjzjvvZNOm\nTV9oozwnjpPlu6ioqK/Dkh5wulz/+c9/5o033uCll17q4yilO5wu16tXr2b37t3Mnz+fP/zhDxiG\n0cfRSlecLNd+v59LLrmEYcOG9XV4vUIFXw/64IMPaGxsZNasWQSDQfbv389jjz1GIBDg2muvBWDs\n2LHU1dURiUT0iWE/dqpcl5eXnzDFs7CwkMzMzD6MVLrDtGnT4o+vu+46qqqqyM7OpqGhIX68rq6O\nrKysvghPutnJ8q2CLzGdKtfvvfcezz33HC+88AIpKSl9GKF0l5PluqCggMzMTIYOHcqXv/xlIpEI\njY2N+r3dz50s1x2zrv76179y6NAhnE4nubm5XHPNNX0Yac/RlM4eVFRUxIYNG1i7di3PPPMM48eP\np7y8nOHDh7Njxw4Aampq8Hg8Kvb6uVPlurKykl/84hcAvPvuu4wbNw6bTf/s+jOv18vtt99OMBgE\n4KOPPmLMmDF87Wtfi4/07dq1i+zsbJKTk/syVOkGp8q3JJ5T5drr9bJkyRJWrFjB4MGD+zhK6Q6n\nyvXf//73+AhuQ0MDbW1tWmehnztVrpcvX86bb77J2rVrmTFjBnfccUfCFnugEb4u27lzJ4sXL6am\npgbTNNm0aRNTpkyhoKCAqVOnnvSa4uJiysvLKS0tJRwO8/DDD/du0NIpncn1RRddhGVZ3HLLLbhc\nLpYuXdrLUUtnnCnX1113HcXFxbhcLsaNG0dRURGGYTB+/HhKSkowDIMFCxb09duQs9SZfJ/smqef\nfloFwXmuM7leu3YtTU1N3HPPPfF+Fi9eTF5eXh++EzmTzuQ6EAjwy1/+kpkzZ+L3+3nooYf0IW0/\n0JlcDzSGpRtNREREREREEpI+thAREREREUlQKvhEREREREQSlAo+ERERERGRBKWCT0REREREJEGp\n4BMREREREeljVVVVFBYW8tprr5223erVq5k+fTolJSXxLaFORwWfiIgktHXr1lFfX89dd93VY69R\nXV3Nrl27eqx/ERFJbG1tbSxcuJCrr776tO0OHz7MSy+9xKpVq3jllVd4+eWX8fv9p71GBZ+IiCSs\nSCTCb37zG7Kysnjqqad67HU2b97Mv/71rx7rX0REEpvT6WTlypVkZ2fHj1VXV3Pbbbcxe/Zs7rjj\nDpqbm6mpqWHkyJG4XC5cLhdjx45lx44dp+1bG6+LiEjCKi8vp6amhjlz5lBdXc27777L/fffT3p6\nOnv27KG6upp58+bxl7/8haqqKi699FIeeeQRAJ544gm2bduG3+9n4sSJ3HfffdTV1XHvvfcC4Pf7\nKS4uZtSoUbz22mskJyfjdrsZN24cCxYswG6309LSwj333MOkSZN4+umnqa+vp6GhgcrKSubOncvu\n3bvZuXMn2dnZPPvss2zdupXly5eTl5dHTU0NKSkpPPnkkyQnJ/flt1FERHqYaZqY5oml2cKFC3n0\n0Ue58MILef3113n99de59dZbqaqqorGxEZfLxccff8wVV1xx+r57MnAREZG+9JOf/IQtW7bw6KOP\nMnPmzPjxhoYGnn/+eSoqKnj00UfZvHkzTqeTK664gnnz5vG3v/2N2tra+H0Ud955J++88w779+9n\n5MiRPPLIIwQCAX7/+9/z1a9+lUmTJnHZZZfx7W9/mw8//JC7776biRMn8vHHH7Nw4UImTZoEwN69\ne3n11VfZunUrc+bM4Y9//CPDhg3jm9/8JpWVlQDs2rWL5cuXk5OTw/z586moqOC2227r/W+eiIj0\nqU8++YQHH3wQgGAwyFe+8hUGDx7M/PnzueOOO8jKymL06NFYlnXaflTwiYjIgHPppZcCkJuby8iR\nI0lNTQVg8ODBeL1ePvzwQ7Zv305ZWRkAXq+XgwcPMmnSJFatWsX999/P5MmTKS4u/kLfWVlZLFmy\nhCeffJJQKMSRI0fi5y655BIMwyA3N5fMzEwuuOACAHJycvB6vQCMHj2anJyceJy7d+/uuW+EiIic\ntwYNGsRvf/tbDMM44fiNN97IjTfeCMDPfvYz8vPzT9uPCj4RERlwjp828/kpNJZl4XQ6+d73vsft\nt9/+hWvXr1/PRx99xMaNG3nllVdYvXr1CecXLlzIzTffzC233EJVVRU/+tGP4ufsdvtpX/f4rx2P\nP/+LXkREBoaxY8fy7rvvMnnyZNavX09GRgYTJ07kBz/4AS+88ALNzc3s3r2bCRMmnLYfFXwiIpKw\nbDYb4XD4nK+77LLLePnll5k9ezamafLMM8/wrW99i3/+85/k5+dzzTXXcOWVVzJlyhTC4TCGYRAK\nhYDYdNExY8YAsGHDBoLB4Dm99t69e6mrqyM7O5t//OMfXHbZZeccv4iI9C87d+5k8eLF1NTUYJom\nmzZt4p577mHZsmWsXLkSl8vFsmXLME2ToqIiiouLMQyDhx566AsfIH6eCj4REUlY2dnZDBkyhOnT\npxONRs/6uuuvv57t27dTUlKC3W5n3LhxDBs2DJ/Px4IFC3A6nViWxdy5czFNk6uuuoolS5ZgWRZz\n5szhvvvuo6CggO9///ts3ryZxx9/HI/Hc1avPXr0aJ544gn27dtHWloa06ZN6+zbFxGRfmLChAm8\n+uqrXzi+atWqLxybNWsWs2bNOuu+DetMd/mJiIhIr/jwww9Zvnw5v/vd7/o6FBERSRDah09ERERE\nRCRBaYRPREREREQkQWmET0REREREJEGp4BMREREREUlQKvhEREREREQSlAo+ERERERGRBKWCT0RE\nREREJEGp4BMREREREUlQ/wc8C3ikX6/GDQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "mXCu68A-kolG",
+ "colab_type": "code",
+ "outputId": "6ccbf251-d729-41d2-b92e-ff5b8c74a94c",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 389
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "sample.set_index('event_id')['timestamp'].plot()"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 160
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAFjCAYAAAAU+4NuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XlgVPW99/H3JJPJvu8k7IR9UxYb\nkaApSKzVolbRAi71uV3AIpbahWrpI71WLPT2Qu/V3tRaC/bR1ktdbqup1iJ6BQSRQBAMAQLJhOyT\ndbLN5Dx/REeRhASyTM7k8/orOXNm8v0ynHxyfnPO72cxDMNARERETMPP2wWIiIjIxVF4i4iImIzC\nW0RExGQU3iIiIiaj8BYRETEZhbeIiIjJDLrwzs/PZ+HChWzfvv2C+z333HPccsst3H777eTk5AxQ\ndSIiIt5n9XYBn+V0OtmwYQPp6ekX3K+qqorf/e53vPLKKwDcddddLFiwgKCgoIEoU0RExKsG1Zm3\nzWYjOzubhIQEz7aCggLuvPNO7rrrLlauXEldXR12u50xY8YQGBhIYGAgEydOJDc314uVi4iIDJxB\nFd5Wq/W8s+cNGzbwyCOP8MwzzzBv3jyeffZZRowYQX5+PtXV1TQ2NvLBBx9QVVXlpapFREQG1qAa\nNu/MoUOHePjhhwFobW1l2rRpREVF8eCDD7Jy5Uri4+MZN24cmuVVRESGikEf3sHBwfzhD3/AYrGc\ns/26667juuuuA+C73/0uKSkp3ihPRERkwA2qYfPOTJw4kV27dgHw17/+ld27d+NyuVixYgUtLS1U\nVFRw9OhRpk6d6uVKRUREBoZlMK0qlpeXx8aNG7Hb7VitVhITE1mzZg2bN2/Gz8+PwMBANm/eTFRU\nFM8++yx//vOfsVgsfP/73+/2CnURERFfMajCW0RERLo36IfNRURE5FwKbxEREZMZNFebV1TUe7uE\nPhUdHYLD4fR2Gf1CvZmTejMn9WZOPektPj78kl9fZ979xGr193YJ/Ua9mZN6Myf1Zk793ZvCW0RE\nxGQU3iIiIiaj8BYRETEZhbeIiIjJKLxFRERMRuEtIiJiMgpvERERk1F4i4iImIzCW0RExGQU3iIi\nIiYzaOY2FxERGUza2w0amtvIP1NDdV0zE0dGMyLx0ucj70sKbxERkc85etrBr/6cS5ur3bNt+thY\n1tw6w4tVfUrhLSIiAjibXdQ0tFBgr+X3rx4DICYikMvS4hmTHMGUMTFervBTCm8RERlyCoprKSqv\n59TZeipqmqhpaKHM0XTOPlPHxLDqpmkEBgy+1c96FN75+fmsXLmSu+++m+XLl5/zWGZmJklJSfj7\ndzS3adMmEhMTAWhububLX/4yK1eu5Oabb+7j0kVERC5ObWMr+UU1PPFi3jnbQwKtJMeGMDo5gqiw\nQCaPimbyqMFzpv153Ya30+lkw4YNpKend7lPdnY2oaGh521/4okniIyM7F2FIiIiPdTmaqexuY3q\nuhYKS+twNrtw1Ldw6mwdNQ0t1DS0evYdlRTOzRljmDAiigCTrS3ebXjbbDays7PJzs6+qBc+ceIE\nBQUFXH311Zdam4iISLf2HStnd14pjoYWissbcLcbne4XGxHI6ORwRidHkBQTwpVTkwgJChjgavtG\nt+FttVqxWi+82/r167Hb7cyaNYu1a9disVjYuHEjDz/8MC+++GKfFSsiIlJe04SjrpkTJXU46lr4\nx4FiACwWiAoLZFRSOJGhNmIjgxiZFE6QzUpCdDARITYvV953en3B2urVq5k/fz6RkZGsWrWKnJwc\nmpubmTlzJsOHD+/x60RHh2A12bBFd+LjB8f9gP1BvZmTejOnodibYRg0tbg4U1bP8TM1nCqppfBs\nHaVVTuqdreftP3N8PP/3X9Lx87P0d8k91p/vW6/De8mSJZ6vMzIyyM/P5+TJkxQVFbFz505KS0ux\n2WwkJSVx5ZVXdvk6Doezt6UMKvHx4VRU1Hu7jH6h3sxJvZnTUOytvd3gJ797j5LKxvMeiwqzMSop\nnAkjoogMDWTiyCjCg21EhwdSVdUwEGX3SE/et96Ee6/Cu76+njVr1vDEE09gs9nYt28fixcvZvXq\n1Z59tm7dSkpKygWDW0REhh53u0G5w0lFTTMnSmqpqm3mZEkd9s+E9pVTkxiZFM6IhDBGJ0dgG4S3\nbXlDt+Gdl5fHxo0bsdvtWK1WcnJyyMzMJDU1lUWLFpGRkcHSpUsJDAxk8uTJZGVlDUTdIiJiEs7m\nNvJOVdPc6sbZ7OJIYTXNLS6KKhppbXOft39STAgJ0cHcNH8MI5N89yOD3rAYhtH5ZXkDzNeGhYbi\nUJcvUG/mpN4Gr3bD4LHtByiw1573WGSYjZS4UIYnhJEQFczYlEhiIoIICzbnFeCfNaiHzUVERABc\n7nbqGls5XVZPcXkD9spGzpQ1UFr96fVMd183kdAgK8GBVsYPjyI5KdLUf5h4k8JbREQuyTuHzrLv\nWDnO5jYKS+s7vb96WFwoidHBXH1ZCtPGxHqhSt+k8BYRkR5xNrsorXZyprzj7PrNA3ag4/7qIJuV\n4QlhDI8PY0xKBMNiQ0mODdEFZv1E4S0iIudoc7mpaWjl2BkHNQ2tHC+qobq+pdNbt+ZMTOBbX5mC\nxTJ47q8eChTeIiLi8fd9RTz3j+PnbbcACVHBJMWGMC4lkjHDIkiODSUqzKbg9gKFt4jIEONyt1NZ\n20xdYysF9lpqG1o5W92IvaIRR30LADPGxjIsLpS04VHEhAcyIlG3bA0mCm8RER/W5nLzwfFK6hpb\nyS+upbzaib2ysdOLy/z9LIxODmfiiGhuvWacF6qVnlJ4i4j4qKLyBv68s4C8k9XnbE+MDiY1Poy4\nqCAiQwOZMCKKkCArsRFBWP39vFStXAyFt4iIybW2uXHUt3C8uJZ3885SWdtMQ1Mbza2fzl52U8YY\n0lIiGT88alAt3iGXRuEtImJS//3WCT4sdHC6tJ72z02WmRIXSlhwAJNHxzA8IYyZ4+K8VKX0B4W3\niIgJtLcbFJU30NDUxsmSWgpL6/ngeCXQMc3ouJRIkmJCmDAiiskjY3R27eMU3iIig0xLq5vq+maO\nnXZwpsLJ8SIHZ6sa6WwlijsWprFo9vCBL1K8SuEtIjKI5BZUsuW/D50X1InRwSTFhDA6OYKo8EDG\nDIsgPjKYQJtmMBuKFN4iIl5SVdvM2epGCoprKXM0ccJeS2VtMwDJsSHMmpBA+oxhxIUGEGBVSMun\nFN4iIgOkzOFk/7Fyjp52YK9opLax9bx9RiSGkRofxt3XTcTq72f6JUGlfyi8RUQGQFOLi0e3vU+9\nsw2AIJs/Y4ZFkJYaSWJ0iGcms+BA/VqW7ul/iYhIP3C3t3O2ysnhk1UcKqjieHEt7YaBBdjwf65g\nWFyot0sUE1N4i4j0IcMw2P56PnuPlOFscXm2D4sLZea4OK6cmqTgll5TeIuI9JGq2mZy3jvDPz9e\n53r62FjSUiOZMS6OlLhQrb4lfUbhLSLSSy53O2/nlrDt7/mebcsWjeeLs1K9WJX4MoW3iEgv/d/f\n78Ne0QjA6OQIvnHjZBKjQ7xclfgyhbeIyEWqrmumwF7LvmPlHDlV7VkAZM2t05k2JlbD49LvFN4i\nIj2QW1DJ4ZNV5J2qptzRdM5jE0dEccOVo5g0KsZL1clQo/AWEbmAdsPgnUNn+f2rxzzbUuPDmDwq\nmokjopk4Moogm36VysDS/zgRkc9wNrdxuqyBAnstJZWNvP9ROS53x0TjU8fE8M0bpxAaFODlKmWo\nU3iLiAB1ja389n8+5Ehh9TmLglj9/Zg1Po5ZE+K5fHw8tgDNMS7ep/AWkSGtqraZDwureeXdQs+i\nIBkzkhmZGE5aahTx0cEEKrBlkFF4i8iQ0eZqp9zh5MNCB4WldeQX1VJV1+x53Bbgx8N3ziYlPsyL\nVYp0T+EtIkNCa5ub7/3nuzQ0tXm2WSwwdlgE44dHMWV0DGmpUQRY/bxYpUjPKLxFxCe1udopKK7h\nw9MOTpbUcfS0w/PYkqtGM3VMLKnxofoMW0xJ4S0iPiXvVBWv7jnDsTOOcy48CwsO6Lgfe95ohido\nWFzMTeEtIj6jtc3NL5/PBSAqzMaEEdFMHxNL2vBIYsKD8PPTzGfiGxTeImJqzmYXuz4o5q33i3jv\naDnQcT/2d2+b6eXKRPqPwltETOlgQSWv/G8hp87WebYF2fyZOymBmzPGerEykf6n8BYRUymvaSK3\noJL/98ZxACLDbFw5fRiTh0cxfngkAVZdgCa+r0fhnZ+fz8qVK7n77rtZvnz5OY9lZmaSlJSEv3/H\nAbNp0yYiIiL44Q9/SFVVFS0tLaxcuZJrrrmm76sXEZ/mbm+n3NFE3qlqTthrKbDXUl3X4nl87LAI\nfnznbOLjw6moqPdipSIDq9vwdjqdbNiwgfT09C73yc7OJjQ01PP93/72N6ZOncq//Mu/YLfb+frX\nv67wFpGLtvm5gxw7U+P53gKkpUYyeVQMl6XF6apxGbK6DW+bzUZ2djbZ2dk9ftEvfelLnq/Pnj1L\nYmLipVUnIkNKQ1MbH51xcPS0g4MFlZ6z7CVXjWby6BiGJ4RpqlIRehDeVqsVq/XCu61fvx673c6s\nWbNYu3atZyH622+/ndLSUp588sm+qVZEfI6jvoU3DxSTd7Ka02XnDn2PTg7nS18YxawJ8V6qTmRw\nshjGZ6cx6NrWrVuJjo4+7zPvF198kfnz5xMZGcmqVau46aabyMrK8jx+9OhRvv/97/Pyyy97Qr0z\nLpcbqy40ERlSjp2u5rFn9lH18YIgKfGhTB8Xz7RxcVw+IYHQYC29KdKZXl9tvmTJEs/XGRkZ5Ofn\nk5qaSmxsLMnJyUyaNAm32011dTWxsbFdvo7D4extKYOKL19Ao97MaTD0Vl3XzMGCSvJOVpN3qhqX\nu93z2OPfSicuKtjzvbOhGWdDc2cvc57B0Ft/UW/m1JPe4uPDL/n1exXe9fX1rFmzhieeeAKbzca+\nfftYvHgx+/fvx2638+Mf/5jKykqcTifR0dG9+VEiYmLlDie/efkIhWfr+WSoLzjQn8mjYhk/PIpp\nY2LPCW4RubBuwzsvL4+NGzdit9uxWq3k5OSQmZlJamoqixYtIiMjg6VLlxIYGMjkyZPJysqipaWF\nH//4x3zta1+jubmZn/zkJ/j5aaUekaHo1Nk6fr3jMI76jovPrrtiBJdPiGdUUjj++r0gckl6/Jl3\nf/O1oZOhPhxkVuqt95paXJRUNrL/o3L2HCmjtrEVAJvVj0e/8QViIoL6/GfqfTOnod6b14bNRUQ+\nq6nFxQO/fofWtk8/y540MprLx8czf3qylt8U6SMKbxHplYamNg4er+SD4xV8cLzSs31p5jiunJpE\neIjNi9WJ+CaFt4hcNJe7nbcPneXAR+UcKXR4ttsC/JgyKoabF4wlJS70Aq8gIr2h8BaRi+Jub+eP\nr+ez82AJAKFBVuZOTmTOhATGpUZi9ddFaCL9TeEtIt1y1LeQd7KK9/Mr+LCwGpe74zrXWxaM4bov\njMTvAhMwiUjfU3iLSJdKq538518OU1zR6NkWHOjPFyYnMHtiPFPHxCq4RbxA4S0i5ymvaeLg8Uqe\n+0fHmtkWCyyaPZwZ4+JI09C4iNcpvEUEwzA4XlzLu3lnOXyy2jOhCkB0eCAP3zWbqLBAL1YoIp+l\n8BYR/vzPE7z23hnP9xNHRDFpZDSXpcWTqjWzRQYdhbfIEFVZ28S+Y+XkHq8kv7gWgGWLxnPl1CSC\nA/WrQWQw0xEqMoScKatnV24JHxY6KK3+dCW/iJAAbpg3mi/OSvVidSLSUwpvkSHk6b8d43RZx3zL\nqfFhTB8by5VTk0iKDdFV4yImovAWGSJOldRyuqwem9WPx799JRGhmrZUxKwU3iJDgLO5jQe2vAPA\n7QvTFNwiJqfwFvFh7YbB6dJ6/vDaR7jbDSLDbFw9M8XbZYlILym8RXxUS6ubh5/aS2VtMwD+fhZW\n3zLdy1WJSF9QeIv4qDKHk8raZkYmhXPtnOFcd9UYahzO7p8oIoOewlvEx1TUNLHzAzuv7u2YdGXm\nuDjSpyQRYPX3cmUi0lcU3iI+oM7Zyiv/W0huQaVnmBxgXEok6VOTvFiZiPQHhbeIyVXWNLH5T7mU\nfTzpythhEUwbG8uCmSlE6qpyEZ+k8BYxmeq6ZoorGjlyqpoPjlecc6b9r/9yBcmxoV6sTkQGgsJb\nxCR27DrBO4fOUtPQes72UUnhXJYWx+Xj4xXcIkOEwltkkHK52ykoruVESS0n7HUcLKgEYGxKBGkp\nUSTHhXBZWjxhwQFerlREBprCW2QQMAyD0monFTXNfFhYzZHCauwVjefsY/X34/r0kXzlqtFeqlJE\nBguFt4iXGYbB6/uKeO7NgnO2p8SFMnpYBGOSI0hLjWRYXCgWLR4iIii8RbyizeXm8MlqDp2o4tgZ\nB+WOJgAuS4vjqunJpKVGaThcRLqk8BYZYM+8doy3Dpacs21caiRTRsVww7xRWppTRLql8BYZIO3t\nBkfPODzBffVlKUwbHcPUMbEEWP28XJ2ImInCW6Qf1TtbyTtVzfsfVZB3sopWVzsA86YmcefiCV6u\nTkTMSuEt0g+aWlz86s+5HC+u9WwLCbQyfVwcM8fFMmtCgherExGzU3iL9BF3e8d92YdPVvPWQTuN\nzS4Arp0znMvS4kgbHqXPs0WkTyi8RS5Rc6uLEyV1HDvt4OhpB6dK6jA+83hCVDDfWjKFUUkRXqtR\nRHyTwlvkErS53Dy2/QBnyhs826LDA5k4IpqJI6KYmRZHeIgWBRGR/qHwFukhe2Uj731YxsmzdRQU\n19LS5gbgnusmMn1sLBGhNk2iIiIDQuEt0oW3D5VQeLaewtI6iisaafv4SnGA0CArk0bG8cVZqUwZ\nHePFKkVkKOpReOfn57Ny5Uruvvtuli9ffs5jmZmZJCUl4e/vD8CmTZtITEzk8ccf5/3338flcvHN\nb36Ta6+9tu+rF+ljhmFw6EQleaeqeWN/sWd7bEQgw+LCGDssgvkzhhEdHujFKkVkqOs2vJ1OJxs2\nbCA9Pb3LfbKzswkN/XQpwj179nD8+HGef/55HA4HN910k8JbBq2mFhcHj1dy9IyDI6eqcdS3eB67\n+rIUllw1mohQfX4tIoNHt+Fts9nIzs4mOzu7xy86Z84cpk+fDkBERARNTU243W7P2bnIYFDvbGXz\ncwfPuegMIDk2hC+njyIpNoSRSeG6vUtEBp1uw9tqtWK1Xni39evXY7fbmTVrFmvXrsXf35+QkBAA\nXnjhBTIyMhTcMii429vJLagi72QVbx86i7vdwN/PQsbMYcwYG0fG7OHUOJzeLlNE5IJ6fcHa6tWr\nmT9/PpGRkaxatYqcnByysrIAeOONN3jhhRf43e9+1+3rREeHYLX6VsDHx4d7u4R+Y5beDMPgWKGD\nvJOVfHTawd4jpec8PnFkNOvumUt0eJBnm1l6uxTqzZzUmzn1Z2+9Du8lS5Z4vs7IyCA/P5+srCze\nfvttnnzySX77298SHt59Aw4fO9uJjw+noqLe22X0C7P01t5u8Nc9p/nLrpOebcGBVmZPiGf62Dim\njokhMMAfV3MbFc1tgHl6uxTqzZzUmzn1pLfehHuvwru+vp41a9bwxBNPYLPZ2LdvH4sXL6a+vp7H\nH3+c3//+90RFRfXmR4j0WHVdMx+dqeHYGQeVtc3YKxupa2wFIOuKEWRelkJMRBB+fvoMW0TMrdvw\nzsvLY+PGjdjtdqxWKzk5OWRmZpKamsqiRYvIyMhg6dKlBAYGMnnyZLKysvjTn/6Ew+FgzZo1ntfZ\nuHEjw4YN69dmZOg5kF/B/mPl5BfXUF3Xcs5jwYFWZo6LI214JIvnjtCFZyLiMyyGYRjd79b/fG3o\nZKgPB/WndsOgwdnGkcJqsl/5EACLBcYMi2DmuDiGxYUyZVQMtoCLv4bC2731J/VmTurNnAb1sLnI\nQCqw13Lgowr2Hi07517stNRIHrhtBkE2/XcWkaFBv+1k0GtudfHotgMUV3x6P/bo5HDGpkQyeVQM\nU0ZFE+BjdyqIiFyIwlsGrYamNvYcKSXnvSKq6pqx+vtxV9YEZoyLIyw4wNvliYh4jcJbBpWSykb2\nf1RO3qlqCoprPdvDQwK4/6szGDNMa2OLiCi8ZdAoLK3jkd/v93wfGWZj7sRE0qcmMipJoS0i8gmF\nt3hVe7vB/o/K2Z1XSu6JKgBGJIax8qZpxEcGaX1sEZFOKLzFK5zNbTz/ZgHv5pXibu+4WzE40J85\nExO5ZcEYwkO0ipeISFcU3jLg6pytPPU/Rzl8suNM+wuTE7lyWhJTR8d6uTIREXNQeEu/c7e3c/hE\nNYdPVXG00EFp9afz2K9bPotxqZFerE5ExHwU3tKvGpraeCh7D3XONs+2lLhQpoyOYfbEBMalKLhF\nRC6Wwlv6RW1jK7vzSsnZd4Y6ZxuhQVZWLJ7AjLFxBNo0oYqISG8ovKXPGIbB3g/L+Mf7xZwoqfNs\nj48KYtVN0xiR6Lvr9oqIDCSFt/SZd/NKeeqvRwGIDg8kfUoS86YlkRwb6uXKRER8i8JbeqW51cX7\nH3Usy/nJfdo3Z4zh+vSRukdbRKSfKLzlkuQX1fDKu4UcOVXt2RYREkDGzGFkXTFCwS0i0o8U3nLR\nquuaeezZAwCEBQcwe2ICX5icyLjUSPwU2iIi/U7hLT1WXdfMC2+dYM+RMqDjc+3Hv52Ov5+flysT\nERlaFN7SY8+9WcD+Y+UAXDtnODfOG6XgFhHxAoW39FiDsxWAHRtvoMbR6OVqRESGLp02SY+1udvx\n97MQYNV/GxERb9JvYemx1rZ2BbeIyCCgYXO5oDZXO3mnqjjwUQVF5Q1EhmqpThERb1N4S6dKKht5\n9vV8jp52nLP9xqtGe6kiERH5hMJbzlPT0MLm5w/iqG/BYoH505OZNDKGy9LisAVoUREREW9TeAvQ\nsajICXsdu4+UsvOgHcMAfz8Lv16ToVXAREQGGYW3kF9Uwy+fP0irqx0AC7BwdirXp49ScIuIDEIK\n7yHMMAz2HSvnNy8fwTAgLjKI664YwZxJiYQFB3i7PBER6YLCewiqqm3mf/POsudIGaXVTgBS40P5\n0fJZBAfqv4SIyGCn39RDjGEY/GzbfmobOmZLmzomhsVzRjB5VLRWAhMRMQmF9xDR3OrinUNn+ecH\ndmobWvH3s7DxW+nERAR5uzQREblICm8f19jcxtN/O8aB/ArPtpnj4lgyf7SCW0TEpBTePqyhqY1t\nOR95gnvhrFTmTUtmZFK4lysTEZHeUHj7oIMFlez8wM7hk1UYRse2h++azejkCO8WJiIifULh7WP+\n4y+Hef+jjjNtW4Af6VOSuHpmis62RUR8iMLbB7S52sktqGT/R+We4F5101QuHx+vK8hFRHxQj8I7\nPz+flStXcvfdd7N8+fJzHsvMzCQpKQl//46ZuDZt2kRiYuIFnyN9o83l5r/fOslbB0toaXMDYPW3\nsDQzjVkTErxcnYiI9Jduw9vpdLJhwwbS09O73Cc7O5vQ0NCLeo703u4jZfx9XxEAl6XFMW9aMlNG\nxWhKUxERH+fX3Q42m43s7GwSEnp+Jncpz5GeO1vVsVzn7189BsB3b5vBd26ZzuXj4xXcIiJDQLdn\n3larFav1wrutX78eu93OrFmzWLt2bY+eIxfvw8Jqnn+zgKLyBs+2qy9LYfKoGC9WJSIiA63XCbt6\n9Wrmz59PZGQkq1atIicnh6ysrIt+nejoEKxW3zprjI/vuyu8axta2PTcQQBSE8JYOGcEmXOGEx3u\nnYlW+rK3wUa9mZN6Myf1dml6Hd5LlizxfJ2RkUF+fv4lhbfD4extKYNKfHw4FRX1ffJazuY2fvDk\nbgASo4N55OtzAXA1t1HR3NYnP+Ni9GVvg416Myf1Zk5DvbfehHu3n3lfSH19Pffeey+trR2LXOzb\nt4+0tLTevKR8ToG9lvt+9TaNzS6SY0P4yd1zvF2SiIh4Wbdn3nl5eWzcuBG73Y7VaiUnJ4fMzExS\nU1NZtGgRGRkZLF26lMDAQCZPnkxWVlanz9m6dStRUVED0ZPPsFc28m9/6hgqT0uN5P6vTteSnSIi\ngsUwPplA07t8beikN8NB7vZ2XnrnFP/z7mkAEqKCefju2YQGBfRliZdsqA91mZV6Myf1Zk79PWyu\n07hBaMdbJ3l17xkAbr1mLNfOGY6/X68+4RARER+i8B4knM0u3jxQzP8ePkuZowmAVTdNY9aEeC9X\nJiIig43CexB472gZT/31KG2udgBGJISRMXMYl4+P83JlIiIyGCm8vcgwDD46U8OTLx0B4KppyXwp\nfSRJMSFerkxERAYzhbcXtLnc7Mo9y5sHijlb1XF/+6SR0Xz9+klerkxERMxA4T3A6p2t/PA3e2hq\ncQEwOjmCRXNSmTVe88CLiEjPKLwHkL2igS3/fYimFheRoTbWLp1JakKYt8sSERGTUXgPgNqGFnbs\nOsnbh84CEBsRyP1fnaHgFhGRS6LwHgD/9qdczpQ34O9n4ZYFY7l27nD8LBZvlyUiIial8O5HZ8rq\neeGtE5z5eAnPLffP1/SmIiLSa0qSftDU4uKhJ/+X3OOVQMcw+V1ZExXcIiLSJ5Qm/eB/3i30BPeK\na8czf8YwrP6a3lRERPqGwrsPOepbeP7N47x3tByAB++4jEkjo71clYiI+BqFdx9paXPzk6f20tjs\nIjYiiFW3zmBUfKi3yxIRER+k8O4DLnc7//XyERqbXYxICOMnd88hMTHCZ5e6ExER71J494JhGLyb\nV8of3zhOU4sLq78fyxdPwM9Pt4GJiEj/UXj3wgl7HU/99SgA41Mj+caNU4iJCPJyVSIi4usU3r1w\npLAagKwrRnDbNeO8XI2IiAwVun/pEhmGQd7JKgCumJTo5WpERGQoUXhfosLSek6U1DEiMYwRiZqj\nXEREBo7C+xLUNrby6x2HAZg9IQGL5ikXEZEBpPC+BP/+51wc9S1cOTWJ69NHerscEREZYhTeF+mj\nMw4KS+sJsvlzz5cm6qxbREQGnML7ItQ0tPDLP+UCsGLxBPz99M8nIiIDT+lzEXblltDmamfR7OGk\nT0nydjkiIjJEKbwvwqETHbfbOk6EAAAYAElEQVSGLZqT6uVKRERkKFN4X4RyRxP+fhbNoiYiIl6l\n8O4hZ7OLhqY2xqVE4qeL1ERExIsU3j30xv4iAFLjNSGLiIh4l8K7hw4WVAJw1fRkL1ciIiJDncK7\nB6rrmiksrSc6PJCRSeHeLkdERIY4hXcPPPFiHgBXTdNZt4iIeJ/CuxsudzsnSuqIDLWxZP5ob5cj\nIiKi8O7OO4fPAjBtTKymQhURkUFB4X0BLnc7L759CoDFc4d7uRoREZEO1p7slJ+fz8qVK7n77rtZ\nvnz5OY9lZmaSlJSEv78/AJs2bSIxMZFHH32U3NxcLBYL69atY/r06X1ffT87Ya+lrrGVWRPiSdEt\nYiIiMkh0G95Op5MNGzaQnp7e5T7Z2dmEhoZ6vn/vvfc4ffo0zz//PCdOnGDdunU8//zzfVPxAPrr\nntMATBoZ7eVKREREPtXtsLnNZiM7O5uEhIQev+ju3btZuHAhAGPHjqW2tpaGhoZLr9JLTthrsQX4\ncfVlKd4uRURExKPb8LZarQQFXXgu7/Xr13PHHXewadMmDMOgsrKS6OhPz1ZjYmKoqKjofbUDyOVu\np6nFzZjkCE2HKiIig0qPPvO+kNWrVzN//nwiIyNZtWoVOTk55+1jGEa3rxMdHYLV6t/bcvrM3ryO\nq8xHJEcSH39pE7Nc6vPMQL2Zk3ozJ/VmTv3ZW6/De8mSJZ6vMzIyyM/PJyEhgcrKSs/28vJy4uPj\nL/g6Doezt6X0qfc+Du/Lx8VSUVF/0c+Pjw+/pOeZgXozJ/VmTurNnHrSW2/CvVe3itXX13PvvffS\n2toKwL59+0hLS2PevHmeM/AjR46QkJBAWJh5rtZ2Nrt4N68UgIToYC9XIyIicq5uz7zz8vLYuHEj\ndrsdq9VKTk4OmZmZpKamsmjRIjIyMli6dCmBgYFMnjyZrKwsLBYLU6ZM4fbbb8disbB+/fqB6KXP\n/HlnAQ1NbVw9cxhRYYHeLkdEROQc3Yb31KlT2bZtW5eP33XXXdx1113nbf/e977Xu8q86GRJHQC3\nXjPOy5WIiIicTzOsfU5ZtZOi8gZGJIQRHNjrSwJERET6nML7c/Z/VA7AzLQ4L1ciIiLSOYX35xwv\nrgXg8vEXvjpeRETEWxTen1FU3sChE1WEBlkZFhfa/RNERES8QOH9GbsOlgBwW+Y4rP76pxERkcFJ\nCfWxNpebd4+UYvW3aMhcREQGNYX3x94+dJamFhfzpw8jNCjA2+WIiIh0SeH9sXJHEwBXTE70ciUi\nIiIXpvD+WGl1x9zqSTEhXq5ERETkwhTeHztdVk9ESADhIRoyFxGRwU3hDdgrG6ltaCU1IQyL1u4W\nEZFBTuENvLbnNACzdJW5iIiYgMIb+PC0gwCrHwsuS/F2KSIiIt0a8uHd3m7gqG8hOTYEPw2Zi4iI\nCQz58H4/vwKAmPAgL1ciIiLSM0M+vIvK6wHImDHMy5WIiIj0zJAPb3tFIwDDE8K8XImIiEjPDPnw\nrqprxhbgR0xEoLdLERER6ZEhH94VNU2EBwfo/m4RETGNIR3e7x0to6nFzYjEcG+XIiIi0mNDOryP\nF9cCMH+6LlYTERHzGNLhXVLZcbHauNRIL1ciIiLSc0M2vF3udo4X1xAZZiM0yOrtckRERHpsyIZ3\nbUMrLrfBmOQIXawmIiKmMmTD+9W9HYuRjNTFaiIiYjJDMrzd7e28c+gsAJmzUr1cjYiIyMUZkuFt\nr2ik1dXO3EkJhAUHeLscERGRizIkw3vnwRIARiZpyFxERMxnSIb30cJq/CwWFs0e7u1SRERELtqQ\nC2+Xu50yRxMjEsOw+g+59kVExAcMufTa+2EZAKOSI7xciYiIyKUZcuF98mwdANNGx3i5EhERkUsz\n5MK7rNoJwMSR0V6uRERE5NIMqfBubzcoKK4lOTaE4EBNiSoiIuY0pML7dFk9ra52zaomIiKm1qPw\nzs/PZ+HChWzfvr3LfTZv3syKFSsAaG9v5+GHH+b2229nxYoVnDhxom+q7aX/fqujjvHDo7xciYiI\nyKXrNrydTicbNmwgPT29y30KCgrYt2+f5/t//OMf1NfX89xzz/Gv//qvPP74431TbS+0udo5Wugg\nMsxGxkyt3y0iIubVbXjbbDays7NJSEjocp/HHnuMBx54wPN9YWEh06dPB2DEiBGUlJTgdrv7oNxL\ntyu3BAOYMTYOP60iJiIiJtZteFutVoKCgrp8fMeOHcydO5eUlBTPtvHjx/POO+/gdrs5efIkRUVF\nOByOvqn4EtQ1tnqGzBforFtEREyuV5dc19TUsGPHDp5++mnKyso82xcsWMCBAwdYtmwZEyZMYMyY\nMRiGccHXio4OwWr17005XXr36AmaW90sXTSeudNTun9CH4mP990L49SbOak3c1Jv5tSfvfUqvPfs\n2UN1dTXLli2jtbWVM2fO8Oijj7Ju3bpzhtEXLlxIbGzsBV/L4XD2ppQutbncPP/6RwCkxARTUVHf\nLz/n8+LjwwfsZw009WZO6s2c1Js59aS33oR7r24Vy8rK4m9/+xt/+tOf+PWvf82UKVNYt24dx44d\n40c/+hEAu3btYvLkyfj5eeeutLNVTuqdbSREBzN19IX/gBARETGDbs+88/Ly2LhxI3a7HavVSk5O\nDpmZmaSmprJo0aJOnzN+/HgMw+CrX/0qgYGBbNq0qc8L76mKmmYArp45cMPlIiIi/anb8J46dSrb\ntm3r9oVSU1M9+/n5+fHYY4/1vro+cMJeC0BidLCXKxEREekbPj/D2uGTVYDmMhcREd/h0+Hd1OKi\npKqR0cnhmstcRER8hk+H91sHSzAMmKIL1URExIf4dHgXVzQAMG9qkpcrERER6Ts+Hd5l1U4sFoiN\n7HqGOBEREbPx7fB2NBETHojV36fbFBGRIcZnU63N5aahqY2E6BBvlyIiItKnfDa8q+paAIgKs3m5\nEhERkb7ls+HtbHYBEBka6OVKRERE+pbPhndTS0d4BwX2z0plIiIi3uLz4a3JWURExNf4bni3fhze\nNoW3iIj4Fp8N7+ZWNwDBGjYXEREf47vh7fnMW2feIiLiW3w2vBuaNGwuIiK+yWfD+2xVIwCRobrP\nW0REfIvPhndFbTNBNn/Nay4iIj7HJ8Pb2eyirNpJYoymRhUREd/jk+F9uqwegOEJYV6uREREpO/5\nZHi3udoBSIwO9nIlIiIifc8nw7vdMADw87N4uRIREZG+55PhbbR/HN4WhbeIiPgenwzvj7Mbi8Jb\nRER8kE+Gt/HJsLmyW0REfJBPhrc+8xYREV/m0+GtYXMREfFFPhneRsedYho2FxERn+ST4e0ZNteZ\nt4iI+CCfDm8Nm4uIiC/yyfD+OLvx88nuRERkqPPJeGvXJC0iIuLDfDK8m1vdAARYfbI9EREZ4nwy\n3Rqb2wAID7F5uRIREZG+55Ph/cmqYjrzFhERX+ST6dbm7ghvm8JbRER8UI/SLT8/n4ULF7J9+/Yu\n99m8eTMrVqwAoLGxkfvuu48VK1Zw++238/bbb/dNtT2kM28REfFl1u52cDqdbNiwgfT09C73KSgo\nYN++fQQEBADwl7/8hdGjR7N27VrKysq46667eO211/qu6m64Pg5vq7/CW0REfE+36Waz2cjOziYh\nIaHLfR577DEeeOABz/fR0dHU1NQAUFdXR3R0dB+U2nOfnHnbAvwH9OeKiIgMhG7PvK1WK1Zr17vt\n2LGDuXPnkpKS4tl2/fXXs2PHDhYtWkRdXR2/+c1v+qbaHvrkM+8AnXmLiIgP6ja8L6SmpoYdO3bw\n9NNPU1ZW5tn+0ksvMWzYMJ566imOHTvGunXr2LFjxwVfKzo6BKu1j86UP56cJTkpAn8vBnh8fLjX\nfnZ/U2/mpN7MSb2ZU3/21qvw3rNnD9XV1SxbtozW1lbOnDnDo48+SktLC1dddRUAEydOpLy8HLfb\njb9/1+HscDh7U8o5okJtJMeGUF3d2GevebHi48OpqKj32s/vT+rNnNSbOak3c+pJb70J916Fd1ZW\nFllZWQAUFxfzox/9iHXr1vG73/2O3NxcFi9ejN1uJzQ09ILB3dfuyprgWZxERETE13Qb3nl5eWzc\nuBG73Y7VaiUnJ4fMzExSU1NZtGhRp89ZunQp69atY/ny5bhcLn7605/2dd0XZLFY8Ne85iIi4qMs\nhjE4TlF9behkqA8HmZV6Myf1Zk5DvbfeDJvrcmwRERGTUXiLiIiYjMJbRETEZBTeIiIiJqPwFhER\nMRmFt4iIiMkovEVERExG4S0iImIyCm8RERGTUXiLiIiYzKCZHlVERER6RmfeIiIiJqPwFhERMRmF\nt4iIiMkovEVERExG4S0iImIyCm8RERGTsXq7gMGosbGRH/zgB9TW1tLW1saqVauYN28ev/zlL3nh\nhRfYs2ePZ99nnnmGV155BcMwuPnmm1m2bBlbt27llVdeITExEYAbb7yRW2+9lXfffZdf/vKX+Pv7\nk5GRwapVqwB49NFHyc3NxWKxsG7dOqZPn+713oqLi7nhhhuYOnUqANHR0WzZsoX6+nrWrl1LfX09\nISEhbN68maioKFP1tnPnTp566inP844cOcKrr77Kv/3bv3HkyBGioqIAuPfee7n66qt5+eWXeeaZ\nZ/Dz8+O2227j1ltvpa2tjR/+8IeUlJTg7+/Pz3/+c4YPH95vvXXVX3x8PI888gh+fn5ERESwefNm\ngoOD+e1vf8trr72GxWLhvvvuY8GCBaZ777rqzReOuc56q6qq8oljrrPe9u7da7pjrrPeWltb+a//\n+i8CAgKIiYnhF7/4BYGBgd453gw5z7Zt24xNmzYZhmEYpaWlxuLFi40nnnjC2L59uzF37lzPfmfO\nnDFuvPFGo62tzWhpaTGuueYao66uztiyZYuxbdu28173uuuuM0pKSgy3223ccccdxvHjx429e/ca\n3/jGNwzDMIyCggLjtttuGxS9FRUVGTfddNN5z9+6dauRnZ1tGIZhPPfcc8bjjz9uut4+q7Cw0Pj2\nt79tGIZh/OAHPzDefPPNcx5vbGw0rr32WqOurs5oamoyrr/+esPhcBg7duwwfvrTnxqGYRhvv/22\ncf/99/djZx0662/ZsmVGbm6uYRiG8dhjjxnbt283zpw5Y9x0001GS0uLUVVVZSxevNhwuVyme++6\n6s0XjrnOevOVY66z3j7LLMdcZ73deeedRl1dnWEYhvHDH/7QePnll712vGnYvBPR0dHU1NQAUFdX\nR3R0NMuXL2fZsmXn7JeSksIf//hHrFYrNpuNoKAgGhoaOn3NoqIiIiMjSU5Oxs/PjwULFrB79252\n797NwoULARg7diy1tbVdvsZA9taV3bt3s2jRIgCuueYadu/eberetm7dyn333dfl47m5uUybNo3w\n8HCCgoK4/PLLOXDgwDn/DldeeSUHDhzo22Y60Vl/Tz75pOcv9JiYGGpqati7dy/z58/HZrMRExND\nSkoKBQUFpnvvOuvNV465znrrii+8b59llmOus96eeeYZwsPDcblcVFRUkJiY6LXjTeHdieuvv56S\nkhIWLVrE8uXL+cEPfkBYWNh5+/n5+REaGgrAO++8Q3R0NMnJyQC89tpr3HPPPXzzm9+kqKiIiooK\nYmJiPM+NiYmhoqKCyspKoqOjz9vu7d4AKisrWb16Nbfffjsvv/yyZ9snfcTGxlJeXm7K3gDKysqo\nrKxk8uTJnm3bt2/nzjvv5IEHHqC6uvqcfj/bw2e3+/n5YbFYaG1t7bfe4ML9OZ1OXnrpJbKysnpU\ns5neu8/25mvH3Gd7A9865j7fG5jrmOusN4AdO3awcOFCRowYwdy5c712vCm8O/HSSy8xbNgwXn/9\ndZ555hkeeeSRC+5/8OBBNm7cyKZNmwBYsGAB999/P08//TQ33ngjP/vZz3r8s41+nq22p71FRUVx\n//33s3nzZv7zP/+Tf//3f6e8vLxXtQ6W3j7x4osvcuONN3q+/8pXvsL3vvc9/vCHPzBp0iR+/etf\nn/ecrnro796g6/6cTiff/va3+frXv87YsWN7VJtZ3ruuevOFY+7zvfnSMdfV+2amY66r3m6++Wbe\neOMNamtreeWVV3pUV3+8bwrvThw4cICrrroKgIkTJ1JeXo7b7e5032PHjvHQQw/xxBNPeM4Apk+f\nzpw5cwDIzMwkPz+fhIQEKisrPc8rKysjISHhvO3l5eXEx8f3V2s97i0sLIxbbrnFc2HG1KlTOXny\nJAkJCZ6/CLvqYbD39omdO3dy5ZVXer5PT09n0qRJQNfvW3l5uae3T/4d2traMAwDm83WH215dNZf\na2srK1eu5Mtf/jI333wzwAXfDzO9d531Br5xzHXWm68cc129b2CuY+7zvRUXF7Nz504ArFYrX/zi\nF3n//fe9drwpvDsxcuRIcnNzAbDb7YSGhuLv73/efm63m3Xr1rFlyxZSU1M923/2s5+xf/9+AN57\n7z3S0tJITU2loaGB4uJiXC4X//znP5k3bx7z5s0jJycH6LgCMyEh4YJDvQPV2549e/j5z38OdPwV\nfezYMUaPHs28efN47bXXAPj73//O/PnzTdfbJ4qKikhKSvJ8/53vfIeioiIA9u7dS1paGjNmzODw\n4cPU1dXR2NjIgQMHmD179jn/Dv/85z+54oor+q2vT3TW31NPPcXcuXO59dZbPft94QtfYOfOnbS2\ntlJWVkZ5eTnjxo0z3XvXWW++csx11puvHHOd9fYJMx1zn+8tPDyc9evXU1ZWBsChQ4cYPXq01443\nrSrWicbGRtatW0dVVRUul4v777+fN954g/z8fA4cOMDll19OZmYmaWlpfPe732XChAme5z744IME\nBgayfv16rFYrFouFn/3sZ4wcOZJ9+/Z5hvmuvfZa7r33XgA2bdrE/v37sVgsrF+/nokTJ3q9txUr\nVvDQQw9x6tQp3G43d9xxB7fccguNjY08+OCD1NTUEBERwS9+8QvCw8NN1ds999yDw+Hga1/7Gq++\n+qrn+Xv27OEXv/gFwcHBhISE8POf/5zY2Fhee+01nnrqKSwWC8uXL+fGG2/E7Xbz0EMPUVhYiM1m\n47HHHvOcBQ5kfw8++CCpqakEBAQAcMUVV3Dfffexbds2XnnlFSwWC2vWrCE9Pd10711nvc2cOdMn\njrnOevvWt77lE8dcV/8nzXbMddZba2srW7duxWazERcXx8aNGwkODvbK8abwFhERMRkNm4uIiJiM\nwltERMRkFN4iIiImo/AWERExGYW3iIiIySi8RURETEbhLSLneOmlly74eEVFBatXrz5vu8vlOuf+\naxHpPwpvEfEoKyvjueeeu+A+8fHxbNmyZYAqEpHOWL1dgIhcvG3btvHqq6/idrsZM2YMjY2NLFq0\niBtuuAGAH//4x0yZMoXrr7+e9evXU11dTUNDA/fccw833HADW7dupaamhtLSUk6fPs0VV1zBww8/\nzNq1a8nPz+f73/8+jz/+eKc/u7i4mK997Wvs2rWLkydP8uCDDxIcHDwgU8SKSAedeYuYzKFDh3j9\n9dd59tlnef755wkPD2fChAmeuZHb2tp46623+NKXvsSvfvUr5s+fzx/+8Ae2b9/Oli1bqK6uBuDD\nDz9ky5YtvPDCC+zYsYPa2lq+853vMH78+C6D+/P+4z/+g1tuuYXt27dryFxkAOnMW8Rk9u7dy5kz\nZ7jzzjuBjkUsZs+eTW5uLk6nk3379jF9+nSioqLYu3cvhw8f5sUXXwQ6VkMqLi4GYNasWfj7++Pv\n7090dDS1tbUXXUt+fj7f+MY3gI4FUURkYCi8RUzGZrORmZnJT37yk3O2NzY2snPnTt566y2+8pWv\nePZdv34906ZNO2fft95667wV1y5lmQPDMPDz6xjAu9DyqyLStzRsLmIyl19+Obt27aKxsRGAZ599\nlg8++IAbbriB119/nffff59rrrkG6Di7/mQVp+bmZn7605/icrm6fG0/P78LPv55Y8eO5eDBgwDs\n3r37UlsSkYuk8BYxmWnTprFs2TJWrFjBHXfcwXvvvcfEiROZM2cOubm5pKenY7PZALjvvvs4ffo0\nd9xxB8uWLWPy5MlYrV0PuI0bN46qqiruueeeHtWyatUq/vjHP3Lvvfdy8uTJC762iPQdLQkqIiJi\nMvozWUTOU1RUxLp16zp9bN26dUyaNGmAKxKRz9KZt4iIiMnoM28RERGTUXiLiIiYjMJbRETEZBTe\nIiIiJqPwFhERMZn/DxyvNv/IHFLNAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "dIufSs53eemO",
+ "colab_type": "code",
+ "outputId": "e9a7f226-18be-4915-f0fc-4154da1c5b4c",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 351
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "sample.set_index('event_id')['f8'].plot(figsize=(15,5))"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 102
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2sAAAE9CAYAAACV/fpTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xt4k/X9//FX0jaU0pQ2JQHKGVRA\njiKIgIgg6NAJKMJXmfr9KZtTgbkNBcZwHucJdQ5kOg9MhnPytW6KmwI6BZ1CEauAKCDnQ6FN6Pnc\nJvfvDyBS6CGlSe+kfT6uy+vCu3fuvJN3kvt+5fO571gMwzAEAAAAAAgrVrMLAAAAAACcibAGAAAA\nAGGIsAYAAAAAYYiwBgAAAABhiLAGAAAAAGGIsAYAAAAAYSjazDt3uwvMvHtISkqKU05OsdlloAb0\nJ3zRm/BFb8Ib/Qlf9CZ80ZvwFYzeOJ32Gv/GyFozFx0dZXYJqAX9CV/0JnzRm/BGf8IXvQlf9CZ8\nhbo3hDUAAAAACEOENQAAAAAIQ4Q1AAAAAAhDhDUAAAAACEOENQAAAAAIQ4Q1AAAAAAhDhDUAAAAA\nCEOENQAAAAAIQ4Q1AAAAAAhD0WYXAAAAAADBUFhSoYLicklSdn6Z/vbBTh3NLpYk3fe/g9WtfYKZ\n5dUbYQ0AAABARPP6fPrZk2trXefhZZu0dN6YxikoSAhrAAAAAMKSz2fIZxgqLfeqvMKrHQdz9dqa\nHerksmvnwVxZJBlmFxlCdYa1N998UytXrvT//zfffKO///3veuCBByRJPXv21IMPPihJevnll7Vq\n1SpZLBbNnDlTo0aNCk3VAAAAAJqUHQdy9MTrXwW07s6DuZKadlCTAghrU6ZM0ZQpUyRJGzdu1Pvv\nv6/f//73mj9/vvr376/Zs2dr3bp16t69u9577z298cYbKiws1LRp03TJJZcoKioq5A8CAAAAQPgx\nDEOGjo+QHXYX6a11u5VxrEg9UlqrW/sE/d/Hu8wuMazVaxrkkiVL9Nhjj+mmm25S//79JUmjR4/W\n+vXr5Xa7NXLkSNlsNjkcDnXo0EG7du1Sz549Q1I4AAAAgMZT6fUpt7BMkrT2qwxdcF4b7T6Up9Jy\nr97+717/epcOSNG1I7vpV899VuO2svOz9MX2rJDXHOkCDmtbtmxR+/btFRUVpYSEH66ikpycLLfb\nrcTERDkcDv9yh8Mht9tNWAMAAAAi0K5DecrKLVaHNvFa/cUBbdiWWeXv723YX+3tPtmcocwTV2BE\nwwQc1lJTU3Xttdeesdwwqp8pWtPyUyUlxSk6mmmSZnM67WaXgFrQn/BFb8IXvQlv9Cd80Zvw1dDe\nGIahb/dmq4UtSlaLRW999L0++fqw/+9tHXEaM7iT/r5mR0NLlSR5A8gCZgjFazyU75uAw1paWpoW\nLFggi8Wi3Nxc//LMzEy5XC65XC7t3bv3jOW1yckhcZvN6bTL7S4wuwzUgP6EL3oTvuhNeKM/4Yve\nhK+z6c1f3vtOn245EvD6mdnFQQtqklRR6QvatoIp2K/xYLxvagt7AYW1zMxMtWrVSjabTZLUvXt3\nbdq0SYMHD9aaNWt08803q2vXrvrLX/6iWbNmKScnR1lZWTrnnHMaVDgAAAAAqbS8UjkFZbJaLdq6\n+5jWbc7QYXeR2WUhxAIKa263u8r5aPPnz9fvfvc7+Xw+DRgwQMOHD5ckTZ06VTfddJMsFoseeOAB\nWa3W0FQNAAAARDCvz6e/ffC91n51uMryNq1jZYuJUoYnwoNYeM6CjDgWI5CTy0KEoXbzMeUhvNGf\n8EVvwhe9CW/0J3zRm9Dy+nwqLq2U1WrRf748pLc/3Vv3jSJYl7Z27c8Mv9fT0nljgrq9sJgGCQAA\nAOCHi+j5DENl5T6VlleqZYtoffjlIf3zkz0mVxc+DIbWgoKwBgAAANTBMAx98MVBvfERP+KMxkNY\nAwAAQLNkGIb+8+Uh7TqcpwxPsbqn2PXJ5sCvoAiEGmENAAAATZInt0RzXlgf8PqH3IUhrKaZYRZk\nUBDWAAAAEHEqvT59/b1HFV6f8grLVVBcrvyicu06nKfMnBKzywOCgrAGAAAAU1V6fcotKFNBSYW+\n+t6ttklxeu2DnSor98pqschn3sXLAVMR1gAAANDoCksqFBNl1ebdHr3wzrYa1yOoRSa6FhyENQAA\nAASFz2eorMKrvKJyefJKtPNgrv71+X5J0sXnt9WGbzNNrhCNhYwdHIQ1AAAAnJUtuz169s0tAa1L\nUAPqj7AGAAAASccvZe/1GSoqqVBxWaXWfHFQVqtFn27OUKWXoRKgsRHWAAAAmgmfYejFldtUUenT\nV997zC4HQB0IawAAAE2UYRjad7RA67cdVWWlT2u/zjC7JAD1QFgDAACIMF9/79Fbn+xWtNWq/ZkF\nZpcDVINps8FAWAMAAIgAL767TRu2cZEOoDkhrAEAAISRrNwSfbXTrX1HC5R24gqKFjFOATRHhDUA\nAAAT5BSUafaSzwJal6AGNE+ENQAAgEaSX1Su/KJy7c7I07JVO8wuBwghi9kFNAmENQAAgBDxGYZy\nC8q0Zc8x/ZVwhmaF8eBgIKwBAAAEmdfnU2WloTufWWd2KYAp+BH14CCsAQAA1JNhGDIM6cNNB/XG\nR7vMLgcIO0ezi80uoUkgrAEAANTBMAzdv/QLHXIXml0KgGaEsAYAAHCazOxifbI5Q++nHTC7FADN\nGGENAAA0K4UlFXruH1vl9fm0+3C+2eUAQI0IawAAoFk4cqxIn39zVP9ev9/sUgAgIIQ1AAAQ8crK\nvdq0I0sJrWz6w/9tNrscAAiKgMLaypUr9fLLLys6Olq/+MUv1LNnT82ZM0der1dOp1MLFy6UzWbT\nypUrtWzZMlmtVk2dOlVTpkwJdf0AAKAZ8uSWaM4L680uAwBCqs6wlpOToyVLluitt95ScXGxFi9e\nrNWrV2vatGkaP368nnnmGaWmpmrSpElasmSJUlNTFRMTo+uvv17jxo1TYmJiYzwOAADQhFR6fXLn\nlii7oExf7XTro/TDZpcEAI2uzrC2fv16DRs2TPHx8YqPj9fDDz+sMWPG6MEHH5QkjR49WkuXLlW3\nbt3Ur18/2e12SdKgQYOUnp6uMWPGhPYRAACAiPf2p3u08rN9ZpcBAGGlzrB26NAhlZaW6o477lB+\nfr5mzZqlkpIS2Ww2SVJycrLcbrc8Ho8cDof/dg6HQ263O3SVAwCAiGYYhkrLvXrz411a+3WG2eUA\nQNgJ6Jy13NxcPffcc8rIyNAtt9wiwzD8fzv136eqafmpkpLiFB0dFWCpCBWn0252CagF/Qlf9CZ8\n0Zvw4vMZ2nkgRx9+cUClZV6t++qQ2SUBaKZCsX8I5T6nzrCWnJysCy64QNHR0ercubNatWqlqKgo\nlZaWKjY2VpmZmXK5XHK5XPJ4PP7bZWVlaeDAgbVuOyenuOGPAA3idNrldheYXQZqQH/CF70JX/Qm\nPBiGoelPfGx2GQBQRbD3D8HY59QW9uoMa5dcconmzZunn/3sZ8rLy1NxcbEuueQSrV69WhMnTtSa\nNWs0cuRIDRgwQAsWLFB+fr6ioqKUnp6u+fPnN6hwAAAQvgzD0OffHNWXO9zq3Daec84AIMjqDGtt\n27bVlVdeqalTp0qSFixYoH79+mnu3LlasWKFUlJSNGnSJMXExGj27NmaPn26LBaLZsyY4b/YCAAA\niFyZOcX6zZ831LrO17s8tf4dAFB/FiOQk8tChGkq5mO6UHijP+GL3oQvetNwuzPydMRTrAqvT8tX\n7zC7HAAImqXzgnuletOnQQIAgKalvMKrQ+4ipa7dpe0Hcs0uBwBQA8IaAADNQKXXp+KySh12F2nh\n378yuxwAQAAIawAANAGGYaii0qf84nJ9tdOjv//ne7NLAgA0EGENAIAItvKzvXr7071mlwEACAHC\nGgAAEcIwDJVX+vTuZ/u0JyOP880AoIkjrAEAEIb2Hc3Xpu1uvbdhv9mlAABMQlgDACBMbN1zTG9/\nukd7j/DTAwAAwhoAAI2qotKrj9MPa9NOt3YdyjO7HABAGCOsAQAQYoZhaPoTH5tdBgAgwhDWAAAI\nogxPkb7ckaXDniJt/C7L7HIAABGMsAYAwFkoKq3QrGc/NbsMAEATRlgDACAAJWWVkqT3NuzXv9dz\nhUYAQOgR1gAAOMFnGCourdSuw3lalLrF7HIAAM0cYQ0A0OwZhqHScq9m/OETs0sBAMCPsAYAaDYM\nw9D+zAL96Z/fyJNXanY5AADUirAGAGiylq/ZoY/TD5tdBgAAZ8VqdgEAAIRCWbmXoAYAiGiMrAEA\nmpx/r9+nt9btMbsMAAAahLAGAGgyDmQW6M11e/T++n1mlwIAQIMR1gAAEevV97frk80ZZpcBAEBI\ncM4aACBiEdQAAE0ZI2sAgIjg9fnkySvVA3/5QmXlXrPLAQAg5AhrAICw87c1O/Wf9ENmlwEAgKkI\nawAA0xmGoZKySs1e8rnKKhg1AwBAIqwBABqBzzCUV1iux177Ug57C+08lCdJahUbraLSSpOrAwAg\nPBHWAAAhc9vjH52xzJNX6v83QQ0AgJrVGdbS0tJ0991369xzz5UknXfeefrpT3+qOXPmyOv1yul0\nauHChbLZbFq5cqWWLVsmq9WqqVOnasqUKSF/AACAxmcYhrbvz9HeowVyJLTQiyu/NbskAACanIBG\n1i666CItWrTI//+/+c1vNG3aNI0fP17PPPOMUlNTNWnSJC1ZskSpqamKiYnR9ddfr3HjxikxMTFk\nxQMAQmtR6hZ9vctjdhkAADRLZzUNMi0tTQ8++KAkafTo0Vq6dKm6deumfv36yW63S5IGDRqk9PR0\njRkzJnjVAgBCprzCq4xjRVqVdkAbv8syuxwAAJq9gMLarl27dMcddygvL08zZ85USUmJbDabJCk5\nOVlut1sej0cOh8N/G4fDIbfbHZqqAQAN8vFXh/Xv9fuUnV9mdikAAKAGdYa1rl27aubMmRo/frwO\nHjyoW265RV7vD5dVNgyj2tvVtPxUSUlxio6Oqke5CAWn0252CagF/Qlfkdib0vJKbd3l0fLVO8wu\nBQCARheKfXcojwfqDGtt27bVVVddJUnq3Lmz2rRpo61bt6q0tFSxsbHKzMyUy+WSy+WSx/PDeQ1Z\nWVkaOHBgrdvOySluYPloKKfTLre7wOwyUAP6E77CuTcVlT7lFZbpX+v365PNGWaXAwBA2Aj2vjsY\nxwO1hb06w9rKlSvldrs1ffp0ud1uHTt2TNddd51Wr16tiRMnas2aNRo5cqQGDBigBQsWKD8/X1FR\nUUpPT9f8+fMbVDgAIDC/Wvxf5RWVm10GAAAIojrD2pgxY3TPPffoP//5jyoqKvTAAw+od+/emjt3\nrlasWKGUlBRNmjRJMTExmj17tqZPny6LxaIZM2b4LzYCAGg4n2GouLRSL767TfEtY5RbUKbtB3LN\nLgsAAISIxQjk5LIQCdcpRM1JOE/lAv0JZ6Hqzbf7svXUG18HfbsAAEBaOi+4V6o3fRokACC08ovL\ntWrDAe07ms9IGQAA8COsAUAIGYahL3e45ckr1aq0/covrjC7JAAAECEIawAQRHNf+Fzu3FKzywAA\nAE0AYQ0A6qGi0qvDniJt2nVMW3dm6dMtR8wuCQAANFGENQCoRqXXpz+mbtG2vdmSpFhblErLvSZX\nBQAAmhPCGoBmz2cYqqjw6Vh+qTbv8ujNtbvPWIegBgAAGhthDUCzYBiGyit8OppdrAdf/cLscgAA\nAOpEWAPQpBmGoT/98xt9udNtdikAAAD1QlgDELEyPEV69/N96tbOrn2ZBdqwLdPskgAAAIKGsAYg\n7G3Z7dGzb26p8e9p3xLSAABA00NYAxBWvj+Uq692emS1WvTehv1mlwMAAGAawhoAU2RmF2vTjiy9\ntW6P2aUAAACEJcIagEblySvR6x98r693ecwuBQAAIKwR1gAEXVFphXYezFVuQZmWr9lpdjkAAAAR\nibAGICiKSys189lPzC4DAACgySCsAai3Sq9PW3cf0+J/bDW7FAAAgCaLsAagTl/ucGvJPwlmAAAA\njYmwBqBaPsNQbkGZFr+1VfszC8wuBwAAoNkhrAHN2JFjRXrjP7uUlVOszJwSs8sBAADAKQhrQDPk\nyS3RnBfWm10GAAAAakFYA5qwSq9P2w/kqLTMq2WrtquotNLskgAAABAgwhrQxLy1brf+vX6/2WUA\nAACggQhrQBOQW1imXYfy9Ke3vzG7FAAAAAQJYQ2IED7DUGZ2sQ5kFurlf30rr88wuyQAAACEEGEN\niAAVlV79/Kl1ZpcBAACARhRQWCstLdWPf/xj3XXXXRo2bJjmzJkjr9crp9OphQsXymazaeXKlVq2\nbJmsVqumTp2qKVOmhLp2oMnKLSzTr5/7TNFRFlV6GUEDAABojqyBrPT888+rdevWkqRFixZp2rRp\nev3119WlSxelpqaquLhYS5Ys0auvvqrly5dr2bJlys3NDWnhQFP1p39u1a+f+0ySCGoAAADNWJ1h\nbffu3dq1a5cuu+wySVJaWpouv/xySdLo0aO1fv16bd68Wf369ZPdbldsbKwGDRqk9PT0kBYONFWb\ndrjNLgEAAABhoM6w9sQTT2jevHn+/y8pKZHNZpMkJScny+12y+PxyOFw+NdxOBxyuzngBAAAAICz\nVes5a2+//bYGDhyoTp06Vft3w6h+ilZNy0+XlBSn6OiogNZF6DiddrNLAAAAAEIuFMe9oTyWrjWs\nrV27VgcPHtTatWt19OhR2Ww2xcXFqbS0VLGxscrMzJTL5ZLL5ZLH4/HfLisrSwMHDqzzznNyihv+\nCNAgTqddbneB2WU0O8Wlldqyx6NPvs7Q9gOc3wkAANAYgn3cG4xj6drCXq1h7dlnn/X/e/HixerQ\noYO++uorrV69WhMnTtSaNWs0cuRIDRgwQAsWLFB+fr6ioqKUnp6u+fPnN6hooCl6a91u/Xv9frPL\nAAAAQASo9++szZo1S3PnztWKFSuUkpKiSZMmKSYmRrNnz9b06dNlsVg0Y8YM2e1MrQMMw9Dn3xzV\nvz7fp8ycErPLAQAAQASxGIGeYBYCTL8zH9Mgg+tQVqFeee877T/KcwoAABBuls4bE9TtmToNEkDt\nDMNQablXm7ZnacueY/qSy+4DAAAgSAhrQD14fT698999+tfn+8wuBQAAAE0cYQ0IwGF3oe57ZaPZ\nZQAAAKAZIawB1fAZhj7ZnKG/rtphdikAAABopghrgKTcwjI98JcvlF9UbnYpAAAAgCTCGpoxd26J\nNnybqX99vk8VlT6zywEAAACqIKyhWSgr9+rFd7fpq+89ZpcCAAAABISwhiZvx4EcPfH6V2aXAQAA\nANQLYQ1Ngtfn09HsEv3ny0Na+9Vhs8sBAAAAGoywhohXVFqhWc9+anYZAAAAQFAR1hCRvD6fDruL\n9MBfvjC7FAAAACAkCGuICKs3HtCKj3aZXQYAAADQaAhrCGuZOcV66NVNKimrNLsUAAAAoFER1hCW\ndh7M1eN/Sze7DAAAAMA0hDWEldse/8jsEgAAAICwQFiD6TKzi/WbFzeYXQYAAAAQVghrMIXX59Pt\nC9fKMMyuBAAAAAhPhDU0GsMwdNhdpN8t3Wh2KQAAAEDYI6whZErKKnXvnz5XMVdyBAAAAOqNsIaQ\n+OObm7V59zGzywAAAAAiFmENDZZTUKY5z38ur48T0AAAAIBgIazhrJRXeHXH0+vMLgMAAABosghr\nCJjX59Pit7ZqC9MbAQAAgJAjrKFWOw7k6InXvzK7DAAAAKDZIayhRu9+tlf//HSv2WUAAAAAzRJh\nDZKOT3Hcujtbi97aYnYpAAAAABRAWCspKdG8efN07NgxlZWV6a677lKvXr00Z84ceb1eOZ1OLVy4\nUDabTStXrtSyZctktVo1depUTZkypTEeAxpo1rOfqKiU30IDAAAAwkmdYe3jjz9W37599bOf/UyH\nDx/WbbfdpkGDBmnatGkaP368nnnmGaWmpmrSpElasmSJUlNTFRMTo+uvv17jxo1TYmJiYzwO1JPP\nMPTY8i+1OyPf7FIAAAAAVKPOsHbVVVf5/33kyBG1bdtWaWlpevDBByVJo0eP1tKlS9WtWzf169dP\ndrtdkjRo0CClp6drzJgxISodZ+POp9eprMJrdhkAAAAA6hDwOWs33HCDjh49qhdeeEG33nqrbDab\nJCk5OVlut1sej0cOh8O/vsPhkNvtDn7FOCu5hWX69XOfmV0GAAAAgAAFHNbeeOMNfffdd7r33ntl\nGIZ/+an/PlVNy0+VlBSn6OioQEtAPZVXeDV53r/MLgMAAAAIC06nPSK2eVKdYe2bb75RcnKy2rdv\nr969e8vr9apVq1YqLS1VbGysMjMz5XK55HK55PF4/LfLysrSwIEDa912Tk5xwx8BzlDp9en2hWvN\nLgMAAAAIK253QVC353TaG7zN2sKeta4bb9q0SUuXLpUkeTweFRcXa/jw4Vq9erUkac2aNRo5cqQG\nDBigrVu3Kj8/X0VFRUpPT9fgwYMbVDjOzj8/3WN2CQAAAAAayGLUMV+xtLRUv/3tb3XkyBGVlpZq\n5syZ6tu3r+bOnauysjKlpKToscceU0xMjFatWqVXXnlFFotFN910kyZMmFDrnQc72UJav+2oXnr3\nW7PLAAAAAMLO0nnBvfhhqEfW6gxroURYC67dh/P0++Vfml0GAAAAEJYiLawFfIERhK8DmQV64C9f\nmF0GAAAAgCCq85w1hLfcwjKCGgAAANAEMbIWwW57/COzSwAAAAAQIoS1CGQYhqY/8bHZZQAAAAAI\nIaZBRqD9mVyYBQAAAGjqCGsR6KFXN5ldAgAAAIAQI6wBAAAAQBjinLUIUun16faFa80uAwAAAEAj\nYGQtghDUAAAAgOaDsBYhXly5zewSAAAAADQipkFGAH5PDQAAAGh+GFkLcxWVXrNLAAAAAGACRtbC\n2L6j+VymHwAAAGimGFkLUz7DIKgBAAAAzRhhLUz99ImPzS4BAAAAgIkIa2Fo3deHzS4BAAAAgMkI\na2Fo2aodZpcAAAAAwGSEtTBzNLvY7BIAAAAAhAHCWpiZ/+IGs0sAAAAAEAYIa2HkjqfXml0CAAAA\ngDDB76yFidse/8jsEgAAAACEEUbWAAAAACAMMbJmspKySs34wydmlwEAAAAgzDCyZrL7l240uwQA\nAAAAYYiwZqKN32XKk1dqdhkAAAAAwhBhzSSevBK98M42s8sAAAAAEKYCOmftySef1JdffqnKykr9\n/Oc/V79+/TRnzhx5vV45nU4tXLhQNptNK1eu1LJly2S1WjV16lRNmTIl1PVHJJ/P0Jzn15tdBgAA\nAIAwVmdY27Bhg77//nutWLFCOTk5uvbaazVs2DBNmzZN48eP1zPPPKPU1FRNmjRJS5YsUWpqqmJi\nYnT99ddr3LhxSkxMbIzHEVF++uTHZpcAAAAAIMzVOQ1yyJAh+uMf/yhJSkhIUElJidLS0nT55ZdL\nkkaPHq3169dr8+bN6tevn+x2u2JjYzVo0CClp6eHtnoAAAAAaKLqHFmLiopSXFycJCk1NVWXXnqp\n/vvf/8pms0mSkpOT5Xa75fF45HA4/LdzOBxyu921bjspKU7R0VENqT/ibPz2qNklAAAAAM2S02mP\niG2eFPDvrH344YdKTU3V0qVLdcUVV/iXG4ZR7fo1LT9VTk5xoHffZDz8SprZJQAAAADNkttdENTt\nOZ32Bm+ztrAX0NUgP/30U73wwgt66aWXZLfbFRcXp9LS45ecz8zMlMvlksvlksfj8d8mKytLLper\nQYU3Nbc9/pHZJQAAAACIEHWGtYKCAj355JP685//7L9YyPDhw7V69WpJ0po1azRy5EgNGDBAW7du\nVX5+voqKipSenq7BgweHtvoIMuvZT8wuAQAAAEAEqXMa5HvvvaecnBz98pe/9C97/PHHtWDBAq1Y\nsUIpKSmaNGmSYmJiNHv2bE2fPl0Wi0UzZsyQ3R66+ZuRpqi00uwSAAAAAEQQixHIyWUhEuw5o+Fq\n75F8Pbxsk9llAAAAAM3a0nljgrq9sDhnDQ1DUAMAAABQX4Q1AAAAAAhDhLUQO+QuNLsEAAAAABGI\nsBZiv3tlo9klAAAAAIhAhLUQevbNzWaXAAAAACBCEdZCaMvuY2aXAAAAACBCEdZChHPVAAAAADQE\nYS1EOFcNAAAAQEMQ1kJg75F8s0sAAAAAEOGizS6gqfnqe7cWv7XV7DIAAAAARDhG1oKMoAYAAAAg\nGAhrQXTb4x+ZXQIAAACAJoKwFiQ+wzC7BAAAAABNCGEtSA5kFphdAgAAAIAmhLAWBJk5xXro1U1m\nlwEAAACgCSGsBcFv/rzB7BIAAAAANDGENQAAAAAIQ4S1Bqqo9JpdAgAAAIAmiB/FbgB3bonmvrDe\n7DIAAAAANEGMrJ0lr89HUAMAAAAihNViMbuEeiOsnaWfPbnW7BIAAAAABKhz23izS6g3pkHWU0Wl\nVz9/ap3ZZQAAAABo4hhZq6dHX0s3uwQAAAAAzQAja/Vw2+MfmV0CAAAAgGaCkbUAZeUUm10CAAAA\ngLMUgdcXCSys7dy5U2PHjtVrr70mSTpy5IhuvvlmTZs2TXfffbfKy8slSStXrtTkyZM1ZcoUvfnm\nm6Gr2gTbD+SaXQIAAACAZqTOsFZcXKyHH35Yw4YN8y9btGiRpk2bptdff11dunRRamqqiouLtWTJ\nEr366qtavny5li1bptzcphFwcgvL9Or7280uAwAAAEAzUmdYs9lseumll+RyufzL0tLSdPnll0uS\nRo8erfXr12vz5s3q16+f7Ha7YmNjNWjQIKWnN42Lcfz6uc/MLgEAAABAg0TePMg6LzASHR2t6Oiq\nq5WUlMhms0mSkpOT5Xa75fF45HA4/Os4HA653e4gl9v4tu3NNrsEAAAAAM1Qg68GaRhGvZafKikp\nTtHRUQ0tIaSe5gqQAAAAQMSLibHK6bQHfbuh2OZJZxXW4uLiVFpaqtjYWGVmZsrlcsnlcsnj8fjX\nycrK0sCBA2vdTk6YX2HRF0DgBAAAABD+Kip8crsLgrpNp9Pe4G3WFvbO6tL9w4cP1+rVqyVJa9as\n0ciRIzVgwABt3bpV+fn5KiqA2n0bAAAgAElEQVQqUnp6ugYPHnx2FYeJNRsPml0CAAAAgGaqzpG1\nb775Rk888YQOHz6s6OhorV69Wk899ZTmzZunFStWKCUlRZMmTVJMTIxmz56t6dOny2KxaMaMGbLb\nQzck2Bj+7+NdZpcAAAAAIAgi8XfWLEYgJ5eFSLCHIYPtNs5XAwAAAJqE7ikJWnBLcGf+heU0SAAA\nAACIJBE4sEZYqwkXFwEAAACajkg8uies1cDr9ZldAgAAAIBmjLAGAAAAoMljGmQT4skrNbsEAAAA\nAM0YYa0Ge4/km10CAAAAgGCJwKE1wloNXv7Xd2aXAAAAAKAZI6wBAAAAQBgirFVj2artZpcAAAAA\noJkjrFVj3dcZZpcAAAAAoJkjrAEAAABAGCKsAQAAAGjyLBF4OUjCGgAAAACEIcIaAAAAgKYv8gbW\nCGsAAAAAEI4Ia6cpLKkwuwQAAAAAwWaYXUD9EdZOU1HpM7sEAECEGdzLZXYJAIC6MA0y8lkjsIkA\nAHPFt4wxuwQAQB0i8TCfsHY6SyS2Ec1Vm9axZpcAAAAQESLxKJ+wdppIbCKar3tuvMDsEoCwMf7i\nzkHb1l2T+gZtWwBglh9dFLzPRZiDsHaaCDzvEM2YK7Gl2SUgTJ3XKdHsEhpdi5iooG2LSRYIZwPP\naWN2CaiHPt0cpt13XGy0afd9tqZf3Tt0G4/AD3fC2mk+33rE7BIAoME6OFuZXQKAELnrWkZ+I8nM\na/uZdt+ROAjRqmWMBp3nDMm2Iy+qEdbOsGmH2+wSAKDBnK0ZdQWaqugoDt8iydkM5jT3c9LtcVy0\n6STe7afZeyTf7BIAoMFGD+qgq4d1MbsMAGgWbp9wflC3F7TZekYkjq0Fxh4Xo3GDO5ldRsgR1gCg\nCWoRE6XJo3oEZVvP/fLSoGynPk4/JyeQb1ktQT0XIfBtvXjvZUG8XzQF99wwUH0b+TylXp3D4zzV\ni/u0Der2urazB3V7wXbhec46z7E6m7hktZ7dIfqPhjafC4pYLBbZYur3PEXgKWuENaApqe+HVmNp\n2SJ4F34Itgt7hmZefFMSFxutC087f6Bz2/hab7N03pgqIeZ/f9SzXvd5+jl3d0ys+xydMYM61Os+\ngoUpaZDkP8emg7OVzu/qaPRpXLMm9/f/+8qL6jfaMPO6fmqfHBfskoIi3C+QMeO6fhrRr/0Zyzu5\n4uv1+4uzJlc9ry06SD/8G4njaoE+8rZJzWO6f9D3MI8++qj+53/+RzfccIO2bNkS7M3DZB2d8erI\nhQtQT7dddb56d0kyu4xqWSPxazYTnN+1av/qG1BGDWxYkIq11R34W8VWf2DEZxZOF4qr8xknppud\n/ESp9DbuYXLLFj+Empjo+n1B1j45Tg/edtFZ33ePlAT/v/lEPS46yqpnZo7Qn++5rMbElBhvkyRd\nOqC9WtqqhtKoIIW14M44CL5Azs378fCu1Y4YXlnLzxL84vr+ennu6DOWh/vzUZ2ghrWNGzdq//79\nWrFihX7/+9/r97//fTA3jzDw0PSL9ND0oWcsvzeIv/fV3E+qbYpS2sQF9BqJslqU0MrWCBVV9cCt\nQzRt7Ln61dQBjX7fgXrqruF6ePrZH0ydjRfvvUzPzx4lSRo5IKXK3ywWaf7NF1ZZtujukWd9X326\nJtX6Gunazq7Jo7rr/v83xL8skGlfMdFWPTR9qJITGvdz5ZGfnvk5ifAxol+7EG79+MHgtZd2r3PN\nGy4/N6AtVveFQ0KQR+6io6y6uO/ZPS8X9nQFtZZIVN0Xf9FRVsVEW2WcxfjWgCD9PENNMw7iWlQN\nh8kJLc5YZ+60wI7tBlczQ6Wmz9wFtwwOaJsTRnTTOR1b677/HazrLu2uqaPP0a//p+o+urYvDZ2t\nY5vMl7FBDWvr16/X2LFjJUk9evRQXl6eCgsLg3kXTc7pv4X0wK1DalgzfE0e1T1ooybRUVb95qYL\n616xierfI9nsEkz14G0XmfKtbOe2do0d3EmdXLVP7TPLH2ZdIkdCrDo44/X/xveq121P7qsuOPeH\nHf/SeWMCum10lNX/22XV7RQTTwvWp0/5CXRHOefGC3T3lAH+b+cv6n3mgZ/FYtHVw7qqyynnr7Rz\nBD5tK9T77DEXVD0gSmnTSkn2Mw9+ThpdwwFUTbe59tLuembmiBq3N/uGgZLOblrQZQNT6l4pCAK9\nFPeMEF3m/OR5kD/9cW8N7d3w86pOP69yzIUdJUk/Hn78wj6BvD6vGNKpyojBjGv7acEtgxUdVfUF\ne92lPc74IvO+/z3zeOHkfdrrMf1OCu/RhmCFlntPvEeqc8fEPrXetqbQcupFRS44t02D9uG2U34n\n8v+N76WJI7vVuO7Pfhz4xUyqm3HQt7tDk2rZviTd8qOe6tm55mO78zq2lnQ8qN0xqeo09fiWMep+\nymjrqTq3jddjP79YQ3rVHvCT7C00/6YL1a39D9s5fZ/S+pR9UJTVoiuG/DD9t3V8zZ+/kSaoYc3j\n8Sgp6YfGOhwOud01Xwo/KSlOTqc9rP5rbCMv6Fjl/y/s2zg7zbN18nnq0/2HD6T+57WV02lXu9Pm\nu488i2lPS+4drfO6t9FNP6rfAempJtTwbaajjm/W75rcX+8snKDZP/khLL7823E1rh8dZVULW5Rm\nTa15B3C6ywZ1rPFvXdsn6IHbh2vskMBODu5/Ths5nXb1P2VHNmvKQL00f6wcp31DNqJ/ih6fcYmG\n9qn6raktuv4fAddedk6tf2974mBhxCkjMV06JtX5/hrRP0UDerfT8P71fw+cehBz0fk/PMau7avf\nWQw+5UDtwvPb+V/X3TpXPzXKapFc9QgGdenZJUlvPnp1lWkuw/u3109rOC/rnK7J/honj615B3r7\npOMHuWOHdPav//Dtw9W1fYJ+Pvn4N5JxsdFVenHNyJq//a/t83HkwI7qdY5Tl57yPj91HafTrrZt\nEzTvf4fo2V+NktNpV6e2x/9+3mkjYsMv6Kj27VqrQ0qi3n7yGt3302Ea0LPqwfSpdbyyYJz+NGeM\nLjrl8zK5dWy1r7ERA1LkdNp1z03Vf5v7o2FddcXQLrr0tLDVq0fgB4hOp10X9Gmvd5+eWGXZo3fV\nHK4G9ao+LAzr1179qrnvCaPO0bnd2mjguccDzyWnjXReNqSL3nzsar04f5wSTwt8J7d3+nu3czu7\n3n16ombfXPeXhNfV8b6vzsn3mSOhhd59eqLuvWVIlfO4Lh9S/XlVw068phLjW1R5r57uyouPh6LJ\no8+Rq4aQ2uLE9Nmbx/fWAz8frr8+cKUmjj5PLleC//Y1TbF9fu4Y3Ty+t+adEopWPjXB/++H7xyh\nfz55jSSpT/dkXTaki95+8hpdfek5/tfqyX6d6k9zxuj2Sf10321D5XTademFPzwPP7qku4YO6KA/\n/OoyTTjlvTl0QAc986vjo9yOhOOv9V7nOPXsiWW9uhz/jH3kzhG6YVxPTbmi9nNE27dppSuG/nC1\n2JOf0f1O7E8mj66+3+2Tq59SPOjE526vLkm67vLzql331GOCq4Z31f+7+nx/LSMHdlDndna98chV\nevTOEVp2/5V6af5Y/WnOGN34o9ov3nHq52Ztr5dLT/Tnrw9cqcsu7ChbTJQ6uuL16F0jdPWl5+il\n+WOrvd2dk/vrkgs7n/G+vHl8b10z6lx/r1PaJ+r3d13i//tFfX/Yt3TqkHRG2P77w+P9+7sLerXT\nOV2P739cSS01eWxPtXVVv/+SpKsu7aEh5x9/rKePhl42uOoxhNNp129vrTorY8j57fw9O2lYv6qf\nKWMv7lrrfnvh3aP06u+u0IKfDlNbV4JuPSVA3nhlT114fvWjtC5Xgvqe11ZDT9zfxf3aa/qEPpo1\ndaC6pxwPgD27t6n2GP3cbj8ce/721os0uF+Kf18xYkCKZkz9IVR36+yQ02k/43kf0qddtdtuaHYI\nZf6wGEbwrul53333adSoUf7RtRtvvFGPPvqounWrPr273QXBuuugycwp1rqvMtTB2Uqvf7hTEy/p\nrphoq9J3utW/R7I6tGmlv32wUzFRVnVPSVBphVe9uyRp75ECZbgLdeXQztq2N1tbdh/TIz8dqtfW\n7NSx/FK1aR2r3l2SlF9UruH92mv34Ty5c0t0+YUdtScjX19sz9LES7qpZYtoHTlWpINZhcopKFM7\nR5zyisqVEGdTfFyMysq9ciS0UKwtWjkFZSooLldFpU+rNh5Qi5go3T6hjzI8RcrMKdaAHm10yF2o\njs54tWwRpczsEtnjYlRW4dXG77JUXunVuIu7atv3bl1wrlOevBI5E1uqtNyrY/mlx+e/G4YKSyoU\nFWWVs3VslW8qKiq9OphVpG7t7bJYLDIMQ98fypPValFxaaX690hWXmGZPth0SK1io+UzDGV4ijW8\nbzvZ42LkSIiVO7dE7ZPjFB1lVV5huZJPvKl8PkMbvj2q+JY2Wa3Spu1uJcbbVFHp06iBKcrwFOtA\nZoEGnNNGMdFWJbeOVYanSD7DUJe2duUWlKmgpEJ7MvLl8xk6p2NrdWufoMycYu09kq/EVi2042Cu\ntuw+pnGDO+ri00LMxu8y1SOltZJbx6qs3Kv3NuxX13Z2JcTb9N2+HLVzxKlvd4diT8wx37Q9S8Vl\nlWqb1FKVPkOHsgq1dc8xjRnUUV9sz9KoASnq0s6uli2iVVRaoczsEn345UH175Esq8Wi87s6/KMS\nhmFo75ECtWkdq8JynzIy81VUWiGvz1BbR5zsLWPk9Rnq0KZVlW/iDMPwfzvq8xn67Jsj8vkM9Uhp\nrY4nRozKK7zauidbOw7k6OI+7eRKaqnyCq8qvT7Z42zKyilRq9hoHXQXqqikUtkFpRrSy6X2ya3k\n8xkqKKlQQlyMNnybqXM6tFZmTrEy3EW64Dyn7HExOuwuUpd2du0/WqAu7exy55aovMLnHw0pr/Cq\ntNyrvKJytYixqrzCJ4vl+DeKzsTjB1uVXp/2ZxaopKxSrsSWKq/0KSbKqh0Hc9W3m0Pb9mXLldhS\nXp+hguIKXdjTqegoqz5KP6T2jjid2ylRn39zVMkJserZOVFp32aqTzeHjuWVKibaKk9eqQad51RB\ncbl2Z+T7e3Dq81hW4dWhrOOvpwOZBbrsxIH8/swCxURZVVruVUyLGHVIitXeI/nq5LIrLjb6eO1H\nCxRri1JuYbl6dEhQRaVP2fllqvT5FNciWgXFFerW3u4/p8SdWyKLpDYnHv/eI/lqnxyno9nF2pOR\nryG9XLLHVR3BqvT69MX2LA3o0Ua2GKt/1MswDO05kq8ube3VjoQdchcqMb6F4lvGKK+wTCXlXrVp\nHav9RwvUrX2CDmYVqq2jpbLzyxQfF6OE0+73yLEibT+QK6tFunRAiv/15skrUYuYKNnjbDpyrEhx\nsTFVvvE8qaSsUlk5JeroaqVPNh9Rn65JqvQaSmlz5gGgYRjati9bX3yXpcmjelQ7PdYwDP136xEl\nxrdQj5QExcUe/3zbvDdH3du20s6DuRrSq61iTnwpUV7hlcVi0f99tEvD+7VTi5ioM+67tLxSmdkl\n6tLOrryichWXViihlU1zn1+vX//PQPl8hgwZskVHqcLrkyupZZXn6Wh2sVraovyflT7D0Jc73BrQ\nI1kH3YWScfx56NPNoZyCMr3x0S717JSoSwek6EBWgb93RaUVcueWyJUYJ09eiTq3rboz9xmGdh/O\n05c73BrWp12VEcfi0grtPJinTq54/2fqyV3917s8KiiuUJe2drmSWvrPc3LnlijKalFuYbmycorV\ns3OSNm3PUt/uDh3MKjzxnqlQeaVX9pYx2nu0QC1t0erkitdn3xxR7y5JKq/wKTmhhdy5par0+dTZ\nZdfR7GIlJ7RQ3Cnf7pfLopLCUiW0smnPkXzZ42zyen36/lCeBp3nVHzLGB3MKpQjoYVaxcbo610e\ntbRFqX1yK+UVlcsWY5XVYlGSvYX2Zxaoe/sElVV4lfZtppITYnV+N4f+u+WIOrnilZLcSjEn1j+d\nzzB09Fix2ifHyWcY+ij9sC4dkKK9GflKtLeoMjKW4SnyvydOvndO/t3nM2SxVD86VVbhVYanSInx\nLfTJ5gwN79vO/1l3qo3fZapLO7vaJlX9Uujka/Bk8DmYVXjG87nvaL7aO1r5g+lJmTnFskVHqaik\nQjExxz/7vF6fCksqdHGfdvL5DG3fn6PW8S38swqSk+O1cethdW1nV2m5V19sz9L5XR2KtlpUWFKh\nNq1bKjrKoo/SDysm2qqKSp/O75qkzm3tOpBZoLZJcWphi/K/3g5kFio6yqL2ya1ktVqUnV+qSq9P\nrqQfnjtZ6h6Fzy8u19ffe9SmdazO65SofUcL9O3ebI0d3EmxLaK0/2iBurazq6LSp71H8hUTHXV8\nn+QpUn5Rufp2c9T5ha0kfbcvWxnHitWlnV0xUVY5Elr4P39P9rKTK97/uquu59n5pdpxMFcX9XYp\n6pQrOp7ct7eIsapli2g5EmL9+7tu7RNktVh0ILNAbVq39F9UJSunWDHRUYqKssgWa1NmVoHaOeKq\n9NpnGNp1KE8VlT7FxUarW/sElZZX6qvvPerTzeH/fNp3NF9e7/H9eP/uybJaLcrKKZYjIVb7M49/\n9hx2Hz/+HN6vnb8nh7IK9cGmg+rZOVGGcXxqefeUBLWp5rc8M3OKtfNArkb0P37Blc+3HtUhd6Em\njOiq3Rn5x2eInPjM9RmG9p62vzq5j+hSyxVAt+3NVnLrWP/77+Tz2skVr5hoqzKzi9XCFqXEE5/B\nxaUVOppdIp9hyCIdf66DdD7gSU6nvcGZprbAFtSwtnjxYjmdTt1www2SpMsvv1zvvPOO4uOrn1oU\njmGtuQnGCwyhQ3/CF70JX/QmvNGf8EVvwhe9CV+hDmtBnQY5YsQIrV69WpK0bds2uVyuGoMaAAAA\nAKBmQf3xikGDBqlPnz664YYbZLFYdP/99wdz8wAAAADQbAT9lwbvueeeYG8SAAAAAJqdoP8oNgAA\nAACg4QhrAAAAABCGCGsAAAAAEIYIawAAAAAQhghrAAAAABCGCGsAAAAAEIYIawAAAAAQhiyGYRhm\nFwEAAAAAqIqRNQAAAAAIQ4Q1AAAAAAhDhDUAAAAACEOENQAAAAAIQ4Q1AAAAAAhDhDUAAAAACEPR\nZheAhikqKtLcuXOVl5eniooKzZgxQyNGjNAzzzyj1NRUbdiwwb/usmXL9O6778owDF133XX6yU9+\nosWLF+vdd99V27ZtJUkTJkzQlClT9Pnnn+uZZ55RVFSULr30Us2YMUOS9Oijj2rz5s2yWCyaP3++\n+vfvb8rjjgSB9ubQoUO65ppr1LdvX0lSUlKSFi1apIKCAs2ePVsFBQWKi4vT008/rcTERHoTJIH2\nZ+3atXrllVf8t9u2bZvef/99/eEPf9C2bduUmJgoSZo+fbouu+wyrVy5UsuWLZPVatXUqVM1ZcoU\nVVRUaN68ecrIyFBUVJQee+wxderUyZTHHQmq643T6dRDDz0kq9WqhIQEPf3002rZsqVefvllrVq1\nShaLRTNnztSoUaN474RQfXrDPqdxBdqbY8eOsc8xQaD9SUtLY5/TyKrrTXl5uV588UXFxMTI4XBo\n4cKFatGihTn7HAMRbfny5cZTTz1lGIZhHD161LjyyiuN559/3njttdeMiy66yL/egQMHjAkTJhgV\nFRVGWVmZMXr0aCM/P99YtGiRsXz58jO2O378eCMjI8Pwer3GjTfeaHz//fdGWlqacfvttxuGYRi7\ndu0ypk6d2jgPMkIF2puDBw8a11577Rm3X7x4sfHSSy8ZhmEYb7zxhvHkk08ahkFvgiXQ/pxq3759\nxp133mkYhmHMnTvX+Oijj6r8vaioyLjiiiuM/Px8o6SkxLj66quNnJwc4x//+IfxwAMPGIZhGJ9+\n+qlx9913h/CRRb7qevOTn/zE2Lx5s2EYhvH4448br732mnHgwAHj2muvNcrKyoxjx44ZV155pVFZ\nWcl7J4Tq0xv2OY0r0N6wzzFHoP05FfucxlFdb2655RYjPz/fMAzDmDdvnrFy5UrT9jlMg4xwSUlJ\nys3NlSTl5+crKSlJN910k37yk59UWa9Dhw56/fXXFR0dLZvNptjYWBUWFla7zYMHD6p169Zq3769\nrFarRo0apfXr12v9+vUaO3asJKlHjx7Ky8urcRsIvDc1Wb9+vcaNGydJGj16tNavX09vguhs+rN4\n8WLNnDmzxr9v3rxZ/fr1k91uV2xsrAYNGqT09PQqvRw+fLjS09OD+2CamOp688ILL/i/fXQ4HMrN\nzVVaWppGjhwpm80mh8OhDh06aNeuXbx3QijQ3rDPaXyB9qYmvG9C62z6wz6ncVTXm2XLlslut6uy\nslJut1tt27Y1bZ9DWItwV199tTIyMjRu3DjddNNNmjt3ruLj489Yz2q1qlWrVpKk//73v0pKSlL7\n9u0lSatWrdKtt96qn//85zp48KDcbrccDof/tg6HQ263Wx6PR0lJSWcsR/UC7Y0keTwe/eIXv9AN\nN9yglStX+ped7ENycrKysrLoTRDVpz+SlJmZKY/Ho/PPP9+/7LXXXtMtt9yiX/3qV8rOzq7SM6lq\nf04ut1qtslgsKi8vD92Di3C19aa4uFjvvPOOfvSjHwX0fPPeCa5Ae8M+p/EF2huJfY4Z6tMfiX1O\nY6quN5L0j3/8Q2PHjlXnzp110UUXmbbPIaxFuHfeeUcpKSn64IMPtGzZMj300EO1rv/111/riSee\n0FNPPSVJGjVqlO6++2795S9/0YQJE/TII48EfN+GYTSo9qYu0N4kJibq7rvv1tNPP60//elP+uMf\n/6isrKwq69T3uaY3davve+ftt9/WhAkT/P8/ceJE3XPPPfrrX/+q3r1767nnnjvjNjX1gf7Urqbe\nFBcX684779Rtt92mHj16nHG76p5X3jvBVd/esM9pPIH2hn2OOer73mGf03hq6s11112nDz/8UHl5\neXr33XfPuF1j7XMIaxEuPT1dl1xyiSSpV69eysrKktfrrXbd7du3a8GCBXr++ef933D2799fQ4YM\nkSSNGTNGO3fulMvlksfj8d8uMzNTLpfrjOVZWVlyOp2hemgRL9DexMfHa/Lkyf6TWPv27as9e/bI\n5XL5v22pqQf05uzV570jHb/QyPDhw/3/P2zYMPXu3VtSze+drKwsf39O9rKiokKGYchms4XiYTUJ\n1fWmvLxcd911l3784x/ruuuuk6Ra3w+8d0Ij0N5I7HMaW6C9YZ9jjvq8dyT2OY3p9N4cOnRIa9eu\nlSRFR0fr8ssv15dffmnaPoewFuG6dOmizZs3S5IOHz6sVq1aKSoq6oz1vF6v5s+fr0WLFqljx47+\n5Y888og2bdokSdq4caPOPfdcdezYUYWFhTp06JAqKyv18ccfa8SIERoxYoRWr14t6fjViVwuV63T\nxpq7QHuzYcMGPfbYY5KOf8O2fft2devWTSNGjNCqVaskSWvWrNHIkSPpTRAF2p+TDh48qHbt2vn/\nf9asWTp48KAkKS0tTeeee64GDBigrVu3Kj8/X0VFRUpPT9fgwYOr9PLjjz/W0KFDQ/jIIl91vXnl\nlVd00UUXacqUKf71Lr74Yq1du1bl5eXKzMxUVlaWzjnnHN47IRRob9jnNL5Ae8M+xxyB9uck9jmN\n5/Te2O123X///crMzJQkbdmyRd26dTNtn2MxGBuNaEVFRZo/f76OHTumyspK3X333frwww+1c+dO\npaena9CgQRozZozOPfdc/frXv1bPnj39t7333nvVokUL3X///YqOjpbFYtEjjzyiLl266IsvvvBP\nW7niiis0ffp0SdJTTz2lTZs2yWKx6P7771evXr1MedyRINDe3HzzzVqwYIH27t0rr9erG2+8UZMn\nT1ZRUZHuvfde5ebmKiEhQQsXLpTdbqc3QRJof2699Vbl5ORo2rRpev/99/2337BhgxYuXKiWLVsq\nLi5Ojz32mJKTk7Vq1Sq98sorslgsuummmzRhwgR5vV4tWLBA+/btk81m0+OPP+4facCZquvNvffe\nq44dOyomJkaSNHToUM2cOVPLly/Xu+++K4vFol/+8pcaNmwY750QCrQ3AwcOZJ/TyALtzR133ME+\nxwT1+Vxjn9O4qutNeXm5Fi9eLJvNpjZt2uiJJ55Qy5YtTdnnENYAAAAAIAwxDRIAAAAAwhBhDQAA\nAADCEGENAAAAAMIQYQ0AAAAAwhBhDQAAAADCEGENAAAAAMIQYQ0AgBPeeeedWv/udrv1i1/84ozl\nlZWVVX5TDACAYCCsAQAgKTMzU2+88Uat6zidTi1atKiRKgIANHfRZhcAAEB9LF++XO+//768Xq+6\nd++uoqIijRs3Ttdcc40k6be//a369Omjq6++Wvfff7+ys7NVWFioW2+9Vddcc40WL16s3NxcHT16\nVPv379fQoUN13333afbs2dq5c6fmzJmjJ598str7PnTokKZNm6ZPPvlEe/bs0b333quWLVtq6NCh\njfkUAACaCUbWAAARY8uWLfrggw/0t7/9TStWrJDdblfPnj21evVqSVJFRYXWrVunq666Ss8++6xG\njhypv/71r3rttde0aNEiZWdnS5K+/fZbLVq0SKmpqfrHP/6hvLw8zZo1S+edd16NQe10S5Ys0eTJ\nk/Xaa68xBRIAEBKMrAEAIkZaWpoOHDigW265RZJUXFyswYMHa/PmzSouLtYXX3yh/v37KzExUWlp\nadq6davefvttSVJ0dLQOHTokSbrwwgsVFRWlqKgoJSUlKS8vr9617Ny5U7fffrsk6eKLLw7SIwQA\n4AeENQBAxLDZbBozZox+97vfVVleVFSktWvXat26dZo4caJ/3fvvv1/9+vWrsu66desUFRVVZZlh\nGPWuxTAMWa3HJ6h4vd563x4AgLowDRIAEDEG/f/27RhVrSiKAuiOfJyIFirYfLCw/ANwACIWYqkj\neJWT0SlY2NkIgqgTECIkGSgAAAEASURBVMTaUrAQkiJNCPEThIQXslZ74HBuue+59/096/U6t9st\nSTKfz7Pf79Pr9bJarbLb7fLx8ZHk+/ZsuVwmSe73e2azWR6Px9PelUrl0/rParVaDodDkmSz2bx6\nJAB4SlgD4J/RbrczGAwyHA7T7/ez3W7TaDTS6XRyPB7T7XZTrVaTJNPpNOfzOf1+P4PBIK1WK29v\nzx+U1Ov1XK/XjEaj35plMplksVhkPB7ndDp92hsAXvHl6ytvPwAAAPijXAMCwA8ul0uKovhlrSiK\nNJvNvzwRAP8rmzUAAIAS8mcNAACghIQ1AACAEhLWAAAASkhYAwAAKCFhDQAAoIS+AbxwE+kDsdqx\nAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "7x_Dwrsz1n7o",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "## Resource usage"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "JqydpEWmjWx8",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "res.set_index('event_id')"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "384J2g1i3lKY",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "### f3 is res_counts"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "f_667ZudjQwt",
+ "colab_type": "code",
+ "outputId": "e25a777e-d1b9-46f1-ec50-aec9d5c93fb8",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1071
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "res['res_id'].value_counts()"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "15552206 235\n",
+ "15450223 199\n",
+ "15548173 198\n",
+ "15543324 192\n",
+ "15456317 173\n",
+ "15577514 146\n",
+ "15548172 141\n",
+ "15551372 136\n",
+ "15548163 131\n",
+ "15557636 131\n",
+ "15450222 129\n",
+ "15574446 120\n",
+ "15543323 117\n",
+ "15557253 113\n",
+ "15575160 111\n",
+ "15565479 110\n",
+ "15457531 110\n",
+ "15548084 110\n",
+ "15551363 107\n",
+ "15565478 107\n",
+ "15552205 106\n",
+ "15457357 104\n",
+ "15576101 102\n",
+ "15457464 100\n",
+ "15452032 97\n",
+ "15449984 95\n",
+ "15513365 94\n",
+ "15544662 94\n",
+ "15459069 93\n",
+ "15556441 92\n",
+ " ... \n",
+ "15597804 1\n",
+ "15599853 1\n",
+ "15655152 1\n",
+ "15657201 1\n",
+ "15659250 1\n",
+ "15661299 1\n",
+ "15646964 1\n",
+ "15649013 1\n",
+ "15651062 1\n",
+ "15638776 1\n",
+ "15614180 1\n",
+ "15624417 1\n",
+ "15663308 1\n",
+ "15622368 1\n",
+ "15667406 1\n",
+ "15669455 1\n",
+ "15720656 1\n",
+ "15724754 1\n",
+ "15726803 1\n",
+ "15712468 1\n",
+ "15714517 1\n",
+ "15716566 1\n",
+ "15718615 1\n",
+ "15704280 1\n",
+ "15706329 1\n",
+ "15708378 1\n",
+ "15710427 1\n",
+ "15700190 1\n",
+ "15702239 1\n",
+ "15728640 1\n",
+ "Name: res_id, Length: 420219, dtype: int64"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 86
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "FQ0MmH-biW7a",
+ "colab_type": "code",
+ "outputId": "d07d8259-73ca-4579-c5b0-bdc2a22bee68",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 399
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "res.plot(x='event_id', y='res_id', kind='scatter', figsize=(15,5))"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "'c' argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with 'x' & 'y'. Please use a 2-D array with a single row if you really want to specify the same RGB or RGBA value for all points.\n"
+ ],
+ "name": "stderr"
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 94
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3wAAAFICAYAAAALYPywAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xt8FNXdP/DPmdnZ+ybZQC7cwy2E\nWwE1tSii5UHpg7WClwoKVWt9FK1WS/Gh2vpYfeqjYmtrFbRUqmK9tD7eWvSHj9V6F7GIEoUGEBQI\nISFkk+xukr3+/lh2s/ed3exmN8nn/Xrpi93MnPnOOWfOzNmZOUf4/X4/iIiIiIiIaMCR8h0AERER\nERER5QY7fERERERERAMUO3xEREREREQDFDt8REREREREAxQ7fERERERERAMUO3xEREREREQD1IDp\n8NXX12P+/Pl44oknEi5TV1eH5cuXh/6bPXs2tm3b1odREhERERER9R0xEObhczqduOqqq1BVVYVJ\nkyZh2bJlKddpb2/HNddcg8cffxySNGD6vURERERERCEDoqej1Wqxfv16lJeXh77bs2cPvve97+HS\nSy/FNddcg/b29oh1HnnkEVx66aXs7BERERER0YA1IHo7Go0Ger0+4rs77rgDt99+Ox577DGceuqp\n+NOf/hT6W1dXF9555x3827/9W1+HSkRERERE1Gc0+Q4gVz799FP8/Oc/BwC4XC5Mnz499LfXXnsN\nZ5xxBu/uERERERHRgDZgO3wGgwGPP/44hBAxf3vjjTewdOnSPERFRERERETUdwbsLa6amhq89dZb\nAIBNmzbh/fffD/2trq4ONTU1+QqNiIiIiIioTwyIUTrr6upw991349ChQ9BoNKioqMANN9yAX/3q\nV5AkCTqdDr/61a9QUlICAJg9e3ZEB5CIiIiIiGggGhAdPiIiIiIiIoo1YB/pJCIiIiIiGuzY4SMi\nIiIiIhqg+v0onc3NHfkOYdCzWo1obXXmOwyKg2VT2Fg+hYtlU7hYNoWN5VO4WDaFKxtlU1ZmSfg3\n3uGjXtNo5HyHQAmwbAoby6dwsWwKF8umsLF8ChfLpnDlumzY4SMiIiIiIhqg2OEjIiIiIiIaoNjh\nIyIiIiIiGqDY4SMiIiIiIhqg2OEjIiIiIiIaoNjhIyIiIiIiGqDY4SMiIiIiIhqg2OEjIiIiIiIa\noDT5DoCIiIiIiCjXHnz2I/xzT3uv05kwTIubL52ThYj6Bjt8RERERET93H8+8Dqa7fmOYnDYc9iV\n7xDSwg4fEREREVE/8v27Xs93CNSPsMNHRERERBSGHSoaSNjhIyIiIqJBiR07Ggw4SicREREREdEA\nxQ4fERERERGRSlaLLt8hpIWPdBIRERHRoMBHOKm3SsxarLp4Zr7DSAs7fERERESUV+yIDXxlJXoM\nsWix+2A7vP7AdwatQKfLn9/A0tTR6Yajy53vMNLCDh8RERER9Ro7bZRMs60LzbauiO/6W2cPALxe\nP+554mM8vOqb+Q5FNb7DR0REREREpJLb2786quzwERERERERqaTIIt8hpIUdPiIiIiIiIpXGD7fk\nO4S0sMNHRERERAPWUEtuh6w4Zaq112nIaSxrMSq486qTMWGYttfbzQWjLp29iSUAlJhlqLmHVmLW\n4s6rTsadV52MIpMCIQLrmw0ykt2EU6TAXbpEi5w9eziKTErC9bvc/euRTg7aQkRERDRIDMaBVY52\neOJ+L0nA1KpSjCzT45UtDSnT0QjAE+c6/73PWjOOTQDwA/CmsU6H042bH96ienm9AqQaVFKSALNe\nwZhKC1psnWg41plGRJGc3T17IwlgTIUJXx1xIPy1N0kCig0CrY7IDNXIAtddMA1/fXsfbHZ7ym3Z\n7C7c/PAWmA0yvD7AoNVg3DALjrU5YO9MnKtuHxDI+UhFRgUjhhrx948OoztJp67EXJid7UTY4SMi\nIiLKscYWB25er/4inXLP5wN2fHEMO75Qt3y8zl5v9cV9IjUzCPh8QLvTjR1fHMvqtn1+YF+jI+72\nojt7AODx+nHfMzvS3k54565uf+Yd8HanG+1ftaVcToj+9Q4fO3xEREREGRqMd8yIBrvWju58h5AW\nvsNHRERERESkUlmJId8hpIUdPiIiIiIiIpWWL6jOdwhpYYePiIiIiIhIBZNehtnAQVuIiIiIqB8x\n6wF7V/62LwAsmT8Wz76xH26vH7IAxo0owqFmR8Soj8FlNTLgTjK0pdkgYO9UPyRKVaUZ550xFr9+\nOnbAkMD2JBj0MjwuN5xRg6CMrTTFHZgknuBYH8UmLZaeOR5/eGkX3F4/FFngpmWzMH5YCeydLmzY\ntBN1e1vSHijm7NnDseDr47Bxcz0aWxxoc7rg9vjg9XjhFwI+nx+SECi3GjF8qAmjynV47q0DyWMG\nUGzW4trzp+HVLQfRbOtEWYkByxdUw2zQwt7pwsbN9Wi2dUKvCPzrQHtoMBqLUcH1F07Hq1sO4qvD\nbTjSFvvumwAgSQJTqqxYeuZEPP/mPjS2OGDv8kCnAZpt3REjfAbikWGz91QAIQC9IkMIgXHDLbA7\nu7H/iDPpfmlkgQVfH4ZN7/eM0KoVgCtFnvez8VoAAMLv9/eviSSiNDd35DuEQa+szMJyKFAsm8LG\n8ilcLJvCVWhlE2/Qlg2r5+UhksJQaOUzUGVS71g26YuXz1qNhId+ckZWt5ONsikrSzwZPB/pJCIi\nIiIiiqLEmb3dZEg8IXuhYoePiIiIiKgfmTDcnPQzZcdNy2YhvMtnMSpYdfHMvMWTKb7DR0RERETU\nj1x/4czQe3PB9+ko+8YPK8EjA+AR7Zx2+Orr63HNNdfgsssuw7JlyyL+Nm/ePFRWVkKWZQDAvffe\ni7feegsvvfRSaJm6ujp8/PHHuQyRiIiIiKhfMRu0WLFoWr7DoH4iZx0+p9OJO+64A7Nnz064zPr1\n62EymUKfL7zwQlx44YUAgA8//BCvvPJKrsIjIiIiIiIa8HLW4dNqtVi/fj3Wr1+f0foPPvgg7r33\n3ixHRURERJS+eKP1ZbKsIgt8Y+oQvP3p0WyElZX0dQqg0yro6vZCqxGQZAnOTjdE2PD9wSH4w9md\nLmx8NfBYoUbyY2+DHX4Ehs2/ccl0TKsqAwDs2NOM+56Nne5AKwEuX+r4hhbr4PUBFqMGpRY9WmwO\nHDgaOYfEj49vz+50YcPLO1F/wAZAYNwwCzxeL3YfbIcPgEEDuHwCHm/8QeolCZhaVYorz5kCs0GL\nvQdtuOepj0NTRVSPLkFntxfweyOG/R8/wgKvF9ArAnsbOmKnWgjLqxKzFnZnN/Y02CO2LQCUFilo\nd3jg8wemTxhSpEe3xweLUYMKa6AcjrQ48csntiXML1kSkCQBnUagq9ub1tQOJoMMt9sPk17Bqktm\notJqilnmw88O46G/7gx9XrF4MmonDUNjiwN3PbkNHU43JBGYZuHKc6bgn7uO4LHNuyPSUGSBH14w\nDe98cgSHmjrQ3NYFCAGzXsFlC6vx6Cv1cHS6k8aRSHR9EwC0GgGPF9AqEkYMNeDLI46YMg2fagII\n1O/r738nIm0JwB/64SOeOZ+W4Xe/+x2sVmvcRzpPOOEEHDp0CCeeeCJWrlwJcXxii08//RRPPvkk\n7rrrrpTpc3jZ/OMwv4WLZVPYWD6Fi2VTuNSUzR//9inerstNh4rSY1QQM29dfyAEoJOBLk++IyEA\nsJoEWh2RXRYBINudmMljSrBq6QnYe9CGO5/YFjf98I58tuR6Woa8dfheeOEFnHbaaSguLsa1116L\nxYsX41vf+hYA4NZbb8XZZ5+Nk08+OWX6Ho8XGo2ck9iJiIiod/7nj+/hvbrmfIdBRJRVD/3nv2FE\nef8YHTVvo3QuWrQo9O+5c+eivr4+1OHbsmULfvazn6lKp7XVmXohyin+El64WDaFjeVTuAZj2aTz\nyCIR0WC3+sG38esfzslKWrm+w5eXDl9HRwduuOEGrFu3DlqtFlu3bsWCBQsAAEeOHIHJZIJWq02R\nChEREanx84f/gUOtKl6WIiIiVdocrnyHoFrOOnx1dXW4++67cejQIWg0GmzevBnz5s3DyJEjceaZ\nZ2Lu3Lm46KKLoNPpMGXKlNDdvebmZpSWluYqLCIion6Nd+KIiPIvty/FZVfO3+HLtcH2yE0hGoyP\nPvUXLJvCxvIpXIVSNuzcEREVJq0MPLQqOyN2DshHOomIiCgxdvSIiArblLFD8h2CauzwERER5QA7\nbUREA48QwEmTyrF8QXW+Q1GNHT4iIiIiIiIVZElgxaJp+Q4jLezwERFRwePdMiIiKgQeb/8b/kTK\ndwBERERERESUG+zwERERERERDVDs8BERERFRTljNupymr8gip+nnQv+LmPo7dviIiIio35h3YqXq\nZQWA8hIdjLr4l9hGbdTyGVyJjx9hQVWlBTWjivJ+IR+9P/lWPaoIqy6ZidqaclRVWjBhuDlmmfEj\nLBheasgo/SKTgpuWzcKoofq01quqNKOiWJe0vCxGBaVmOWVaZoMGoytMMTHIArh84cSYDqkiC9y4\nZDqqKowxaek0Ama9BOn4KvmuT8kosoQik4Lp40ox1KKkXF4WgCwF9j/10pFM+thykKRA+Y+tNKWZ\nWkCRSUaq3wrOnj087jJnzx6e0TbziROvU68VygTFFItlU9hYPurFG7Rlw+rsTHgbT2/KJtkAM72J\nOdM8WPdCHbbuagp9rq0pVzXCXLrrXbXmDbjDBjNQZIGHV30z63HdtO49HG3rivjOatHhV9eemnS9\nvq5Daqx88F20dnSHPifaj0zzKh/6W7tWiPUiVwq5bG7f8Bb2N3lCn6vKNbj1+3PzGFHf4sTrRERE\nlLFmW2fSz9lazx01cl3052zF1eF0xXzn6HSrWrfQRMedaD8yzSui/mIwde7ygY90EhERDWBlJYak\nn7O1XrxH13IRlyXOc4smQ7oPiRUGkz4y7kT7kWleEREB7PARERFlVaIT67Qxse/spGPp/LFJPyey\nfEF16B2q2ppyLF9QnZP1blo2K9TJU2SBm5bNyklc/331qTAbet7pKTIpWHXxzJTrnTd3VNLP+bDq\nkpmwWnTQaiRYLbqE+5FpXhERAXyHj7KgkJ8JH+xYNoWN5aNef3qHj3KLZVPYWD6Fi2VTuPgOHxER\nFZxkA5MMphgoPkkcH41PFrB3+zJOJ3Sn0Avc+cQ2BH+hthgV/HT5Cai0xo7QZ3e6sPHVejTbOmHW\ny/iqyY52pydmub4gAPgRuR+/fGJbyvWGl+rhdPlgs8e+r5h8PQOa27pSvj+ZLlkW8Hr9of0JJwBI\nQkAjAwadgtJiPdwuFw4c7YqTUuDOameXF6982JB0mxpJwGLU4przpmLTe1/i830tcHmTx6nIAhef\nNQFPvronlAdCAMFbGxKA8Npo0stwdMUmatRJGFNhwd5DbQm3GdhvQJIESkxaNLd3x18wfJ9kAYtB\ni1WXzIyou29+fACPbd4d+lxVacZ/fGcqnn9rHxpbHLB3eWDUSWhu7YyIZ8XiyaidNAx2pwsbXt6J\n+gM2AAKTRpVg4ezRWPvCZ2jr6Ea6R6AQwIQRRdh3qB0ef8/+lpXo4Oz2wN4ZP1MWzx2F3V91YOeX\nNnj9gfIYUqTHsfbIuAWACSMj048WeFhAQKtIGD+8CM3HOnCkPfY4lgTgi0pDpxEw6BRIwotj9p4N\nWy0K7E4PIATMeiWmHOxOF37/Uh12fmmDD0CxUYubls2CWadgw8s7Q3VQACg2Bf4Wrw0qRLzDR73G\nX4wKF8umsOW7fO56/D3UN8S/KCMqdMERLfcetOGepz6G2+uHIgsMLdbh8DHW64FCkUXWO7D5VmLW\n4qals3DXk9vQ4XSjt1fiGlnAM8DyqK/IksCUKiuuPGcK1r/0OXbsOxbx9+P9zrhlpGZ0YLVyfYeP\nHT7qtXxftFJiLJvClo/y+dPmz/D3j4/06TaJciXeHSeiQicAWEwK2h39c3TZgUok6NglotVIeOgn\nZ2Rl23ykk4iIQvgYI1EPdvaoP/ID7OwVoHRvgfWn0YE5SicRERERUR/RyqmX6Y8M2sHRrRAi8Fiu\nmtGBCwXv8BER5ck5K1/MdwhERNTHUg0+0191ujIfoKk/8fuBNrsLR9uc/WbQlsHRFSciIiIiUik4\npyT1nlE38G5p+gHc9/SOfIehGjt8RERERDTgGXXqO3HXXTgth5EMLgNtlNWg/rRX7PARERFRv6bI\nAlazLt9hDFhWiw75ut9VW1OODavnhf6LV85qYrNadNBptaq3+/b2wT2asQAS5ne63J7CftQz07u5\n/ekeMDt8REQ0oMiSgGGgjoowSI0fYUFVpQVGXfyhB25aNgurLpkJqyX3nT5FFlA0EopMCqaPK435\nuyyAaVUlOY8jGzSygFEnoIlzwWsyyNBqJFgtOqy6eGbadzNmThgCvdK7S+KqSjOWL6iO+G7VJTNj\nLrTLi+OXu9Wii9gHR6f6kTGbbZ1J/27UaTBhuDlpZ2HF4smhGMwGGUWm7IzqKFRkq0ErUGRSICF5\nx0QSgBLVGxAAblwyHUAgv4tMCoQItK25opEFRgw1YVpVCYxR/fLJY0pw+cKJkctLApok4WgkEcpz\njRQ4biuthpjlaicV4aZls0LlKBDIu1TC86g/4KAtRESEUeUmfO/fJ2Htc5/B0emGS8UvspIAfDl4\npmXD6nlY90Idtu5qSrpcbU05li+oxsbN9Wi2daKsxIDlC6phNmhh73SFvj/UbI94pCg4We7f3tuN\n5946EPr+vLmj8O1TAhcVwTmRkk2DUWRSMGmUFc22TuxvjJw/SZYEvL3MnFzPMVdbU449B9vQau9O\ne91sxKZ2Qu3amnKsWBR4vC5RvRg/LNDBCk6CvPKBdyP2K94EyVfc9Xra+yAAPLzqmxHfRW+ryKzD\nj5eckPDv0axmXUZlkMz0caW48buBEQQT7We6k0ZHl7kA8MjqeXG3IQBcf8GMhGldteYNVWV/62Vf\nj/mu0mrCSTXlEfVg9LBiNLU1xcQQvX8mvQKXyrwuKzHEHNdBiizwwI1zQ5/jtRO1NeWonTQMtZOG\nRXyfqG6mUx9PmlQOABF5EH6cJJLJXG+VVhN+c91poc8/vO9NOLt7Rp0x6mQ8cOPpcdeNPl5nThgC\nRSPHtNdqnfa1UWnFno7o43qgkW+77bbb8h1EbzidrnyHMOiZTDqWQ4Fi2RS2F9/Zl5N0NbKAIoDo\n66kSsxb/dmIFdh/sOeEvnT8WP/7uCfjmrJEoteix4Ouj8e1TqnDy1MAFVaKO3+ULJ2LhKVX4oK4x\nrU6fLICrF0/G3kMd8Pn8MZ2iM0+qwPRx5Zg8pgQ79x+FLWyuqjGVJrjdPigaGdPGleLSf58Es0GL\n2ppynD5zBGpryqFVAnf2tIrc8/2UcmyrPwqfz48iU2AobbNBi+pRQ3DunLGh/6pHDQltK3jsyJIH\nO79sj9kPk0HGzctPxDdnjcTpM0dg2nhrKC8UWeA/l8/C258cjlmvtqYcI4bIaGhJftF5+cKJuHzh\nFLyy5Sv1mXuc1aJDuVWPIoOMdqcn9P3S+WNh0Gqh1UiYOLIEyxdUh/KmK86wgWfPHh5RV8L34aL5\n4/DRzuakZS8LoGZMCbSyQJfLC78/cBGuyBKKzVrccNHX0OFwod3hgqKRMX64GR6fHx6PF7IkMGyI\nCTWjrVi+oDpUrpPHlGDXV0dhs/fUi8sXTsSYiuKIbc+YOCRumYcbP9KMD+p6LkYrrVrYuxIPnxj8\nRb+8JHJUvlTbCv49Oo+HFuswdewQXHHOZLQ73HB1u+CMM8rhmSdVwOf1RxwL40dY0NoR27ZXVVow\ncWQJLl9YE8qz6P3UyALFZl3cPEkmPJ3ovIj4m4ifT+GmjLPGPT6inTtnbNzvJ48pwdG2roi6PHls\nccL4gsLLKt4PMlWVZpSYdaE0j9psMceqIgvctGwWSi360HfR7cSIoQZcs3h6qAwSxRBeX6LLKZoA\nMGyIAZPHlGL5gmrMmDAkJg/ibS9cNq4J9hxqQ+OxnrufU8eW4uQplXGXjS6ny/69BqdOHxbTXlN2\nysZkSvyEg/D7051msLD0dlZ66r1MfjGivsGyKWzxfhXecPwX82yxO13Y+GrPHbCzakdi7QuBu3gm\nvYJVl8wMDSu996AN9zz1Mdxef+iiJnjnJFei40v3F99cycaxk43yTZRGY4sDa57ejtaO2I5jtutQ\nrgT3IV5dDBddR264+ER0O7N3Ryw8/RKzFkIItHZ0F1R97E8yPXb6oj3MlWy3Y7lqi7PRroU/PcFj\nJHuyUTZlZZaEf2OHj3qNnYrCxbLJnmSP9tHAppEFPHkYZU6IwHxPlBtDLRoc7fCkXjAN2X4MN5P0\nBACTHrB3Jf57aZGCdocHEAKK5EeX2x/3bq1GFrAYtFh1yUyYdQruf3Y79jTYk25fKyeeZy54522o\nxYg1T29HW0c3Cm04j6sXTcY72w+jbr9N1fLplpHFqMDhdMN3fF1JEqgeWQRZlvD5vtaU+WHUSXB2\nZy/XouPXyAL/uWwWDjZ24LHNu9NK58Yl02HQKLjrT9tCT5hYjAoUyYdj9p5KkY1H3nsjfJ8FAItB\ngzHDitBi60RzWxd8fj+8UVksSwKrl+fuR1B2+FLgxWz+sVNRuFg2vceOHhENdlaLDhNGFKd8r1YN\nAaDEoot7d5r6v1y/e5xvVrMu4dMIvZHrDh9H6SQiIiKihByd7pSjVqrlP54eDUwDubMHAK32bqx5\ncnu+w0gbO3xERERElJDJoKCsJHZI+0wEHjnNzvQERPnQH3+wYIePiIioAKmZa4syN9RS+DNTZVIF\nBACzPvnfhxQpofkEjTqBRNOraWQRmsNu+YJqTBhuziCiyG3fuGR6aM7EQrwIXbF4cs7nUQzut0Dg\n3bDJo4uzNkdfvggA1aOKYr63GBWUmgt/NM7p40oxvNQARRaQU1RMk6H/lVXht3ZERAVOkQV+8J0a\n/OnVPehwuiEJgSlVVkwbV4ynXuuZekEWQKlFB5vDBQgBnQJ0ufwpBwQZN9yMxpZOAALDh+ix77A9\n9EL85DElWLFoGswGLRpbHVjzZGDUQ0n40JXgR0idBvD6AwORKLLAdRdOw9vbj6DZ1gmzXsYXDTaE\njw5tMSq48js1+P2Ln8PemXjY+qAViyfHzD0VFG+ENwDYsGkn6g/YAAhMGl2ChaeMxtrnPkOHoxtC\nCJRbjRg+1JSzEeHq9jfjvqd3wI/Ahctt//ENjCo1huI91NSBI62dgQEV/IDFpKDErEWFVV1MqUa2\nCy87k0HBqosTvyMSXLatoxt+ABpZgiz50O1GKP7LFk7EC29/FfOelCwLeKNG/mtsdeCuJ7ah3RFZ\nYYpMCk77Whk2vd8Q+m7p/LGYPXVE3DLcuLkejS0O2Ls8sBg1qLCacNrMCvzuL3Uxc65pZAG9VoIk\nSejq9kKvkzGmwoIOpzvlyH9q3nWJzu/Fp4/F82/ui8n/vYdtuOeJntEQw4+FRCN2qnmvN9ujS279\n12Gse35n6POKxZNh6+iKaF+Wzh+LM0+KP41Bttz8va+H8ja8rCX4sf+IMyK+RG1AULw5AFMdB+kc\nJ+mkGy1Z7OmmFa/s4qWfqM4eaupAc1sXIATMYduLVw/vvOpk3PLwlrjzJdo7XfjzP77AwSMdCeu2\n2hE4Ey2XbP3oY60vRoFO5P5nP8H2PS2hzzMnDEk4b2T0XIKKLLDq4pk5jzHbOGgL9RoHBilcLJve\ny+VQ4SyfwsWyKVz5Kpu/vL4Lr3zY0/k9e/ZwnH96Tb+eTiAXeOz0jbc/PYA/vtwziublCyfitK+N\nivnx6sYl0zGtqgwAyyYonaklGo85sOap9H9kSBdH6UyBFTf/2IAUrv5cNhwdk2hw0grAFXVlolck\nLDh5BF5850B+gqJ+R6cBurM760bIqHITOjtdONoR+xjFxJFFcDi60NDau0m0KcBqCUxjkWiqj2wZ\nXqqH0+WDs8sDTZKpSoKMOhk/u+ykrHX+2OFLob9ezA4k/blTMdDlsmzYISMiIqLBymrRxX00OROc\nloGICg47e0RERDSY9afROtnhIyIiIiIiSkN/Gq2THT4iIiIiIqI09KfROtnhIyIiIuqlgXhBpVUk\n1MSZWy0TRp2A2VD487GlosiAJALzZBYZNZg+rhRWU+R+mQwyzps7KmVaBq2MUUOTTJqYRSsWT8ac\nGcMxvNSQ0fyO/cEpU61ZSUcg+RyYFqOCO686OSejdeYK5+Ejoqz58ZLpePndL7HrQHvM38Lnublq\nzRsR83IJAGMqLQmHR175wLtotffMJ5bpi9LR6SiywIgyc8phmdMRPUfTNedNxatbDsYd/jn6JW17\npwt3Pf5hxOhu6c6tFT1nUG1NOVYsmhZ32URDUyd6R/P+H82B2aCNyceg8KHos1Vm2ZLOMNxA6uk4\novPZatGh2KSNm3a62060/WTiTQOQyXajRQ/xfvXiyfhoZ0tMmjfc/zbanfHfZ1FkgWFDjaiwmiLy\nLFHsqepwPgYKy0ZeZiI6L4Jqa8px2syKhMPvJxJvLrRfPrYtZjm100rEy5exo4dwILfjvn3KxIzX\nzUZbHm3hnOqsl02mcyPGk43j7AfnqIsz2bk5m/EUCo7SSb3GUToLV67KRs28U9mcgDVbJ5Rsnpiy\nIRflk40TVKLORrCMG1sduPnhLQn/HlymkPI6XanqeK4vBG564HUctfd8HmoGZtVU4P8+OhKz7ClT\nrfjBObOytu1MhJd3sknUn3rts4h9OPOkCiydPzUirVR5O5jOOfEmOa+wmrJa39RODK7WYCqfXMpF\nG8OyKVy5HqWTd/iIKCfMBm3CXyPHDyvBw6u+qTqtSqspK3eHspVOIUuW79mSqONm73SFLkj6e17P\nmTEc73zSM8l2bU15xN9znc9eoQPQHfHZZo//+6zbm/+BA9SWd/Q+xNunvqjD/UVf5EXtpGGoXZ15\nB49yg8cBZRM7fESUlkR3f9a9UJfTxx3sThc2vtq7Xzv3HrThnqfU31mk9Pzx5V247vyvZT3dbJR9\nMo0tDqx5+vjdSL2CVZfMjOjsAcDWXU1YkbUtpmZ3umI+HznmiLvskdb43xei6H2IF3u88sjX3eFU\nsfS2bqpdP9fHAFEuJaq/we8+zYnrAAAgAElEQVRzeQc72fYHEz7SSb3GRwQKV7yy4Rx6NBBctnAi\nttcfQ93eFnj69VlsYBs3woKl8yZizZPb4PJmN21JBN4PdHv88EX9bWiRgqPtuZsja3SFEYeanPAm\nqXtlJXpUVRZh+YJq/OXvu/B23dGU6c6aOBTVIy145o19WYw2e4YNMcDh6ER7V+zfikwKVi87AdOr\nK7Hvyxbc/+x27GkIPJccfMdwqMWIW/+wJa1jNvrHuTc/PoDHNu8O/V0jAX6/gDfqclarkVA9shhd\nLncoDjUqioAjsa+hx5BlgWVnTcDjr+xGvN0pMsrQyhKOdkTWQ4FA3U1Wd9K1eO4oHGzqxleH23Ck\nLfb96ujtA4BBJ+Dsjh+ERgK8PkTslyIL/PCCaXjlvfjv6eeKLABJEhHv/QPA5DEl+Np4K555vedY\nKTLJ6OzyAUJAhg9dnsTpCgDfnT8Wz7wW/1gzGWS43X6Y9ArmzizHi+8ciPh7bx99jpbrRzrZ4aNe\nY4evcP366a2o28+yISLKF1nEdkYGOgHE7QT11pL5Y/F0ggt0or6mdnAjNXLd4RuIowgT0XHs7BER\n5ddg6+wBuensAWBnjyhD7PARERERERENUOzwEREREeWJUSfDqOv/E5JTJE0fFul5c0cN2MnUKTs4\nSicR5YRA4EXroRYNjrTlbvCEVIrNGrTbPWk9YqSRBRZ8fRg2vd8Q8zdJBB5XKjZpce3500ITt+oV\ngb0NHXB7/RAAKocYMLLMgrNOHok1T0QOWBF82fuY042fPvhOaNTQc04diefeinwxfHgJ8N9Xh81v\n1+LAXU9uQ4fTjegnxTQyIAkpYlLZrw63oamtO2ePWKVDAmIG10hFpwDdKaqP2aBBaZEOEvzYf8QZ\n8bfgQBKVVlPEJOIAUD2qCPUqBh8w6WUMH2LEFw0dCQdaGFVuwqqls7D/SBt+/fQOFXsGyBIgA3DF\nyZRM3oHSSAIWkxZtHd0p89moE9BoNOjq9sJkUDCiVEbdl84UawFFJgntjsjUh5fqcaS1K27eaDUC\nGlnGuOGBd0vqv2rNyuAtFqOCK79Tg9+/+DnsnbEJ6jSA1y/g6cXIGKnKoLxYQVNY22bUSSgxKWg4\n1jNoxphKE5pbuwAITBpdgssX1gBAzNx6pRY9hBA40uJAw7HOjOI986QKnHPqRGzYtBP1B2xwdvcu\no5fOH4v/t6UBjk43XJ7ENeq8uaPwxsdNaO3o2e/gIC1V5cXY8PJObN/TErHO8CEG2OwueDxeeH2B\ndsHvD7SvvuOZrtMI+H3+iONj6fyxeCrJY51nzx6O9+paImIBALMWsLsSrBSHLAlUjyyCLEvYc9AG\ntwfQKhJqxlix8JTR+O2fPwnVu/A2JlyiefTCvzfrZRw86oSzyxOarxQA1jy5HR2Obggh4PP6EV6S\n0fsybYwR3z5lIiaPLUs6v23d/mbc98yOmPNGonx8Y9vhiEFdNLKAxajFKdOGxJwbFVmC2RiI39Hl\nDsUhAJiNCrpdgXbm8rOr8cdN9aF9sxg0aLW7Ex5ntTXlSfOvxKyFEAIf744/IJJOAXRaBV3dXkjC\nh253zzEd3B81eR4kywLesPztTzhoC/UaB20pXGomSE/kqjVvRIyKpcgirbnz8mHlg+9GnOitFh0m\njCjG1l1Noe9qa8pzOrfRuhfqVG8vk2Mneh9TbSMX4uVzrufc601dzoSasklU1slGwu1NzJnmQTp1\nsi8lqkfR8QKRMadz3MRLK1w65ZHtep/rcolO32rRRcQfvj01saRaJt7fAcRdJ1W5xJOrepvsuCrU\nYydThXy99r9v7oroSJ49ezjOP70mjxH1rX498Xp9fT2uueYaXHbZZVi2bFnE3+bNm4fKykrIcuCe\n97333ouKigq89NJL+MMf/gCNRoPrr78eZ5xxRi5DJKIEoodAjv5ciByd7pjPzbbIX8ujP2dbrrcX\nvY+52Ea6McSLaTDo67qVqUKNM1E9ihdfpjFnc1+zXe9zXS7R6UXHG/53NbGkWiadNDLZ13zU20I9\ndgai80+vKegOXn+fyy9n7/A5nU7ccccdmD17dsJl1q9fj40bN2Ljxo2oqKhAa2srHnzwQTz55JN4\n6KGH8Pe//z1X4RFRCooskn4uRCa9EvnZoKCsxBDxXfTnbMv19qL3MRfbSDcGkyE2psGgr+tWpgo1\nzkT1KF58mcaczX3Ndr3PdblEpxcdf/jf1cSSapl4nxMtk8m+5qPeFuqxMxDZnS6se6EOtz+6Fete\nqIO9M41ncPvAxlfrsXVXE/Y3dmDrriZs3Fyf75DSkrM7fFqtFuvXr8f69etVr/P+++9j9uzZMJvN\nMJvNuOOOO3IVHhGlcNOyWTHvAxS6VZfMxJont8PR6Q69D2E+fpET/qtcLgXTz9X2Vl0yE3c9EXiH\nTxICU6qsOd+neDFE5/NglKiszzypAv/30ZGY5Vcsntyr7V2+cCL++PLuiM+9iTPfEtWj5Quq4fZ4\nUX/AhuC7b5nGHL7vx2wdEROGnz5jaFbizVSuyyU6/cWnj8Xzb+6Luz01saRaJvjZ5nChxKSN+Hv0\nOuFpBd/Dau3oTvjvfNXbQj12BqJghwoA9jcGHm0spMdn+/vd3py/w/e73/0OVqs17iOdJ5xwAg4d\nOoQTTzwRK1euxPr16/HFF1/AZrOhvb0d1113XdI7hADf4SsEhfxM+GDX1+89UXr667GTj0dbCvEd\nPsoPlk1h62/lM5jOk4VcNrc/ujXU0QOAqkoLbr2sNo8RRcr1+5z9+h2+ZK6//nqcdtppKC4uxrXX\nXovNmzcDAGw2Gx544AE0NDTge9/7Ht544w0IkfhRMqvVCE1fjn1LcSWrZFRYHv7r57j+olkoMgUu\n0NscLjz0v5/gyDEnKkqNWHH+DBSZtPjp716PmLh9xngL/vuawj4JnrPyxZjvZk4oxvY9baHPJ00q\nxn/9xxl9GFVy6R47u/Yfwy3r3oXb44OikXDnNadi0pjSHEUX3/fD8jn4eMtff3Vuwrqk1sEmO37+\n0LvocLpgMWrx31efihHl5oTLb3hlV8bbUhNrpu1avHoIAEYN8Mzd52aUJgBc8z8v48DRnvewxpQr\neOA/F6Zc7587j+AXj3wAvx8QArjtym/ghEkVaed3tr297SDu+dM/Q5//83snYs6MkQBSl0+8skm1\nP72tn6ROm8OV9NhM1IYVUvlccffroeNkoCnU6zWdNvJaXq+TCyrWGy4+EetyXD9zub956/AtWrQo\n9O+5c+eivr4eI0aMwKxZs6DRaDB69GiYTCYcO3YMQ4YMSZhOa2vqYaQptwr5FyOKteWzRvzmyX/G\nHZ1t9wEburs9WLFoWkRnDwA+2dvRL8s5vLMHAB/9q61g9iOTY+fmte+EBtBxeXz46YPvFMToqc3N\nHQnrklo3r+0ZBbG7rQs/XftO0lEQ3/mkIeNtpYo1F+2a09O7p1LCO3sA8GWTW1V6v/jDB6GhyP1+\n4Lbff4BHVs9LO7+zLbyzBwB3P/5PTFpdDCB5+SQqm1T709v6SepseGVX0mMzURtWSOUTfpwMJIV8\nvfavr2wRn3d9aSu4WL//7z2DynQ7u9Hs7E6ydHpyfYcvLxOvd3R04IorroDLFXghc+vWrZg4cSLm\nzJmDDz74AD6fD62trXA6nbBarfkIkWhAS3d0NiochTx6am/rUm9GQUx3W4Op3kfXkODnQh5tNZPy\nSbU/g6nM8+nIscgf4qPzOVEbVmjlUzgtK1Hv5ewOX11dHe6++24cOnQIGo0Gmzdvxrx58zBy5Eic\neeaZmDt3Li666CLodDpMmTIF3/rWtyCEwIIFC/Dd734XAPCzn/0MkpSXPinRgBY9Olv4c/Mchayw\nKbKImR+xUPS2Lpn0Clz2nl9M0xkFMd1tDaZ6Hz2BeLDG9Ca/cy2T8km1P4OpzPOpotSI3Qd67tZE\n53OiNqzQyqdwWlai3stZh2/atGnYuHFjwr9feumluPTSS2O+X7JkCZYsWZKrsIgGvVkTh6oana1m\npB67DvYMaVczUt+3gWbJtDFG1H3pjPjcnxXy6Km9HdEu3VEQa2vKM95WPkbf6+3bHsNLgAZb5Gc1\nblwyHfc9vQN+BC5ib1wyHUD+R1tdsXgy1j2/M+JzUCblk2p/OOJi31hx/gx0d3sS5nOiNqyQyif8\nOKG+kaw9oN7L+SiduVZoz/cORoX8TPhgN5hGH+uPeOwULpZN4WLZFLb+Vj6D6TzZ38pmMMn1O3zs\n8FGvsQHpW/FOToNN+CNqigS4ferX1cgCRp0GFVY9dh/KrN4WmRRcd/50vPrhQRxq6sDhY50J3/dQ\nZIEhRXrYu1ywd3qTpnvKVCve+6w16TJzZwzFW58cjfleEsDUsaW48pwpMBu0oakTDjV1oLmtC57j\nj1BpZAlmg4JVl8wEfMBdTwbm9IMfsJgUWAwaHDrav99t0mokVI8sBgSwa38rPMcLJ3g3YfywxLfG\ngvkWPpfYkRYn7nxim+p3ehKVUbToRy2jKbKA5POjO0tn6ZqRenzV3A1nVIIXzR+LZ17bF7O8TgN0\neyK/M2sBe9R8yEadjK5ub8J3BYHAMbN62QmotJpC3yWa3qOxxYHbNmyBK+xwGT/CAq838JjfDRef\niJajHbj/2e3Y02BPus9DixRUDjHji4Z2OLtjj7+l88di9pQRWPv8p9h1oB1AoFwqhxgwssyCKVXF\neOz/9cx9aDLI6O72whOnzQmvX40tDtz6hy2hugcERkgFAJNWgqQJ5JlJr+Ca86bi1Q8PhvLhrNqR\n+N1zO9Du6N07lYos8MMLpuH/thzAZ/ttofJIVe+ijRthwdJ5E7H2hc/Q1tGNeM3tsOP5tXxBNY45\nPBEDBVWUGjCs1Ai7sztUXooscMW3a/DM61/A0emGXitjTKUFHU43ykoMmDO9Ar/5y46IOBVZgk4R\nkGQJXd1eSPCh24OIO9fTqspiYmtsceD2R7egKyw7K0oNGF0eiPf6374Td7/D80mSgKlVPe2rWo0t\nDqx5+vhdZ72CyxZWY/1fP485F6xYPBm1k4YlXFerEYAAHF1exLtqDz+vfdHQAa8/EH94e2/WKfjT\n33djx56jAARGlxvR0OJEu9MTm2CYYPkF50TUKwJ7GzpCj+VKAvCF13MA350/Fs+9sT/iLm7dnma8\n+O6B0HLnzR2FkyYND+2jz+NDeCQLZw/HK+83hMrApJcxbngxWmydaG7rAoSAIvnh8gIerx8CgNmo\noNsVeVwFz4HJ3nc3GWS43X6Y9IG8CrZTjS0O3PnER6HyiteOZQs7fCmwo5F/7PBl5s2PD+CxzbtT\nL0iUJgFAlgQ8vn7dvPepdC+Ciajw3HLpCRE/6Ow9aMMvn9iWtfQnDDfjonnVuOepyEdSnQ437nt2\nR6/SHlVmwIHm/v1j20BgMSr47fWnAQBWPtgz8m+QLAmcUF2W9fln2eFLgR2N/GOHLzHejSMiIuob\niizw8Kpvhu4eh0+UTaRW8JHeq+/9B1zxbueDE68TDQqbt+zDM2/EPgJFRERE+eH2+vlDK/Xauhfq\ncFbtSLgTdPaA/E8bki52+GhQ4gmBiIiIiKJt3dWU8u5wiTl7j3P2BXb4aEBih46IiIiIcsHjTWO0\nuALADh8NCOzgEREREVFf+KKhPd8hpIUdPso5dsaIiIiIaKDw9rNRsKV8B0BERERERNRfdKczAXAB\nYIePiIiIiIhogGKHj4iIiIiISCWR7wDSxA4fEREREeWU2aCBRZ/vKAams2cPx7Sqkpx3QhQ5/XU0\nA6CnodMI6MNGPREAblwyPW/xZIKDtlCvnbPyxXyHkDa9ImFqlRn/3J29UZYkAfTmHd6xw8zYd9ie\ntXiyyagTcHar27lRZUYMLTGitaMbZr2Mg0edsDtd8PqAYAqSBEytKsV3Tq3Cb5/9BPZOb9y0BIDK\nIQZohB8Hjnal3HZFsYIjbe6IWIrNOnzR0A6PxwuvD/Bm8T3r+SdV4LWPjkR8p5UBl7cn/mKTFjct\nm4VKqwmNLQ7c+cRHcfd36fyx2HPQEXfun1HlRhxsciI8dI0sIISAWa9g1SUzQ+mveXo7Wju6M9of\nAcBiUlBi1qLCasLyBdUwG7TYe9CGe576GG6vH4oscMW3a/DM618k3U7whDitqixm/ZuWzcL4YSWh\nZf/4t0/xdt3R0OehxVqYDTqUlRhCMdidLmx8tR7Ntk6UlRhwVu1I/M/GbUj2FsUpU634wTmzYr4P\n5pOj0w1TWP6FKyuzoLm5I/R5x55m3PfsjoTbmjVxKM6YMQy/eXYH1FQxIYChFh1sDhdwvBwvW1iN\nR1+pz7j8wgXr06GmDjQcSz5BcCZtV/WoIvzwvK/B7nTjvzZ8CHfUgWXWA/awQ3bF4slY9/zOmHQE\netqFilIDyop0OHjUCZvdlV5AcdJLRZEl+L0+eMK+C+bbV4fbcKSt9+Wg10qYPLoUH+85mnS5UWUG\nHDnWGWo7gow6CZ0uH/wqd0qrkWDSK7jmvKl4/OXP47abGgF4UqQXPE5NWqVXbQrQU78cnZ6Yuwzj\nRljwxaGOuOtFLDfcDK0sYffB9rhteIlJwe0/OBlmQ2ButL0HbbjziW1x64LZIOP+H52OF9/ejRff\nPRD6vqxIQXN7z/mjyKTguvOnY9N7X6L+gA0ejxd+iIjj9b4/x28TLEYFl8yfgIdeiq3zAHDLpSfA\n6XCH2gsB4KpFk/H/3v8S+484E+aDQSfj55edhEqrKaJN/HT3sYiyvnzhRDg7PXjmjX0J07IYFSz8\nxkg883riZUwGGbd876SI9vHDzw7job9G7lewPQjmf7TGFgfuenIbOpxuwB84zxi1Ehpbk9crRRYw\n6iS0OQMHRvh5JZhusC3XagQkWUK7wx2TTrw2TgNEHPuJlgOA7lQHTD8g/H61zUhhCj8hU35wFE7K\nlCKLmAvFgchq0eFX156KlQ++m/TC6f4fzcH1v30nZ+mnq7amHCsWTcNVa97IqJwEgEdWz4tZX5EF\nHl71zdDnZG1IMIZ1L9RFdIbV1p0Nq+fFfBedT8H8Cxfd4bvirteTdiRmThiC7XtaYr6vqrRgf6O6\n81Q6nRU1Nqyel/U6Ea62phx7DrWpTl8vAV39a5yDfisbbasiC5iN2pzVn6DamnI02zpxqNneq5iD\nbQWApG2WLAHrb5qn6tolWT725nhVZAGP15/R+sH2KrpNzJXo9jFRvoXnf7RstkPB80q20+1NHNkQ\nfc7JNI1EeIePUmKHjnJlMHT2AKC1oxvX/vpNdEX/fB8lk85eMP1cHKdbdzVhay/S9SN++xFe7m9+\nfCDm7+G+OtwGAGi2Rd6lyrTu2J0u2OyRFwgdjm6se6EudPdw+YJqlIX9fe9BW8oLs3idPQC49bJa\n1WWT7aPh9ke3xuxrNn20qymtmNfeNC/mrspgYdTJuOvq2YAf+NHv3lF9xy5T2Whb3V4/HJ2xd0ty\nxdPLYe7VtldeH7DuhTpVaSbLx95E25vyae3oxg33vw23p29+PbHZu3H7o1tRVmLA4rljEy63dVcT\nuv68HR1Od8TTGY0tjqx2ysJzri/rZ7I4+gN2+CghdvQo1wbLHT4A6EzR2RtsrrjrdXxv4UQ8tnl3\n0uWajj9WV1ZiUH2nLJmNr9bHXGx7fAj9Uh7cxq1XzgYQ6CDe+cS2jLe38oF3M163t7KRX8lkcuQO\nxs4eADi7vdi4uR4Act7ZyxZFFjDpFbhy+KMBgD65S5WLbWb7jnw62p1919Hx+wNtyf7GDuw51JZ0\n2R1fHAPQ0/asWDQNa57enrPY+qJ+JtLfBm3hI50Ugx09IhooZEmgyKgNvad3+6NbU3aEhpcaUr73\nRulZsXgyaicNS+v8UmRSMKbCAltHN1ranUnfIx5dYYStw4V2Z/RbOYVFkgBfnh9rVfMOHwBMHlOC\n884Yh7XPfZazx+Y0kuj1nb2+1Nt39fvK0vlj8fqHB3CkPfnxYNQBzhz2l4pMCjq7vHB7c1Ppl84f\ni6deS/wOYq5Ev0uYDbl+pJMdPorBDh8RDUQlZm3Gg4FQ3ztv7ig0NNnxwa5WVcvPmjAUR212VQM8\nEQ1UMycMgaKRVd3F1Bx/l5DUs5p1+MUVtQkHqMkUO3wpsMOXfezwEREREfU/OkXA4wW8/eFWZD81\nraoEP15yQlbTzPugLS+88ELSvy9atCj9iIiIiIiIKKu63ezo5drnX9ryHULaUnb43n038MJ5a2sr\ndu3ahRkzZsDr9eLTTz/FrFmz2OEjIiIiIqJBwecHGlsdMfO3FrKUHb41a9YAAK6//nq89tpr0Ov1\nAAC73Y6f/exnuY2OiIiIiIiogKx5cnvM/K2FTFK7YENDQ6izBwBmsxkNDQ05CYqIiIiIiKgQ5XMO\nwEyonodv4sSJWLJkCWbNmgVJkvDJJ59g9OjRuYyNiIiIiIiooPj9ftg7XVkfrTNXVI/S6ff78d57\n76G+vh5+vx/jx4/HaaedBklSfZMwJzhKZ/ZxlE4iIiIiosRqa8qxYtG0rKSV91E6P//8c0yZMgUf\nfPABJElCTU1N6G9btmzB7NmzexUcFY6b176OxvZ8R0FEREREVNiabZ35DkG1lB2+F198EVOmTMHa\ntWtj/iaEYIevH7j2ntfR6ct3FEREREREA0NZiSHfIaiWlYnX169fjyuvvDIb8aSNj3QmxkcziYiI\niIiySwjgt9fPydo7fHl/pFONt99+O28dvsGEHTgiIiIiovwqMev6zYAtQJY6fFm4SUgJsJNHRERE\nRFQ4Vl08M98hpCUrQ2wKIbKRDFGfEgJQZNZdGniia7VGRUsv8VAoCDMnDEFVhTHfYeSMImLrZ7qs\nFi1qa8pRVWnBhOHmhOmdPXt43tt4o05GVaWl1/ucKxoJqKqMfQxMq5Fg1GV2T2DOjOG45dITYLXo\noNVIsFp0uPOqk7Fh9TzcedXJsFp0qtKxWnSorSmP+7eqSgs2rJ4HOUcNVzpxCgAbVs/DhtXzerVN\nrUaKWxbhZAFMHlMCvdJ3NUrNloLloVZtTbnq/I2myCKt40kAuP9Hc6BJ0RYoslDdXlgtOlRaTWlE\nkX9ZucNH1B9ZjAo8Hj/cXk9eti8EMLXKiraOThw42pWVNG+59AS8uuUgmm2dKCsxYOuupqykWwhk\nAUiSQLnViIYWB9Q8WFA9qggXzpuAOx/bhoH+HEJVpQVlJQYsX1CN/3pkK1rt3aG/WUw6tHZ0J1kb\nMfmjlQGXN7NYrBYFgASjToKz25dy2yaDjBu+OwOvbjmIQ00daG7rAoSA8PuSxjBiqAmHjjoivisy\nKRhTYUGH0x3KD7NBi7r9zbjv6R2h/ZQF4C3ASmGzu3Dr5d/AuhfqBtTxGzSs3ITbLj8Z9k4XVq97\nF06X+kLQaiSYDAr+55o50Ap1651/eg1uuP9ttDsjJ0mWhYC3D55Omjp2CFYsmobb/rgFXx1xJFxu\nw+p5WPnAuxHHrUDscZltFpMOZSUG7G+MfHfIZFBQVWHBx3uOqkqnqtKCWy+rBdDzLtKvrj01ZrlK\nqwm/uvZUVfXbrNdg+YJqfLbvGJzdkefp4GAZq5fPwj1PfAy31w8BwKQH7CpOp1qNBK0i4Ozywhcn\nk4Nx/vrpbajbbwt9LwRizj03Lpke+vfkMSXY+aUNmTAZlJiySDTs/+2Pbo0ps1RuufQEvLm9Ee9+\n2pD0/Bld79TUwWB5KLKAW0XDunxBNX7y4HsqUu5htejwi+/XwmzQ4up7/wGXR91ohH4AZoMWw4ca\nkx6DQgjVafa3SdcBdvhokNEpAn6/gMmgYNXFM/GXv++NOKH15iJXLaNOg0mjS3D5wprQ89/JHt3V\nyAIWoxbfnFWO5946kHC5EpOC8cNKsGJRSei7L9a+jZb2noZJAPjlVSej0mqKubjI1QVwsosWq0WH\nYpMWTa2dMSf04N/jXTRExx6utqY81OENXuz/9kdzsHFzPZptnWizu2LWLTJqMKayKNRJ2L67WdVJ\nKzrWX3w/cMET3NaXjR1pXbCpPVlGmzVxKK47/2uhz6sumYk1T26Ho9Mdquv/9YcPk6ZdbNLCZneF\nPs+YWI7lC6qxcXM9tv2rKaJuFJkUTBplxcf1TQg/P1ZVmnHrZV+PSTu8syUQuECaVlUWs1x43VWT\nxtvbj0R0+JLNiTStqgyPxPkF+oq7Xk9aRpIApo4tRd0Xx5IuJ0sCkkDcPA7mV3S9jHfRG7xwWr6g\nGgDw0a6miO0WGRVMGm2NWC/esVtVacaPL5oZamPsna6YHwIyZbXoYDFq0OHwpEwvuk5XHP9V3GzQ\n4q4Vp+L3L9Zh55e2lG1PeFtQVmZOa3CD1ctPwF1PbEOH0w1JCEypsuLKc6Zg5QPvZnS8pSNYjhVW\nU8KLzeBdhejj9vKzq/HHTfVwdLpVX4imYtZLUBQlom0w6xV0drmw80sbfAi0BcHvNcfbsrISAxaf\nPhbPv7kP2+ub4I4KJ93RCoP58tm+Fji74590K4eYYDZoMXVsaUR9t1p0ofXHDyvBw6u+GbGems7k\nQz85A0DguLj+t+8kXO4/zp0Was/LSgzo7HKjbn9r6O8zJwyJaMtWLIpcPnis2ztdMd/bu9wx7bRZ\nrwBAxHLxRHcMZ04YAgDYvqcl7vIzJwzB+GEl+MbXRuHn696JWG7mhCG4/oIZoc9qfniYPLoYep2C\n1o7uiDhvWtbTAVdkgWULJuCPL++OWNds0MBs0MKkV+BK0n6MGqpH5dCimLwEkHLdcMHjK9kxCAQ6\n3H6nK6ZNUGQBs0EbkScmg6Jq24UkK6N03nrrrbj99tuzEU/aBvoonem+wycLYM7XhuLNT2J/ldNq\ngHHDirDrQG4n2ysyAO0qpyapKAJuuTxwMb5zXxPCj99R5SbIkhT3Aj3tmEwKVi87IeYWfHQjHDyh\nxWtgrv/16wi7HgYQuIPkcvsjGrzfv1gX8YtgtHiPPWz912Gse35n6PP4ERb86IIZcV8Itne6sGHT\nTny+rwUub+AXx2KTFkdhC18AACAASURBVDddMitm/3RGHX7z5D/j7k9jqyPiZHPNeVNDdwc1kh97\nG+yhRr6i1ICyIh2+arKj3RnomOk0ArLkhzMsT/SKBJ/PBz8EIATMUemWmLUQQkScJOJd+AoReCF6\n1cUz4z42ER17ouXiiXfijc7nvYdtoZNWMgJA5RADRpZZVKWjVwLPVup1GhSZFAwbaobL5Q3lx+LT\nx+Lmh7fEbGfymBJ0dntRVmLAWSePxO+e3RFz8Zrq5fHwWBRZ4LoLp+Ht7UdU1f1E+a0mL3MpG9tP\n1BmNHjGtbn8zfv30joh1xfH/BY8/AFjz5Ha0dXTDD0AjSzAbE9fP4LFcf8AGQMT8EATEz3uzXlHd\nbiXans/nD9XDIoOCg0edsDtdECJwF72sRA8hBD7eHXkuqSrX4Nbvz43J/xKzFh6vD3sO2uD2AFqt\nhJrRVlw4b7zq2DZurkdjiwP2Lg90GqCl3RVqR8LzMBuj2QGBY+Kux7fFdDYVWeCCb1bhqdf2hb6r\nHlWEyxZOjtkXAFjzp48intKQJYGi452mYMzheaVXBPY2dISOxZuWzcL4YYl/7AjGGn783rRsFv7n\nsW2I7gYGf/AKtrVHWhyhO+bR+ZipVPU2nfKJ90OELAl8bfyQUJrpHufRdcli1KDCakq43v++uQub\n3m8IfT579nCcf3pNzHLhaeerzUsVR3g9iXd+KiuzYN9XLUn3IbrNCf/hId3zbbz0gusnuwZJlbfh\n62oVAUmS0NXthcmgYMn8cfjDS7tijq/wPDPrZexvbIe9K3AEBa8RHV1u/PKxbaHtyLLA6mWzYNIr\nGV9zqJXrUTpVd/jefPNN2Gw2nHvuuVi5ciV27NiBn/zkJzjrrLN6FVxvDcYOX2+fE8+2VJW0t/tQ\nKA1sJvJdftm6MMq1Qi3jXMfVX8pnMGLZFC6WTWFLt3wKtf0fiHjsFK6CmZZh7dq1WLduHd588034\nfD48//zzuPrqq/Pe4aPCd+ZJFfi/j45EfE6H2aBN+JgWDQyFWsaFGhcR0UDBdpYo91R3+PR6PUpL\nS/Hmm2/i3HPPhclkgiRlZZBPSiDR45wrH3wXOg3QbOtO+d6DwPHHigwKVl1y/DEspwsbX+35Ne2s\n2pFY+8JngVvVegUXzRuHRzbF3g7P1NL5U7F0/tSky0THFHruPcH36aaTDY0tDqx5enson4L5mWz7\nudymmn1tc7iw7oW6nke/5o7F828lfrwqPM229g60OnvSOvOkCpxzysSc5W82xMsvs04piJjtThc2\nvBz2GNSoElx1/gw88qL68gmms/b5T0OPZqd6rFRtLJefXQP4oSqvsnmc5fKYzZZCjrGvYsvGdqLT\nUFPf461vc7hQYtLmvBwSxRv9qGC6+9HbOAqp/mWqL/cp1bYKKX8LKZZsUHPdRH1D9SOdS5Yswfz5\n8/H0009j06ZNOHz4MH784x/jueeey3WMSQ2EW9N9PdeeohFwe3r36uaG1fNCDdPR9i7YOrphMWpC\n74K0212hd1jc3uy8bA4AZr0MSRLo6PREvL/07qeH8Mwb+2KWn1ZVgh8vOaHXjc7egzb88oltEd8J\nAFd9Z3Koc6x20JP7r5+D379U1/OCvFGLm5bNQnOLE795dkfEe3PH2roi3iOzWnT4xeW12PhqfczL\n7vEGrLj36Y/xedgL5tFqa8qx/Kzqnk6ew5V0RMXoQW2C+ZtKvJNYsHPR2OLAkWOOiHRXLJ6M2knD\n0kpzzvQK3PeXyHesiowalJUYsLehp50wGWSUFRvTPpnGO07T6WzFG0jAatGitaPnJcgig4z2zsgB\nDH4cNcDJ/c9+kvDFfOvx9x7//Pqe0Hta8PnQ5e2JNzjYSXQs06pKYNBrI76fOWEIFI0cc/ERPXJd\nuPC2QU3H8b/+uDWiziUbeKWv2J0u/Onvu/FJfRPcHsAPf8RIfkVGBeNHFMe8ixpcN3h8e/2B98HC\n34mLt070ttVcnH68qwnxxhe2mnX4xRW1qur13oM23PNUz3thP7xgGt74ZwPq9rYgeIoQAMxGBXan\nO+GgNZPHlGDFomkptxl9DFgturTKPtlgHGpjSGTHnuZQ+xs8Tt745+GIdxiLTAraHalH5zPqNJg6\ntjTti/VE56mYfDtexnanO+kPXGa9jINHnXB2eeKe93LVuYj3aFr0trpcHuz44ljo74os8IsffD1h\nfIne/1YjOv8UWUAIEfqB+6GXdkYsHz6ISXgMqfIzWib5Gx1rOu1h+A95Pp8fGglwunzw+QPjO2gV\nGZIsUD0i8ANfolg+/OwwHvprT57EOx+r3beVD74bcYzHG4gtmNa+Q6042hE4vpIN7pUqD3LVYc51\nZzzXj3TKt912221qEpkxYwY+/PBDXH311Rg9ejT+9re/4eyzz8aoUaN6FVxvOZ2u1AsVuBffie2o\n5JIvC/2vc+eMxSObdmLrribYOrrR5fKizeFGk60LXS5v6MLAl+Vhr10eP7qPDw/m9wNNrZ042taF\nVz86FHf5lrYufGfO2NBFpdfnR5fLi231R7Hg66NVb/enD78fd+jmj/51NPS92j092taF7XtaQst3\nuQPx/GN7Q0Qajk5PzDZ9Pj+OtHZi666mmAFFtBoJp88cEfHdH/4WeSKLptVI2HOoPVCOdhe6UgxR\nGt2hDeZvKqG6Yneh4agDR9u68OneFmzd1YR2pzsm3Y92HcW5KdKNTnPL57EXgt1uX0SHCgDcHn9E\nHInmeYqW6Di1d3pUpfXKB19GjIIZiC8yv7vj/BDzQV1TRF5s3PyvhIPJBOv2/sbAgBAenx/RSX5Q\n1wRFI8XE0tLWBU3U9+0OF748Yo/Jrw2bdias7xFtQ4p8fmTTTuxtiBxEKl497muPbNqJD3cGRiD1\nI/bY7nb70HjMGXf/Htm0M+L49vmBDqcbjcc6E64Tve1keRf8e6JmvMvlVV2vf/rw+6G65PMDWz5r\nQuOxzpi0XdFDMkY52talapvRx4DP54c3rJFLVfbxjqF0Y0jk5t9viSjnD+qa0OZwRfxg2Z0iH4Lc\nXl/a7QuAhOep6P0OlvHf3v8yZvmDzY5Q/QmejxOd99Qep+kymXQx12bR22pp64qYGsDnR9L41B4/\n8cTUOz9CefLRv2IHuGt3uLBwdlVMDKnyM1om+Rsdazrt4SObdmJb/dFQ2+/y+kN12g/A4/XD7Qm0\nXcli+fmGrRGf452P1e7b8299EXGM+3x+fPuUqrhpOV2Rx1f0uU+NXNXpXKcNxD9uMkkjEdXPZE6c\nOBEXXHABbLbAr7rf+c53cMopp/QqMOrfmm0qh+LMsWRxBJuP6DlT0p1DJZtDd8eL19GZ+NfzcCaD\nknB/M3mEtKzE0KtyjHf509jiwMoH38XV9/4DKx94F42tjphtNNs6e11/otfPpISyWYdTpRWvfCSR\nepLX2P1Kvk6bivn24sXii/t95LaC+5jqsjdeeatZDgli62vp1ovw5dWuqzZP1OZlussAse1ab1o5\nNduMLluTXkn691TrZxJDItH77o/7bXrSjSfReSrefjfbOuMun2yb0ctnUrcyFZ12vB+DU8Wn9m/R\n0m9Tetq9dPIzWib5Gx1rOrGnkyfZPv8mSi/6GI83nUGidbNxTs/lOb5QroHVUt3he/TRR3HLLbfg\n/vvvBxAYxGXt2rU5C4wKXyFcmAHJ4yg29czZEi7dOVSC87hkQ7x4TQYl4WW8IgtoNRKslsDjetHr\nG3WawKOZcebrSRZ1cJ3o9NLZ02D+hlvz9Ha0dnTD5fGh1d6NNU9uj3sS6239URN3kTF5OWezDqdK\na/mCasycMARGnQyjToNZE4diZnXk4ypFpth4o/dr0qjk79OmOkmK47FE1+ni4+9E1daUo6rSgtqa\n8phtBfex2Jj8MRa1Fy3R34fPr5VP6daL8OXVrqs2TzK5AFQbQ3Qd6E0rp2ab0fVr1SUzIz6nKvvg\n+hNHlcSNtTfHc3R6AkB1VP0vMsgJ16+tKYdRF/n3dONJdJ5avqAaVnPkL/dlJYa4yyfbZvR5rzed\ni3RFp22Jcw5OFZ/av0ULr3dqzuWTRveUezr5mSrGTI6RdNrDdPIk2+ffROmtumQmrBZdxDWM2lgy\naY9yWaf78njJBdXv8F1wwQX485//jEsvvRQbN26Ez/f/2XvzMDuKcn/8092nz35mzuyTZSYzWSYZ\nMkkmkYAsgmIQ2e4lgJIAAQMiBhAEBPmhXhA3TIRcAQVFAhiWoEgiXvQm+g2C4AWCWcyE7MmEZJLZ\nt7POWX9/9HSfXqq3s8wS+vM8eZ7MOX2qq96qeqveqvf9vCksWbIEv/vd7wpdR02Mhxi+kY7RGwnM\nn16OL32ey6/U1h3Eie6wsNFkGArJ4ZNjG0MhUeDEtkUeFp+ZWyHJo8ODoSnQNAWHjQLNZPK0CHnE\nVMgrjOZlc7JALAGiu6caHrvjbCHZMJ/k9t5r5qN7ICzkAwOGE6677Mq4i2EK67bOQCa/kko8wTP/\nsxPvtnQp6nDuvHJcfyGXqLu9N4QHntFOys3VB0glocgvJo4Z8XvtqvFlAOCyM5g1pQTLL+JyHPHt\nON4rPSmzszRmTynlcnipkCHIqbw/01wlkR8vw/84a7IkYf20ST7EYimBdKHU50QwPIQDx4Oq9fY4\nKYSi5Ls2cQxfMBzHwy8pEzwjDTz26nbNd1AArr9oBtb9dT+iooPjqlIXaiszMYLBSAwPPfNPdAel\n92wuOwOKoogJ7MXwumy4/7pPAYBqXiFSTAXA5SK77fK56OgLY+WL5DyFLEOhrMiJcCyBeCKFdCoN\np92GIi8r5MISx28ayZMlrpN8LJiJz9WLJR0IxxBPpDA0lJTcYjpYGjMmFwMADh0fRFT2vR74/It2\nG41ILIF4kuvvYo8dt17RhE0fZHJPfeG0yXj8DzslsWIUuATwADemSa6/XhcQFE0jl50Cy9oQjsSR\nTHG5LfX01NJF9fjDm4ch9+z2uVmEhmP4bAwNlkkjGs/ENTrtNKZPLEY0FhfGuBrhlzwm6uPOoBCT\n3TC5CAxD49DxQS5PoGjc8MQobZ0BdA8OKRKR8+M625iqD/acwFMbpHFLjbVlEh3zqYYy/Op1sjtz\nXbUvqzgz1Rgx0Zw8eKwfD7+YyRc4Y3IRvC67IsfeLYtn441/HhHWs9pKN9r7ooryhHcT0iGIiZuc\nLIX9xwYlLvcUAJ/LhikTihAIx4ntJMbwyd519twqrP6dNOZ66kQv2nsiQt97XAzCQyn43Da47Qwx\ndyEvPy1dItYRNjqNWJJzb+QTgz/35/2S/Ut1iRsTy7kx99KmvcJa7WKBWJISfqtHaKcn31ziEkmE\nQr/bfAB7jvQingCAtLTfKMDJx/BN9uOiT9dKyPrEelOeF5gYw2cilUZ7T0iyLk6d4MWJnpCQA08N\n9LDOMiTr4b0c3347Swt7DXF8tdkYvHzFkRrBmMnDd/311+P555/HsmXLsHbtWgAckcu6detyqlyu\nGOsG38lo7PHgg4nvffKf6B6IEp8hEUEUAl4XA9Zm0yQc4YOFJUyUBJISvSBpeRAyy1CGXT4pAD+/\n/WzJ5l8enGw0aNtIMDRp/MnL0yJCEJetRq5g5PfZvt8sqQMA3LzqTUl/sAyFX93zOckzZusshlYd\n5H3CPw/A0PsoqN/Q8e99a9tRPL9xv5kqK8AyFB657SzVxUpLPqT2mJkDavLQW9TV5oWReaBWhtth\ng8POaOoNvm6/uudzOY0brbLlxEx69ZGDY2M23gdqYGhAzrFFAXjmvvOI8ge0x3U+554RuZglfdHS\nY6SyvrbqTckBpo2hMH9GhWmSDbEBkk6nJf1G+r1cp8n1BP+bXAg/eGTTP/L3GNm4knSlVvkH2gaI\n83z1K9ux83Av8Td8nbTepTWO9cZcvuVrpjw9AiQ5eHnxfWNGb/LIlvzOTF+rgaRLxCDJVW+vYUTe\n+ZhTRjFm8vDV1tbiiSeewODgIDZt2oQ///nPmDZtWk4VO5lxMht6PNo6A1j54oeqxh4AVSa/fCMY\nSQLQJhwJReLY+P5hIpunGLsO9+Ch57bARqclNzKTyp1o61a21cwmKw3g9sfeUXz26Lqd+M61CySn\nuDy27OnEhz/dDJ+TO1Xt6Y+gS8beCQB9gSHctvotyck4CR19IdUbHDX0B6XKesueTmwZHuNm3S52\nHOjGkxtahNMxLT94+SLx4d5O3Lb6bdWb2PaekEIu8WRaMh/vWjInJ9/7HQe68dWHNxu+4dl1uMfw\nLbfWU7sO9yAYieVs7AGcTH79xxa4nHbJaWdHT1hgbVQDabNiZg6oyT6eTONHz3NMuFV+Bzr6M31f\n5GHhtkuXq71Huoh6ViuuRv7u8FBC90aUr1uhdLpcdv1ZbIzShHKyAYlQOQ3g1tVvKQidtu3rRFpn\n9vN1Eh+ydfZlN/eMbBjbe0LC/0mn+W2d0s3Ulj2d2L7qTdx2ZRN2yYyG9p6QJKXNsgsaFPM4kUzj\nQ9l8aDnErR9aNwAPPfe+5BZfjK17O/H1n/1dsqHWi7Xkderxbmn7tst0LQliOTlZSkj3YgZa+pTE\nftpUV2Eqjl4tXjEYjhGNPSCzjjtZSnPs8CzRJMjXPVK9zCJfcYkfnxiQ/K03P/oCQ7jx4c2qa4yR\n/vjxCx8O77WAWHAI33v6faz+xtmat1wHj/XnbOwBnC7hxzKJnZYku0LEQ8v3L+MJhg2+pqYmBINB\nVFVV4fXXX8enPvUpXHPNNYWs27jFJ8HYA4DjvRGFK95YhsfF6hp7ABAeSqK1XXnKQjL28gl52gcx\n0mlgMCKlsSaBT9MQjcfQHyKzPX3cEVIYnXrQ8gMwu82MJVKcwbinE5PKPQhH9Tfc4nqEhxLYdqAb\n237OtcFpp9FYW4rlF8/CqnXbdct4dN1OLJxVSexjo/U3A3HqjFwQHkpi7cZ9eSkLkB7GtLYHsOtw\nLyJDiRxpKvTBxz1oyV9s7AHAYCiuoMMfjJBryrLqRkiF35V1v48UCi3/bBAhjGFuGhir7dpN+wru\n5QEAwWhCcO3aebBHODwTj2854sk0/vuVnYqWBKMJoc6t7QF8uJdcf/nvIjFu/WhtDyAQiuLea05V\n/EbN2AM4JuRkIoXYcPzzI7eepbgFlt/w8TpVHp8WH/4cgOqtRD76ZiAUkxi54shkcaoh/nCTi3e0\nIZYwxkhY4XdhIBhDTGSAxRIpzXVMbR1X1D0cU7gw89Dzf8uWKE2tXmbK6xzI7mBIDUZ4DYKylEHJ\nFBeWQRpb/EFCPuf9lj2diCeSONIRFIxIfp5Mn1SskKtYngeP9eOIxvdqkPdXzMCcGqswbPC9+eab\nWLlyJW688cZC1mfc45Ni7I03sAyFe65uxv2/en+0qzLu4HbYDN2CZIO2bu5kNRs3Nh7RWArbDnTD\ntnGf4VPjZRc0YNfh3oK1i6I4Bk4uZis/Bh9QWFawQsmCR22VJxPDByhctPKFUERd3vy7R8L4GAso\n8rCmYvgKgWAkNmJsdj63DWs37SPGEWuNb7lYGIrTe+LxmU2GITO3ZXXVPhzpCEjew+uze6+dj4d/\nm/H+mD4cw9dyuBdxAwdQvPxJt55m+4aihmP4qrkYPj4soi8wJGyM/+umM4TnSWLbsqcTTXV+JFJJ\nhREhhlhnBKNxrHppuyGdYWbNCuqsGRQAl4MBQGHqRB9YGyOJ4TIL/jdqMWFGke+pHAgO4YaHNwux\nxfdeO9+Qu+bWvZ1o7wspns2HsSfmg+Cx72i/4qY9FIlj2QUNiCeSGT6GWr9Enitf3iaRGU9eJgZp\nfiy7oIG4Vqm1eyzDsMEXjUbx+c9/HvX19WDZzEnAiy++WJCKWbCQT0yq8I6riTmWMLu+tOAb5GKP\nPefNf1d/BB4nKzkFVoPXZS9YuygAz3z7PADm42EYikJSY2c5Hm6oSCjxOfDg8tMln+Wjz83C67Jj\nxWVNgjtyvmC30aZvfsWgqOwMCi2QYk0KEYOoh7Ub9+V13LIMhdObJuCdHUqSrqoST16My2QapjwP\nzEJ+Q0cB+K+vLMTdT7yLPpH+4m9dpk3wY8HMSqHv9h8bxMJZlfA6WcnzauBvMsSbcL4/zPYNr9t4\nPPTcFsk8lstfLS45GE3isTvOFf4mxV6LdYbXZccjt55l6FDdjG7Xm3cuB4Mn7jxX+yET4HVQrjAT\nN20EPA9UGkB/KCbcLotR5GEVnhbJNIjP5joPef112+q3ZcY7BY/TJlnnPS4WXpcdt185T7U8klu0\n3CWTND9WXNZEXKvU2j2WYTgtwy233IJf/OIX+Na3voU77rhD+GfBwngAv+AtXWQuied4g9vBwMnS\n8HvJvuUNNUWmymMoKU10U512SoBsUeF3EaOBzMQHVvhdAgW0gfR2knblC3yMCukdzdPLMH2iV/P3\njXVkunkxRff5p1YpvlfrbzGcLEeLXVvlUVC8y9uQD8jTicgxmpTWZ84uyWt5cnp8s/DppA8xA600\nLcsuaNBMVZJNM1gbDZddfSvR1R+RzAPS3DQyX4EMsc+KK+ahyCn9rrzYTkwzQypDjnIfC7dDev7t\ndXFyzCUjj1oKgDuXzBHmmVhnaFHYk+KPvC5pnSuKnVg4qxI1FR5hrovHAqkMcd/MqinSTFuw/KIZ\nis/0qOrFbdV67t5r5wvv5vs5Gyy/aIaiTeImMbL2+dwsmur8YChuHMqbL0/NMVZAko+ThWT8/Pjm\n0wm/NAaSt8x91y4gpg4iPZurfufHqjw10Mxav6FUD3LIxzVpnKvF+Km1xWw+59GGYZbOsYqxxtKZ\nq0un10kjPJQqmOsNTXELTLYHQ7wC+fFvP1R1xRCzPclPLHk2zVAkDhuTRiwB4XrezgDJFAW7nSbG\njJiFe9gNY2atH59tnoDHXt1JbLfDBqh5fzRPL8MNFzcK9MNiGnH5zGma4sZdSz8NAIZJPZqnebH9\noDpVP8AtQAtmVmL6ZA9e/pt6DOLSRfU4/9SMQXvwRD9WvbgdsURKwoD40Jq30dqZabCTBRrrytEX\nGIKTpQTqa4YCGmr9iAwlJQQEf/3wsGo9nCzNxVsM09tTw/KPRILYc0waA8nQQHWpBxPLOZed1o4B\nSVqFhpoiRKJJgWqbRhqtHWHlO+00GqeUSumXIzGseYOjaI7GpR1FA/jNfdJTajkNtcfFaLoG2m00\nnA4GU6p8CmpyIj10bYmEZIbEFjm7vhTLLmjAt554RxJT4mCAJ+85T14Frp0iFxQbncbB40GBHOHr\nixvx4e4e3ZQWJLeiu594N6vTY5ah4PfYufhRjXQh8jqIx50YFICvXDQDf3irFYFwHEgDPg8Lv9cu\nuHrt/rhHl0JcD1pjWgu8y9nic+ux/i0ufUgyEcdRQrxvQ00RYvE0l3rh9Mn45Wu7JCkx3v33UWJq\nGTOoq/birquaJdTvpL5f84Z6Kho5zf1gcEhzvaAAzJrix+4jZIIu+U2jfE3gGWMB4IFnthBvrOR9\nqsVmJ28fyQ1v7cZ9CuY9QOrq2zy9DKyNEdLfkOZDXbUPXidDJCczQiVvBo+u2yp5T1OdHwPBqGSs\nuew0qko9qoQxhWAcJNHz19eWKfqnvTeEVS9L08CIU/qo1VnuZidfB+02CjaGwcxav7AGaNHvt/eF\nhHQ0JB0OwHC6gQ92ncBTfzKne+TEcfJ12yh2HujC6lczaS3EaUnERDkkrCGw7sqhxdopn8NFHhYz\na0qk6ScglaNY58mZaUngx6aZ9A9aEKfWUpubavODr8PWvZ0SXWiE2dQMxkxahmywb98+3HLLLfjK\nV76Ca6+9VvLdeeedh+rqajAMl6j0Zz/7GVpbW3HHHXdgxgzuFKmhoQHf+973NN8x3gw+lqHgdduJ\ndLjZ0NuTFi+9eKjH7jgbazfuw67DPaYJJdbcp+2qxjIUvv/V04QNnli5elwsJld4JMQjpIV24axK\nYtlqn+vVFVC6ixjF/Bnl+MYVc4W/1Wj35YumEcNfbbHNl4IDjCkQNSWntTng62gmj5oZZFOnQoHU\nl2vuIxtggPrcIMmvPxSDfzjhOS83M+8rlDxWvvihZvxRQ00RUsmUhMV2Vk0R7r3m1KzovscKtPSa\nnaURimb0ZZHbhv++/RzVsoykBzFbDx40lPkwxUa13rgwk55AK1UID4YC5kwrw76j/RxLsMOGIg9L\n1AntfSE88JsPiKkIjOq+XDdGxPxokG5QE8kUtu3v1iyHn5dmdUQ2uOuJd9AfzJCc+L12yd9ykHRB\nPtcWLZD6x0haDyNuyPmk0s9Vf2bT7/kaK3LGTT59Cuk7MW6/ai6a68sla/hAOIZINM7lB6UyuYHV\nwmCM7Ou05BiMxPCjZ99Dx2Dm4Lm6xIHBcAL8Ib34AHekoDc/5O2W691cMWbSMphFOBzGD37wA5xx\nxhmqzzz99NPweDLCam1txWmnnYbHHnusUNUadcSTaSK9MGDe55mfUPLf6V0z8z7kDz23Jeu4CrW6\nymPlqks8ks3eQ89t0S1HrexcfMKz9XWXG3ck2WZbL7Xf5cvHP9t68H9rURgXuo7Z1GmswMj45eWX\nq4IvlDzkt6IAd5vxX19ZKPwtn8v8b9T023iAll473i2lbo/GtO/wSelBcq0HD/kNtd7vzfwt/85I\nrZNpaMbPiFFd4sGkCq9k7eHfOVK6T+094s/k43u0IY8p1IsxJI2hkV5bxDCiq7Kh1s/2XdmWPVYg\nn5dpje+AjFHJrzm5jIVs9nVieF12/OQW9cOy0YKeTOTtHm8wHMNnFna7HU8//TQqKysL9YpxCZah\nFPEefGC2GZ9nsf+x/HdG40ly8bFW+61emSR/f70YAKNla0ErLkELRmSbbb1GM4ZJDDX5G+2XT0qd\njKIQ49fou/L1DlI5eu/i/1bTb+MBWn1ntl1GYkbM1iPb35v5W/6dkdhas/p1PM/j0YLZ8TfW6p/t\n2p/NWMl2TzHWZKYF+YyjDH5XCIxnOX6SwDz44IMPFqJgmqZhs9nwwQcfwOVyYe7cuZLvn3/+eezd\nuxfPPvssWltbVoBpaAAAIABJREFUccYZZ6CtrQ3r16/HP/7xD7z44ouYMGECamtrNd8TDhvL4zJS\n+OM72nEg/991C/DZBZOwdV83Uqk0ijx2zpfdZUfjFD+6B6Kw22jMmOxHd3eImEqc9z8u9XFR6/Lf\n3XhpIwZDcXT3KH9/+Tk1aKgpE37XcrBz+BpdH7MmO3HW3BrJOxkKsLMMyv0ONNSUYNkFDbCzjGoZ\n8rouu6AB86aXKT77y/sfK3573zXzQdMJ7D+WORku9tgwd1o5LjhtIrbvz7gUrFjciEnlmavtU6aW\n4J//PkE8+aqfwBFppFJpeFw2NNT44XbYhLqI2zNvRhm27OlELJECQ1Noqudix+RtZugEdh8hu8TV\nVfuIZRcCHo9Dd46Q+sTOMqqfjwTGUp2Od/XgeE/mpnfhzCIsbJyoWfcTPSH0B6JIpyk4HQzmTC3D\n9RfOVNSV1D+lRTbJWF5+0QxMqSpWfVch5MG3YTAUA2tj0DS1VFF/tXfPm1FG1G/jAVp6beEplaba\ndcrUErzX0o5UWqmzjdbDbqOJbnv/ebZ2zI/euND6Xv7dVYum4oNdnYLubJzix7ILZ+DD3V1Ztc1I\n/fRgRK/lCnkd5Te8QKYfSOu+Xh+ZBWle1Va5JbqirtoLv9cx4vpaDlL/GF375XXOZqwY/U2u43Bi\nhRMf7sm4/cr3HSS4nUDLoUws5tJF9Zg20TyJ1LTJXrzXwrmj8sQ/lX6P7ncJUHji9zvwl/eO4KPW\nPjRO8ec8TuTrRanPgdn1JarlBsMxPPPG7rzW4WRAPvSax6NByFZo0pbHH38cJSUlihi+DRs24DOf\n+QyKi4tx6623YvHixZg/fz7+9a9/4cILL8TRo0dx3XXXYdOmTbDb1RfVRCIJm23sDJRL7/7jaFdh\n1GEk5oO1Ufju8tPx538exrY9HQJJBWuj8JNbzsa3HvuH4jcvPHQhnvrDDhxpH0RHD0fe4XHZMHWS\nH72DUfQHoghHYqoELHIwFOCwM6BoClMnFuFQWx9C0UzNXQ4GiUQScY0wR5ahkE6nQdM0JpR7QFNJ\nHD6hJBbhMbmMQTTBYiAYBUVxv6mp8uHaLzbi2f9pwa5DvUgjjaap5bj9qvlIA3jqDzuw62An+oLS\nhvG53pobKnDX1Z9CGsDjr2zFvz7qECiWSXDaAJI3ULHHDpedRkd/FOk0R0zy41vOwswppRgIxfDU\nH3agozeMqlK3UN8d+zoRjadBU4Df58BNlzbhkZf/BZ6hft70ctx73UIUedTn8LHOIL79xFsYDHGV\nomkK84fbVOSxYyAUw+OvbMXOA90YiqfgtDNomiaVT0dvGKVFDkSicew82Is0AIbOyEbr/QAU7Vtx\nxTzFb0hz+0+P/KduGeLPfW4bDrYNcNTWaYBlICFo8blZFLlZdPVzRAxFHjt++PWzMKnSqyhn615p\nfJHavKMAPPi1T2PBzAy7p7yul50zDQ//dgsC4RjcTm5OdfaFcbQjKCmnusyNeCKFIo8dEyu8ija2\ndQURCMWE76/9YiNe+N/dRLnyvxHPZ6eDFsaBpA3DjSv2OVDkZhGOJlDksaOixIVEIoW9H/dL5k2R\nx45jnUF876l30TcYRQoAy9ASefLgnwuEY/C5lfI+0j6Ito6gIRImmuLi6uwsMBRTJyZgGQo/ufVs\nVJd78dQfduBQWz9O9ISFefed5afhrx98rDoexXV2O22oqfLhUNugQgbi58VzzO914LvLT8OGtw+i\nrSuInoGwRO4sQ2FihRc1VT7iXBD3n7jP/T47Wk8EEIrEJbJU+42DpYWxnkqmJHpLPJ7dDhvmTC/H\n8ktmq44n8Tt4fREZSirmBF+u3UbjziXz8es/7kR/MCbo0qXnzxTmgrwNG/95GE/84d/EPhXruoFQ\nDI++uAU79vcgnU7D52ExfXIJBkMxSb3l/Th1kl94hp87fP+EIkmk02n4fQ7c8eX5ePz324l11Jrb\nPrcd9123EBvePkjUU4+/shW7DvUinogjlaYQF3WIeD2Qy1q+bunpe/F8u/GS2Vj9yjYhrQlro1Fs\nYp6S2qyld7TKMrIO5Ipc37GntRffefLdYVI0wOe1IzqUgM9txze+1IzHf78dA8HhNZzl9jfifvnh\nmvfw/q4OobzTZ1fhuzd82lC9H31xC7bt7RbW15m1xWjvjQwTsUCSmub02VVgbQxxHMqfXTCzHB+3\nBxX7Ij3dY1aGZsfJyYZRM/jEePHFF9HT04Pbb79d8vmVV16J1atXo6amRvW34420xUIGRgxDMcyS\ntown5JJ4HCAHwOcDPNGEPLjdTH31ArhJRDji32mRoAD6bc5XkD9pbpd4HQILpVGiGbPIltRJDHFA\nP6Bsb7Y5nfTaKB8nWuQg+QL/DrVxJSeRUSOZWfOXPcRcb/kCy1BonlFBlIFcNyqYLlXaZuZ5o30u\nZpAV32ga6T+5rHPtc3mdC5FrUP4OcRv01nejc15vjPLvVftOPj74OgbDMTzwrDQvnrw9ajI0Ijc5\n8RDpNwtnVeK/bjpDdW+mN3blbVL7nfh7vfVJbz6o6ViBTEiD9dMsciWKyZaAjn/P7T//hyTZvJuQ\nZ1DOANpQUwSP065LYiSG28FISAG19A1DkZnjG6f4cc/SBYrPs5EhaW6Q9OzZTVUCwykF4MuL6vHa\nm62a7J75QqFJWwoWw6eFQCCAG2+8EbEYd3W5ZcsWzJgxA6+//jqeeeYZAEBXVxd6enpQVaXMOWXh\n5IBZlTWeAqrNIldii67+SEHkwytos8RAYujVS60sNaIW8ffZBPAbecaoLPuCQ1j10nbNMnLtl2xJ\nncSQzzV5WdmSGum1Ud63WuQg+QJfrtq40iOV4f/u6FW/qc8H4sm0qgz0+ktv/hl53mifh4cS2LKn\nE2s37tN8Bwla/Z8N5HU2Q/qV7Tuy0XV6ddAbo3rfyXuOf3btpn0KY0qPPMiMnsqH/I3K0+g8Jb1T\nb9wZJc7j/+YTcre2B4hzwQxyJYrJVVeniXfeUvy3yNgDgH1HB7H3Y3LaFXVIy9Wqt5r3hFqql2xk\nSJobJD0rTmeRBvDK3w4LdY8n01j5wjbdd41VFMzga2lpwbJly7B+/Xr89re/xbJly/Dss8/ir3/9\nK3w+H8455xxcddVVWLJkCUpLS/HFL34R5513HrZs2YKrr74at9xyCx588EFNd04L4xtmA4kHNCio\nxztyTdxMCoDPB3gyhmyJgQDu9FQLamWpEbWIv88mgN/IM2ZkyW8WjBLNmEU2pE5yyOeavKxcSY3U\n6ibvWy1ykHxBjTxGqJOM7EKNDKOq1F2A2mXAMpSqDPT6S2/+GXnebJ/LN1VG+k8u63z3uRGSD7OQ\ny8UM6ZDfa8eTG1rQ2ad9WKA3RvW+k/ccX0fSxlePPMiMnlL7rd5nkroaXDuMzlPSO7X0jlZZajo8\nn2yeuRKc5Kqrm6aWSz6fWau8rSKbZvqGJgXO9bfE68C0SUWS70jjsK7ah4WzKlHsNrfPz0aGRvqs\nwu/SbWW2BvdYQMFIWyorK3H55Zfj+uuvx7Jly3D55Zdj/vz5mDZtGgCgubkZS5YswZVXXolzzz0X\nFEXBbrfjkksuwRVXXIEvf/nLqKur033PeCNtscCBZSjccdUcRKJJdPdFiCc8JT4HaCozwaKxJEp8\nDpR67YjGlLEZDAXYGBhOWk9TgNPOwG5jMG2iF+HokCRez8nSQDqtGbtjYyik05yiYxkatM7zANd2\nmuJ84CeUeTCrtgQ3XtqInoEoBkMxpFLGbj8pQEIcM296GU70hNDeq63Y7AzZfcLnZlHsYhAZSgn1\n5MkYSMRAPQNR9A5EkExzMVZ+rx3LL26QBLEDQHWpC6efUq1an3kzyvD+R+2IDceL0DQkZDhaJCji\noP+6ah/8HhY9g0PEcrRgJHhfbW4Xeey44LRaTaKZ93Z1IBqTBoOSlm2GBqr8DgzFU2AYGk4WiAwl\nsf4fh9HRE8KsKX54XSwml7vR2a9M7q2Gu0RB+6T2XnfRTLQc6pUQF9koIBDJxHVRACr9DthZGypL\nnBKSJjHZCcPQwvc8gZQWOQhSKURjSTAMDbeDFsaBXFYUuAS/5cUO2BgGlSVO1E8oQnmxE8FIXEEu\nw5NcxIblzjI0ir1KshU1kplPz5uEoycGgVQKwYixwGCaAmw2rt/SoFR1kY2h8O1r5+PMpmp0D0SR\njCcE9ydeNyYSUB2P4jp7XDZMneBDOJpQJdiRz7EiD4u7lsxDdCgJhgJS6ZRC7jQl1UMzJvsFN2oA\nxD6fUOrCQCgmkLl886q5EjIX+W/8Hpsw1pFS3j2QUOJzoKbKh2kTi1RJPnh9kTQQeMmI2umyM6if\n4EUilZaMh9//vz14/LVdmuU0TvGDtTH4174uyaaQoricjSQyMHk/ip9Zsmg6Wg71IiZb64o8LG69\nYjb2HBkQfjex1IUXN+1F96D0BqPE58A3r5orzO0ijx3nnzoBez7OEIod7w7hz//Xii99fioi0SQG\nQzGkCX0hXg940o32nhBAcXHXdhuDmbXFoCgKf3rnMFoO9RDJOOTzbfnFDdixv0eYKzaGQrHXYXie\n8rInEdcZmT9axHn87z5q7ZOQ9sjnghnkShQjJoOiADDDexAe8nWFoSk0Ty8XdMJZ8yfj6IlB4f0k\nMrHXCWvd7PpSlBc5hJhbmgamT/QhleYI7+hht8xkKo1oLImJZW7UVPqIa0yRx47vXP8pXHxGHRbO\nqsS8Bq4/5GskQwH/QSA/ykaG8j4kMQ3fc/V8/C+BMFD+3KVn5ZeQice4J20pNMZbDB9FAblIvKrY\ngY4Bc7FedhstCZAFMj7Pj67bipZWs1f1HM6dV47rL5yLigoffvPaVvzx3aPCd5efU4NTGydi1Uvb\nFdfodhuNp771WUV5pKSXj76yQ5KvSZwLbKSSyOpBz5+cmOQ3DdWYgGAkhl//sQW7j/QjBf0kqHKI\nf08y7EhJXvMZoyDP7yjP3zZe8Yc39+CN9zMxXTQNFHschpKvqo3Vn7y4FfuPZuafXFZmk3cHIzHc\n99R7CIuYi04W+Y808hFPMd5AioUq9tgN64Rc45NIIM2d+toy033Dl7PjQLdkPayr9qHC79KsN2ld\nZxkKoCh4RQmY86n7tGKXxXXTip/9/g0LFX2mtkcR6xa9fjQar5yP/h8LGCt7DRLkdevoC+Hjjoxh\nIx+DRvRaS2sXHl0njeG77fK5mm3Ox9g/eKIfK1/YVpB4ObmcvnD6ZPzytV2KJOotrV1YvS4Tw7dk\nUT1ePUli+AqWeN0CGbma12aNPQCIE445t+zpxJYcCWbe2tGNKz4bQwUgMfYA4LW3j+KSM2fg+8sX\n4s7H35EYHvFECl9buTnDIkVRmDrBh67eADoGuY1qa3sA/9rbqXA3aO8J4fafv4VwNCmccFEU9/z2\n/V2oLHFjYrmHqJDlRs3ic+qx/u3DhpX4W9uO4vmN+4W/l180A5+ZW6NwFWjrDODuX7yLUCSuMLRb\n2wPYdbiXo1sPxYTP4okkWBsj1OVr/9kk1KW9J4RVL23nFJOTxT3XNMPrYFXb4vfawbIcc59YAYtl\nuGodV57dRoFmaI41UlTHQCiKC0+fIglevnPJHDTVVajKh4fXKT1p6x2MIhiJGV4g1YxPI0bpxvcP\n45U3M6eTSxfVY2p1CVa+nFlEbruyCe/s6DC1eP9+8x785QMpgQeVBqZPKsav//iRoXquuKxJkP23\nfvFPeJwspk6WpluQu6aQ4m/E/cePB97g9LrsmF1fKtl0HWkP4IaHN2fddgB49n/+jX+0ZG5uvXZA\n7GHdPM2L2790muJ3Rg8SSM/JD0XMztd8IZvDEL6PAqEhUBSl0EukPpTPadJ71HRQLm1b8+fd2He0\nHwDHOCyGi6UxEIrhWKe+fgWUblO7DvcQ5z7/3j1HehFPAHaWxqzaEiy/eJbi2VyThYv7z+tkFG2s\n8Lu4myoR2joDeHJDi9AXJJAOXir8LonONequRxpjuSYLd7E0HlizhagnSBDrGr13GI1XNuP6SDJE\nSYeTYvBya+8JIRhNwOe2oapEOj6NzN8//mO/4sD6kjNnKH5711XzOL20UfudZqClz41APj+e3NAi\nMfiycXFuqqvQlb0c2Y59MaZN8GseaOYCkh4hJVFvqquQEJwBwPmnFuZGb6Rh3fDlGZ9Els5Pzy7F\ne7t6id/VVXvR2h4kfjcSmFDmwuQKH5Zd0IC1G/dJNsJyhqbm6WUSo0u86fz4xADR2F5z33lY/cp2\n7DxMbr9RyBmtFs6qxOLP1OPhl7ZKjDHuWQrhIem09XvtxHxdJNCUcbdXo7hryRzUVRZj7aZ9+Nfe\nTkX5ZtjOSKfEy77QoGDYIt0+GJl/agyIOw90SQK2bQwFn8uOe65pxv2/el+3XCOn3EYZ6rQgZ6Ar\n8Tnw/eULBbn6vXYcOtaDQQMenwtnVeLgx50Q85OUe4ErP9eIp/6021S9SBsEIyf+asyCs6aUYOeh\nzLySt5ufr22dAXQNRLnbFtmGSWu8yfvb67IhFk+BRoqYtkSO6RPsOHAiM+cmlrmG5yCFeCJJjPVg\nGQrf/+ppePgF6bx2OyjEE0oDf+miepx/aj3ae0JEXcCjyMPivmsXmNooAvqMlmrMek11frT1RAyN\nZYam8IObThMM2vaeENp7w8Ry66q9mDetRHGAyOPM2SX46qXzTZ2Ea7WRZSg8cttZeGCNNrOlETRP\n8+KGS5ql3hluO+69NuOdwfdjIBwHTVE4pa4EN116Cp798x4JAyJFcQQLalVgGe4QoY2QG1ANPBOl\nlo788U2n46Hn3keUMMwYmqvv0kUz8MPnP5SsV9Mm+XDHFfM4OQbVxwRDU7hvmfSGhDd4SGNJz+gw\ncgtKeuYu2eGlmrEpX9vnTC2F024zdPMqh5ou0mIfzQZ6t5GF8lwYy7eg4wXWDZ+FMQ81Yw/AqBp7\nAHCiJ4ITPRHEE0nsOzog+U6+lu472i8sYq3tARxoG8BQLCFZ2Eg40pkP5Sn1KO/qj2DVuu3EDZ7c\n2AO4/DJGkW9jDwBWr9uJUzXSZsjZzgAIp4HyRZJ0Skxi2OoLDKEvMKRajhrUGBDFm38ASCTTEhZO\nPRg55Q7kIeaYxDAnlqsZdPVHICej7A7CtLGnVb7W34A6s+BHrX2Sz+TtFs9XDpn+4jdMWuNN3t9G\n4/R4iI09ADjeY4zl8IHffKAwJkhzGgBe/tthnH9qvaou4DEYikvabRRaNzC8yyIpoljNXZyEZCqN\nVS9tx/RJxbpjtLU9qLlm/HNXH756qbH38tBqI0VR8Lrs8Llt0jGo0m4edhuliHncfjAIr8uOtp6I\nIJv+UEzSL+J+TKbT2HmoF2s37lMwIKbTgNaqE0+mTRl7QGb+rFjciCfXK+c3w1BYtW470dgDuH7c\neagXx17erlgTD7YFuHmsYezxZax8YZvkFkfN2DMCI7egpGdWr9upuMUh4aMjUh30UWsfakS5AY3U\nhYeaLtJjIzUKknfLSN5M5XoTb6HwsAw+C58I7DnSi2hce4eSSEgXMaOLUFTHINQCHz+SSKSw7UDm\nhLfC75IEGOuBhvYGwSzMnnCnob3g8ex1Ow5ICV1IvyG5hujJYuveTnz9Z383XF8xBkIxPPDM+6rb\nO6PjgHdlLfE60IpM/du6gmjvC6G6xINEHhi+PE4WMdHGKp1OK+RqFHJZ5wKx6x5/mi1nKxS7+Rw8\n1i+42pKQlJ1MyNutxvOrRdcu/nu0XFuyYXkLGtgE9gWGcMPDm7F0UT0OHAvhwNEe9IUyWmHF4kbU\nlBdJ3McmV2q7+DE0ua5GktBL6h+Oj1paHa0xLjCylngkbnBeJ6tjvKgbhFobeNJmPt+5KEkx+wCX\n6PruJ97FPdc0E3+XTKYNGRt6aXT0YCbtxZMbWhQ3ReKbMjXmbjkbsLz/0wC+/rO/Cy6UakjJHOBS\n6bTqeNJzYZTLZ+veTuw81IW4rK/MsMLyOHisX2LsAdxh0ct/O0w0/ILhGH79uvpNtBzZuLXLf/Op\nhjI89br0oEHsRaPnnZCr66sFy+CzMAJoqvMLikXLTaWQ0DP2SnyO4dsXc5XL1YVXcB0FYNu4D22d\nARzvjZjeBDROUbpYuR02CXmHGXz1P2YRT4HVQEF9Y8XQ3Ek6qU39gSgeem4LKvwunD2nCk+81oJ4\nMj1cngPReAoth3sQ0TGqk2kgSdjkGAF/U5grjnVzxo2c3y6eTGd1+6KGWy6fjZUvbhPkxG2gsptU\n2W425TF8APDrP7bgriVcklz5jaM4eTfAbQZ+/MJW3VqL3Xa/cNpk/HL9LiE2Vm1sy+naSXElwTHG\n7qwLE5EXL/+NzCb75PrdEnfwWHAIfcEhDdMFqiyXZgNB4slUXg8XjnUGcf8v35XEIUeHksSNID/m\nuvojQDqJ1o7MIcSSRVMVz1T4XVh8bj0eXrsVg2GlMUIBSGrQf8oPJsTjUXlokX9ovUPPY4FkKBot\n32j/KtJeaNSX1yHimyOSN0OJj0UwnBBIdBafmzFwvrBwMlHPxRIpxIblcfk5NXjtbakbMWlt97lZ\nYayQYvi0IJdPMg2s/t1OxXP3XK1ugKph5cvqueF4LwEx1m7aJyHrk99Ey2HEM0fvN6Q+EHvR6K2P\n4pvgmMHfZAuxcem0M5hS7UMgHB/3rqqWwWeh4HA57YKRl89bqFxR4nNIlPUdj70z4nUQL2grLmvC\n3b9413QZPjeLr/1nEx59ZYfEcKksyX6Dte5vh0w9f+eSOair4ghI5IqdoWlVg6o/FEd/KI7W9gA+\n3NMpSXja1T80arcw2SA8HPhFiqXM1k1HjhWLG7Hpg2PCKblcPnYbjWQqrbgdM4NyLxBJMghFpLNV\nHlty0083Sw5vxEly5afZlSUuxabNSA2LPXaB6e3JDS2ahjlrowXGRB7yjTz/99pN2SdOzhdKfA6B\nIW75xQ149g2la+vSRdxGrbLEibbu3G/ISK6jev2g7dxoHLzsxfM8W3zvqUzcUywB8CsLaSModjW7\nedWbknJ+8/oeLLxnAtEdbdqkYklcHZCRBenQsnka5+p3zzXNGZIt2Xi855pmPPxCJoYvl3mqBvn7\ng+G4hLgtFImjqtSFDp30PTzcDhqRWEqIOVx6/gz8esNOieG8YnEjGmvLAHCb5b5gBMGI0nhkaI7l\nUF5frRhpI27hfQFev6bRFxjC+rcOC/35yw3a6TRCkTguOXMGLjlzBgDgxoc3E/Uq35fZui4uu6DB\n0AFbNrdWZr0GSDLUWqOyIeMxc6Ofzc1yvtZUEiTGZSIlxJKbDR8Za7AMPgsFR8vhntGuAhF9gSFc\n9pnanFju8oGOPs6VaOeBLtUNbV01mXETAGgqjbUble5zvQHjedrkMHvjxVM4k3LCxhIpHDFgeMqX\nrPFk7AFcO294eDPsLK34jj/lr6l042indlJmEuqqvQAofLi7RxgvJNgYGslk9scqPEkCyT22LzCE\nm366GQ21fkSGkopNL7+9C4ZjClergVAMX//pZsRMdqrYTUpvA3Hb4tlY/fudks3jisWNwuJ88Fg/\n7nzsHeJm3c4AsRE+jXrk1rMEt6fX/t6K6ZOKVU+PJ5b78mLwZYN8zEMKGcPr6z/7u6GbJC1oxcL2\nBYawZe8JLJw5QfiMZwUlsd4CUvdihgIaav3YL4v5BpSy4Knn+X7kvRWmVjvwr/1DiAWGcP+v3hfI\nZqpLPLjv6gXC7UEhDL7qEo/E4L37iXcl7qmxRAq9A/prw/zp5RLWVF5G9//qfbAMhe9cvwAeO4sf\n/vYDVW8QEotse09IYLHWc6kEuE32k+s/xIrFpwJQusyTINYVeoaB05Fhlf795j3E8Z5Oc4ak3DC9\n6IyJ2PjecUGnNE7xY8VlTeQboBy7Ws4kWuRmAIpWuISSIHavnFzlI8pQy5VUfjs5EIoJY11NZ5m5\n0Re/W819VOvmnIeciKuhpgixeBp+rx0URaEvMGSIUVtrzMgZ7nNlSh5JWCydecZosHQWeVh4HTYc\nN3hiZ8GChZFFXbUXX/uP2bj/1/psnycbGCp7N+6KIhu6BrNzS+ZRU+FBMJrIi9uuhdHHwlmVOHh8\nAL2DxvqTAlBT5cbHHeYPWvINPo1QIYizRhosQ8Hrto/ovDJ6YOZ2MHj462fA67Ljmz9/G4MahEw+\nlw0+F4uOvkhewk3UcleS2EIZWt1tmofHxeA7151qiCmaBBrApzQI1QAup+zsulLcdOkp5LQ5wwyc\nbZ0BnOiNEFmu1X7T1R/BQCimOU5+fPPpws2mGku3JOZQJTcx6XaWBD1GbfkhiR7MprBQQ6FZOpVH\n0RbGJSZVqneyBQsWRhet7UGsetkY2+fJhlzucnI19gDgaFfIMvZOImzZ04m6CcbXuzQwJow9gKuL\n3Niz28bnNixukOQlnzDqHREeSmLtxmG3bYpM7sQjEEngeG9+jD0AAnP0lj2dmTpA6aHgdjC4b9kC\n3fJCkaRhpmiShw3NULreEakUsPNQLx54Zgvae0N4ckMLHnpuC57c0CKQca24rAmReEqV5VoO/jf/\n9ZWFKPZox7yJDTc1lu6WVo4ZOJ0GZkz2E11fjXahHqP2kvOmSj6fNsk3buepGJZL50mA6FBy1BjQ\nLFiwYAwjvTkaK6ApCsnx7UhiYYwhEM79IGCsoBBunSOFkSChyRa863t0pH21RRDvy2wyxtuJZS54\n7MYYOY2uHSSjNZFUZxaVoy84hAeeyaSNaW0PYPv+Lnz/q6ehusRDrAfvdv/7zXvwlw+OC59ffMZE\nXHHuLF2vN57ERy0fo99rNxxDaDTemK+zGqnXb97YI3n+4/YgmmdU5J1Rd6Qx/k3WcY4SnyPnMmKJ\nVN7Yz0YSNRUuFWJ1Y6CgZPyyYGGswuM0T7d9MmA8b2gtjE1UlbpPGt0/XufHrJoi3fi70QR/KDCS\netfnlr5LkobmuDS/5MHjQaxaZ+zmzuNi4bJnv13XYxAVgxTnyt8wymXJMpRQttjYA4A3/k/6Nwks\nkyHxUcuUtdH4AAAgAElEQVTHSFGUIuWFWgqMO5fMkewpG2qKUFftQ/P0MsyfUY66ah/nIjpc52UX\nNGDhrErF5yQZqMlw+UUzdNs5VmDd8I0yll/cIBBefNJwtCuCFYsb0dETVFAi64ECN7ldDhY/en6r\n4d/ZKECcL1f+90hDHNMxkvEdDEOhusQNl53CgePqiY7HKu5aMgd1lcX47m/eJ1KnFxpFLhsmVXhw\n+MSgbsoPHmZiAsYSHCyFIZ02MgwFpNO68SjC8xRQ6nOgy2AcVr7QPL0MwfDQuBzzYw38Zs3jZPHw\nC1s1E8NnC6cNiIou87wuBo1TyrDiink4t7kaK1/IpCex0UA8Ny6YnOFyMEgnkohqXCpNKHNhcoUP\nHX0hSe6/QoOh88cK2lBThFsunwuvy47vXL+AuAbbGSANc/lc5ZhVU4Q9RweFv9Vi+EjruNfJbW/v\nuaYZP3zuA4GhlqaAmcPEUx29YUQIN4DymyKK0k5FwsdwiePWxKzAAJmUzOjNHc/0yjO8kuqiVcen\n//QR8fNijw0DIf3bcj7HJyCVTTyZxu0/fwdTJ5kLKSLdxKnJoi8whK/9xyk40DYgEP184bTJeHJD\ni4JspamuAs/cd55u3sBgOIbHXt2BfUf7AVCYWeOXPCPPQ0wBeGDNFmL9xgthC2CRtuQdo0HaMt7B\nK0st2YmDYvnJ3NYZQNdAFIlUmqjo+BMbeRByNklE23tCuP9p7aBplqEwqcILv9eOlgM9MOJ0dP6p\nVVi6aLaBJzNMc3uO9GIongZFDfvsUxSXf4iQg0pNpmJ56o1ZmuLYH8XMenYbjae+9Vni8w8++75k\nI1Nb5QFN0aZvodX6D+D644E1H0iUconPge/fsJAcdE7oc6QhfKbG4sXj1xu24b09fZIyS9zA9NpK\nRdC3WbeP8mI7vC4HKvwuJJIpBRW838OgX5RAW74JkoO1SZnbXA4GPx0mMODlsPtwJ+T2JwXgGZXg\nc7XgdjGC4Rju/sW7uhs8eYA7XyctuanJVStYnjSu9YLr5SxvanDZKUSGKUeLPCzuu3YBvA4Wj726\n3bAx+djtZ2uOSf6z23+unS7mlBo3PjpKjm3ye+2SNCE2wJBe0sL5p1bhtFmTBFZL3vCrKnZj7aZ9\n2HukC4ORjAR50h7+uWkT/AAyLlwDAS79Cknmch3AM0UmkmnYZOWJwY+pXYd7ENbJ4SnGmvvOUx3r\nRtZ28bwIRmLEvuPHIInEQ6vcZV9owAPPbtGMR60qsuEnt5xDrKuebpLL2sz8kZNclBc7sXLFmQC4\nVBhincAylGH3ODNkGCR5sgyFGy+ZhVc2HyIm7FbrA/mG38nScDlZ+Nw2opEuZzQlQU4oQgHwex26\nB4HydDhifG3lZuRIeDsmUOJzqI5rt8MGmk4jGCmsay4/d3ce6MLqV41fwuSLsAUoPGmLZfDlGZbB\nZx7zZ5Sjuz+Co13qp518ziqnnUEqnTI1+WkKcLAMZtWWYPnFs7B24z7Vzat8sjM0hfuWzccjL21F\ntEAXSRQ41qlbr2jCpg+Ooas/Aq+TwaHj/eDZx2mKc+sImLjNki9aYpgx+ADAxlBIyMqqKDJ2Q9NY\nWwyv25G1/7t8owgAd//iXcUCUVftw+Kz64gbdreDkWz83A4bbDZK9VZCbtCoyYimuYB3HkZuwwoN\nUr/bRDdwWrUTn7zylNaxoSEc78tfovL5M8oFw3rqRA9e2UxOFC6Gy84QT+JLvA7FIQcPvXF9+Tk1\nuOTMGZLDgGxd44s8rGa+SRLkm5zm6WU40hGUfEYN/8t2T9dU50dbTyTvpDVG2AVJYBkKv7rncwCA\nbz7+D0O3ggxFgUKaI2zQKE8MM8YUj/JiB+onFON4dwht3Zm1iAI3f7QOMpwsDZqmUem3S/LTFbuB\nAZEtvnRRvZAEW3wb5Pfasf2AevoiM7kQ19x3HnHsP3bH2Vi7UWmQZwN5+oH2vpAk999Pbjkbdiqt\nelD62B1nY80bu/HR4R7Ektq3U7w3T1NdBfH7D3adwFN/IqeFUANpPZN8TwPzGyoVBwYLZ1WiptyB\n195ReiRRAO6/fgGmTfArDo5It6tVpS5UFDmwp7Vf9RDGRgGgubrK18FgOIbbRyF3sAUpLINvBGEZ\nfBbMoMTrgM8jPaWz22jMm17OJV//+TvETUUubilGMVLvAaRK6q8fHsbLf9PfdGcLhgZWf+NsPLBG\n+3RaD+LNPSmXVza3a2qoqfDg+zeeDiC7DcVIgwIwpdqnS389nlFVZEMHgbVT7QT8+b/8G2/t6FZ8\nLgbpRme0oOc2lg3qqrnFfyzFePMU7Df+dHPe2mtjKHxbtBl+6LktWbe5kHq4xA2I06VefMZEdPYl\ncjpskKOu2qfwWFh8Tj3Wv30YXf0RtHUF89I+lqFAURScdgZTqn0IhOPCrXR9bRm6ugLEgzk1I11v\n7yS+geRvh0OReM45HUngdYp8HGnlwxV+63WgPzhUkDyyYtmNFb31Scd4MvisGD4Lnyj0BYcULhSx\nRApb9nRi674uopIeKSNspN4DAI+9ugOJZAqHjg8CoEydIJsFfxPgc9lyMkb6gsrEt2Js29+Vddly\nBEWBQ2Pd2OPhddrQ0Tc26OcLAZKxB5BjP9p7Qvj3oQDsNhpOO4N4IkW8Ibxt9dsYK2eehaiG18mA\ntdl0E1WPJFa9tB2P3HpWXtlbE8k0fvT8VhS5bQhEEjnJMlXA8SCfnkaILcxCbpDwKQLyDW69SiOW\nSGHnoV7Fu5wsjSghqLJ+ok+g+jeDLXs6R8TAocB5gDy6bivauqTu2UaZLguFeDKNB599H1UlHhzt\nGCjYeyycnLBu+PIMozd8DAXQNBd75WAphKPJkyIZqwULFiyMJBgaKPGw6A5whh/H3guMIhv7mIGc\n9MSCBQsWLOQP4+mGz0rLMMJYOKsSABfEHk+m0Ty9HHdcMc8y9ixYsGAhCyRTEIw9gLuptow9Dpax\nZ8GCBQsWAMulc8Qhd0nYdbgnr65oFixYsGDBggULFiycTCCFnuQz3cjJDuuGb5QRHkpqskVZsGDB\nggULFixYsDCeIKSOUkHjFD+crMYDfBk0hTlTS/Gjm09H8/QySZnJVBolPoeQPD2n+oIj8SvysLrP\njkdYBp8FCxYsWLBgwYIFC+MYPvfYMlRocOFLath9pB9RjTRGFIAf3XQ6FjRUIBCOY/1bh3HDxY2o\nLHFJnguEYwgGQzmT+qTBkfgZSRcDcMZoe596OrGxBou0Jc+w0jJYsGDBggULFixYsJAb9HImjjb8\nXjseve3svJRlkbZYsGDBggULFixYsGDhE4WxbOwBwEAoNtpVMAzL4BthXH5OzWhXwYIFCxYsWLBg\nwYIFCzlgPBlRFkvnCOOSM2fgkjNnSD6z3EAtWLBgwYIFCxYsWBg/aJziH+0qGMZ4Mk4tWLBgwYIF\nCxYsWLAwhqDNtZkbnEwBC88BHieDr/1n02hXwzAsg8/CJx4UgKpSl+5zFkYfehTO4wGMFk/1SQaW\noRRU2dQ4ar5nrO40LAAA3A4GE8ep7maosb0Bc9lpTCp3FWQjT4Ej4xgp1FV7R+xdn1QUMtIumixg\n4Tmgwu+G12Uf7WoYhuXSaWHMgLVRiCfU1QbLUIhnGcAr/22Jz4Fijx0VfheWXdCAtRv3oaM3Inxv\nZ4B40rgSc7JA1BiTryq8LgaRaFJBY7x0UT3+9O5RBCMJw2UtnFWJFZc1Yc1f9uCdHccV308oc2Fy\nhU9ou1E6Y5ahcO+18xEZiuPRdTsV33ucDOw2G/qCQ4rvitwUaJpFOJoATaUwFOfkSwFwsDSi8ZTw\nLEMDP7jpdKx/6zC6+iNCP/HK9ckNLTlTMKuB34aYGWluhw02G6VL5zx/RjkuOrMWK1/YltVYZmgK\nc6eV4UvnTRNk42QpHDweQDyZFvqnyu/Gd59+H4PhTH3mTC3FnV9uRjASw9qN+wS5Lj63HuvfOoz2\nnhCC0QR8bhuqSjwSed/9xLuSPtViTuPnmrguABT9KK6H32sHRVHoCwzB77UjkUzh0PFBpFJpOB02\neJwMegYihufY9IleHDgelHwmn/MAJO9vbQ+gP5gJwC8vduKuJfPw/Wc+wJCGXgLICYGNwmzi4O9c\nvwC//cteHO3M0IHXVHrw/RtOBwDcvOpNzbHFMBSSw9/z/+c24JzOM4KFsyqRSKSw7UC37rPTJ9hx\n//Uci93BE/340fNbjb3EAGbXl2HFZdwJezASw91PvKtoO2nd8LgYhCL53UUWeVjcd+0CVJd4cNvq\ntxAeypTPUEBViQtdA1GAouB1sbjn6mZUl3gkZeQjvOPHN5+O6hKPblkLZ1WiJxDBoTYlKyC/fgAc\n7fyql7YjFInD42IxFIshPGRutMvnnnj+t3UGBLm4HAymVPkQCMdR4XchGktg56FeRXnyPhXXV66r\nSnwO3HVVM9Zu3Iddh3sk/WIUdy2Zg6a6CgDm1h63HYgnpfpw2gS/ogyGopA0QZhf4nUQ19jRRC77\ns/GKCv/4Omyy0jLkGVY8Hgd+0VFb4N0OGmlQoEBh6kQfWBuD7v6IsOGkkUZrR1h4ftokH2685BT8\n7v8dwL6j/UgkkkimgBQAmiJvmCgA1cOGDb+pPXC0B32hjMJfsqgef/6/Y8JG3WGj4HKyKPKwKPU5\nER2KY/+xQSTT/KkkDYedMwlC0SRoisIpdSW46dJTEAzHcf/T7+vKxuMEQlHpZzaGwreHN8e/fO3f\n2HN0EEDGwEIaWPkiZyQwFFBb7cXH7UEk09wzZUVODCVSwmZ98Tn1WP/2YXQPRnH0xCDE+1W3g8F3\nv3KqsNkIRmK4/efvKOpZVsTC53aiwu/CFxZOxs9f3YHg8CapyMPiG1fOwR/fOoTdR/qRAlDssePe\na+YjFInj4bVbBcPVaafRWFuK5RfPEgyIYDiGtZsyRscXTp+MX762C4HQECiKQmWJGxPLPfjCwsn4\n5Qbl53x/6i28SxfVY+eBPuw+0k+UVZGLxcedQQQiCUlfHm4bwOpXlQatGtbcdx6CkRjWvLEb+472\nSwyV8BD3ro87ssvX4/cw8PvcEqOowu8S+vjjEwPoHBhCGpnx4rGzePilrQiE40K7FjSU4fn/3S+U\nu2JxI2rKi/DD334gbOD4cThtgjQuQb7pW35RA5798z70BZSbjoWzKjObOlk/i41I/juxoZmIxXG8\nL2N0LV1Uj/NPrVe8IxiO4devt2BXa79gaBV5WPi9dmH8/27zAew50ot4ArDbacyqKZGMQUWZMkP4\nm1d/CkPhIcnGtKMvIjmQEW/iWg514dHfGR8zDM31y9LzZygONpAG1m7KvJPXc4KuicSx6uVMf9xz\ndTO8DhZrN+2TjAcKgM9NYTDMVZoCcKdo8ypv/2O/3y4xlBtqitBUX4zX3j4q6ZMzTpmENX/mxjpA\nobbSjfa+KILhmGSeavW3jUqha1BpwVMAKvwOxJPcOsHPn1KfUzgIoGgKDZP9WH6RtD/b+0J4+AXp\nuCfKF5D09bILGog60Iwhv+a+8yT1EM8XknEnxs4DXUR9c/EZE9HZl0BbZwDHRQeSAFBZzKJzQCk/\n3jjR2ovwcxTg5EA67OHHoHzuytt2y+Wzsen9Y5Iyyv0uHGobRDiagMfJ4p5r1NuvqSMIRqFX9E7F\nIZJML9A0MLuulGg0MhQFu53GlEoP2vuiXF1dLPoDQ5I+pwA8M9y3wXBMMe6P94QxGFYexnpcDL5z\n3anEdmsdug2EY4gnUqBAwc2m0B3MHISyDIWmqWU4vbECT72+W7V/CwEHS2FIJWde4xQ/Lv/sVOEg\nk9eLP35+a1YHYRQ4TxDxts7rYhAZShk+HMuXASo/3GQZCpMqvIqxmg8UOi2DZfDlGZbBxyGbWxIe\nXpeNeJvlc7NIJFOImDihq6/2oD+UEAyGfCiAhpoifOmz0/HLDbswEBhCSv8nhuGyM4jElO1jKO0E\nppJnaaChxo/dR/pVn6FpYO7UMvQHIhLDWgwHSyGRAOwsjUQylbPsGJrC3KlluOiMWvxobe6n/HYb\nYKOAsM6tD0MDyVRmc15V7MYv12eMav5goMznwLHuMMLRBGKJ3HuVAuBz2TBlQhEC4Tha27PTVTaG\nwkNfPQ1r/rRLshmnKCBX7a22oW2eXoboUFyQkVnMqiki/rbE68BXLmzAE6+1GB5Pfo+dO/RIAavW\ncRvNVDqtesNYU+HG0S7ymKYA3H/9AiAJrHw5c4BSXmxHR7+SXnvqRC+KPU5090fQF4wKBx75ROMU\nP3c7Idpg9wxEEFC50fd77aBSMfSJmmhngNlTy7Ftf+bGze2wYXZ9aU434aVFdqTTFGxUCt2DceFQ\nYXKlB4dPSG9QxcYvCWZuRmgKsNtoIJWSuHM11BThtsvnYihF4f5fviOMISdLI5FIIZmWjmfxAQg/\ndmx0GuGYdOw4ZR4G2YJlKNx2ZRPe2dEhbObPnlMljHf5906Wwt6jg6rrJEMDLKOsm15uMtINt6Rc\nwnpCAbj5ska819KJjw73gLAM4fxTq3DpmTOEcep1MoLOFBt2cs8S8Q2fXB7TJxcr1qrGKX5EhpIK\nY05sGPIHXmKjT3xYqgfhAJelENTwGXSwFGKJNGiKgoOF5Hazqc6Pu5YsAEDe+/34ptOFcedxsvjC\naRPxyubDxPf43CwCeosZuIOFm3662fB+AAAaa4ux5+iAZL2w22icUleCfa09kNurDE2hYXIRnA5W\nOGBcdkED/r7tiOTwhwLQNLUUN116CtHwaWntkngCOVgap9SVSvQUjxKfQ3JAAkBxaEI65LWzNCaW\nOnGkIywcct25ZA7Ki93C79XWcxtDochlQ18wo9vK/U6c6MkcrkwsdSESTxk+vMkFlsGnA8vgszAa\nyMWFy4IFsziZxls2bcmnuxA7HDs0ltyP+DjHXIwzt8OG8JBxt+9C4TvXLyAafQ89tyXrQw8x1A4T\n1MBQAE2PHXez8T6XF86qVB2nJT4HHrn1LPzkxa3Yf5R84Gi2/by75qPrtqKlNVNmkZuVuKxr1auQ\neOyOs+F12Yl7v0K4OX5n2QLigSl/a/vAM1sULq2P3HqW4sBF7AY70jB7A85DfjNq9IZN7mLtdjB4\n4s5zic+OppwKbfBZMXwWLGSB8bxgWxh/OJnGWzZtyeemaaxs/MXo6o/oP6SLsdGulS9sw6/u+Zzi\n8wq/Ky8Gn9lb52QaQsziWMDYqUl20BqroQhngFWVulUNPrPt598nvwUclN2G5WcOmcfajftUDYJC\n6JqVL20jfs4bKfdc06wwpgAILrz9oRj8Hrvw92igusSDR249y/TvvC57VsZXQ40f2w/0SP5WAy8X\nuQv4yQDL4LMwLpGv02yXnUYklk+nTAsWLGidbI/2DcdYvOHjg/9zMYgaavxgbUzWxBT5gppcl13Q\ngAPHBsYc2UQ2oCjA73Xgnqubcf+v9OO2RxJm3P+zgZbh7nGxAIAVV8zD0FACXf0RDARjmn3ODMdq\nqVWZnxt6q3SF34W2ruCIz2ve0FyxuBFPri98XJ1W+7r6I6rGFG8s5eMWabzhhosbFTeDasjWqBwP\nYB588MEHR7sSuSAcVsZdjCb++A7ZP5uEx+44G90DURzvzo7MYSyCkv2Tg6ay3+z53CyqS11oqCnB\n3Uvm4WhHAJ39UdXnWYbCzZc14mBbAIlEEgxNodLvAssyqCxxoqGmBDdfNhtvbT8OUhywWl0baooQ\nS6QQy0PMxzhiqM8JdhsFpKm8bvTtNsDntqOsyI54PIE8hN0ByH/agCIPiwllHvg9NvTrsHiaQVWp\nC/VVXgwGo0LbKQCXn1OD3UcytyCk5rAMhW9eNQeBYEwxh1gbF2vp97DoHjS2Oa8ucaCxrgx2G40Z\nk/247qKZ+MeOE5Jnij02zJ1WjqsWTcWHu7uIc04Oariuas86WUrR7zUVbsXpPw8+puusuRPwXks7\nUmluw1nptyNEiOOZOtGLuuqi4TqkENNh61TUn+KIoJIaY5OhgXuvno9508vQPRBFfyCquqlz2RnM\nmVqGOVN9OHQ8s25MKHXi9ivn4aw5E3BO80R0D0TR0RPK23wTJ6cQ69UoIdCLZShcepaSaMfOMjhr\nTjW6B6JIxhMIZWGUNtQUYTAUU4wHmuL6Ud5elqEws9aP7gH1dQLgYvjsLIOmqaW4f9kCXPjpWnQP\nRIXxfNsVTRgMxYW/v33NfFx6Zj28Ljv2HunRnCduBy3pzxmTfJg2ya/ZzzwYGnDYaDjtwzF7lHI+\neF0Md4NJcfGddy2dh3dkc0+Mmkq3LpuwGs4/tQpf+lyDIJvJ5W7EEimkUmkUeewceZDLjlK/G6fU\n+nFu8yShz7v7IwrCDZah8O1lC/CZZul8nDXFD6+LxYzJfiy7oAF2lsFb29oQFdHIFrk5fcL3ybIL\nGtDcUC6UI4bPTSNGIByhhuWnNq8pcMzTiWQaDE1h+kSOQVRc/ozJfiycVYlJ5T4c7w6p7udYhsJV\nn69HyyHyzafPzRraU2jpQ74uWvB4HGNu31xo2FkGC2dV4tzmSVg4qxJ2dmym28lH33g8DtXvrBi+\nPMNIDF+Jz6HwWeYZ/sSscmbISeTlqwWq8v7mcoh9oyWB2BoBtC/97060HMkwBzRNceOupZ9WLZc/\nWenoDwtsTgwFNNT6MRAYQtdAFKl0WrE5OndeOa6/cK5qndt7QmjrCklOANXY/UggMbupBSGLfyOX\nx7v/Poo3/i8TqH7xGRPx/s7j6BbFzpd7gZW3nadZFs9AtvNgtyRYf2KpA8d7MxsL3jAp9thxwyUz\n8ewb+xCKxGFnKdA0jehQUjVYmaEpXPfF6Xhh4wEheP4bX2rCpveOCoyWJDRPLxMYynh21b7AkCQ1\nAJAxlnnmzuoSj2QsyFMJfONLTfjH9g7TvvlyyP3veeKK6ZM9ePlvmcOYpYvqceBYSJESgDRG5Thz\ndgm+eul8xefi8aiW3kBPPyxdVI8zZk+SlCNmKpSXZwR6cQ/ZxEXkI86Bf+/eI10YjGTkvPyiGfjM\n3BrFc6T4HDEzYr5h5iRcLyZFT7+qPZvLXODrJGZSVSNWOXiiX8KwZ2Y+yn+rRdwiBomB0aGhuy4/\npwaXnDkDB0/046drtwqGPk96Y5R9lWdEzFW+4vLlZCFOlgZN05hZ65ekUFFLS1Lhd+EzzVV4/Pct\nunI0Mj7MjEdeJjwDNsAZyXIGVDMgzZ1cdUa2cV9iqMmOpJfVdIuW/NVSzRgdZ1v2npDcEk6b5EMs\nlpKsJzyjdSgSh1OWxoJEZCN/51i+4dNibP0kwCJt0cFYG7haG7oVixuxcOYEw2W1tHZh9bqdpk9p\neUX15PoPsWVvZhFaOLMIKxafarI0fYxlBTKekY+N39HeMB789XsS9ioSJTsJZhbBsYJ8bZZHCuN1\n7oyGnLM1LLLFeO2bTwKsvhnbIPXPWNbN43GtI8GIUT2W587J0g/ZwiJtOYnw9PrdWHiftsH3wa4T\neOpPZD9w0u0QCTsPdOG/X80YijaGgs9lx+LPNiqeJZ2oiOnB5adUfF40nmb4nmuaNQeYvD1mjV6z\nUDshMnpyRFI4/K3of6/7AP9uzVzXNU/z4vYvnUasx8b3D+OVN6U3SlOrSwQqeK0Nq7j/eKrsf+3p\nwaOv7BDqHgzHNemeeTlPm1yCU2dVCrdFr755CJtcR4lU2vJx01BThFg8rZo/ras/QozlWHPfeTn3\nQ7aQ+9/L2wTo08ePR7T3hCTjQSvvlRmo9ZdenEMh6jNtgp9IBmK27tmgUPIdD9BbI8ba5p2Eg8f6\nDeleMdQ2nyTdbtSbxAyyGb/ZjvmRuFnJJTYqH/XTWpPEnisza/xYfvEs4m/EN2hqN3hiXYFUCmKK\nAH5dFpebzU2gGuTENaNFZGNhbMIy+EYQRihG1Iw9ABLXQC3IN7iJZBp9wSGsemm7Iph37aaMq5R4\n805yn2ptD2D7/i7BzS02XOZvH/yial3k7XnSgNGbC0jtWXFZk+rnhsocZuESG3sAsP2geoeINwQA\n8PLfDoNlWgXZxZNpVTY7cf+lATy1ISNDvu4H2gYEV61YcEiR24eX81N/2CHpS3mibL4PqeQQemWp\ny/YNuyjJ5SWWpRoK0Q/ZQD4XAG3Zj1esWrddMh5Icz0bZNtfhaqPGeRzrI2F9owW9NaIkZjHuYI3\n9oDc5z9JtxfC4Mtm/GY75kdaL5tFPuqntSaJGRy3HeiGbXjNl/9GvO6KIS5PrCvk4NdltTU0V9n7\nhklzhL/drMqTFj6JsAy+cQb+1FHrVFHNBTQQUiohsydC8pgmnoZ5rECtPbmcfOXrlEwuO7WAfT0X\n3q7+iGG5vydKfqsGLt5T/52k/xt5Xvz3SJ9AqsnSDJOb/MbVjFvsSEE+HvI1L9X6S+/EvRD1MdsP\n+RxrhZLveIAROY71mwSjuncsIZvxm+2YHwm9nMstXT7qZ3RNAoAdBzqJ32nNe/5ZI7pBq/65yP5I\np9Tj5kjH2HTdtDA6oEe7Ahayg5iAQg41kkGKQD/IUx6L/5Z/JgZPac7D4xpbJ0ik9mh9nk2Z2UIu\nO/nfPPRIIiv8LnicxuRu5FbZSB+KZWBEHoXoh2ygJks12ZOwWnbj+ui6nblWK++Qj4d8zUu1/uJP\nqFvbA9iypxNrN+4reH3kN9+rdfohn2OtUPIdDzCyRhR6HucKo7p3LCEbGWfbLyPRn3o6Qwv5qJ/R\nNQmAcAAq/05r3eWfNbI2a9U/F9lHZUR/8r8tfLJh3fCNMZjJ5cLf9smDWu9cModI9kI61dRKMin2\nL+/ujyAYTcBhA3oGYwBFwSti8DTanhWLlXGE+YRae3JJpsk/2zTFrWAlVcPSRfUKVsipk0oUpBMk\nTCyj0dajZNdkaGBBQyUXwxeNSxjLvnj6RMn7tOTsdTKgGY4Jj2c7I+WSqi6xo72Powj+cE8nWlq7\n0FRXIZGlWj6mQvSDEchjdZYsqse6vx0mxvCdTFBLtpsr1PqrTXaSLP+7EPWRay+9Oxq9sWbmxqFQ\n8hGAcqsAACAASURBVDWLGx/eLGk3DeA3BSY10FsjxkNy4nuvnS9h3Y0n07h51ZtZxfKSdHshkI2u\nzFa/jkSyaTO3dIrYuXPrc66f1pqkFqIg/42Y4ZUUewdIdQXSKYgzl/DrsrhctXKygcfJIibKefhJ\nOpiyoA+LpTPP0KNdN8M4ZCTFg1aZ+WQ80mJ/GsusT/lEPqjojUCr3832n1pZ8rrf+8RmRfqInqB0\nU00BeGaMM2bdvOpNycEGy1A5x+oVkjlsvM6dQshZD/nuB735PBb75pPOYscj274ZjXH7SUSuaRlG\naq3lcbLMKyOpK8aiXuOR734Yb2keLJZOC2MCFvvTySUDed2XfXGOJD7qukvmKFwXx8PJ0HiM1RmX\noChIRkS+s9WPAE6m+WzBGCz9MHowc4s4FubmDQ9vFnI/jhdUl3jGNZmUbFXRDW/Rw1gnIxppWAbf\nJwxPbmgxfMohp58WI1s/81xOXEb7tKbC75K4MI503IpR5WfkZpiv+//f3rmHR1Gk+/87mcnkOkkG\nSAiQCMgtKHeJFxBEjsiu1wVXVwRU9KwrgrDKgv7QFdfjKnJRF1zj6qrLBpU9x6Mgz4qgB8HLIsJy\nEVzYcDeASQgkITNJZjKT/v0RetLdU91dPdNzyeT9PI+P9KS7qrqquqreqvciupCWehUT7dRYg2+8\nu6dPtlpkizgLgGf+sqNd7O61JzJTk1EjUR3KbIeqQ7H+ngl+zNr5V44P7cGWL1EwEpYhXr7ND74o\nb1cCX3tHao4kOuYKh3jYOIgnSOBLYJIAKC3BxN0OnoGXJez1yneEpWceVniEGO/WRMPOQQ0zBj+R\n4qK8QNm1XEj36Z6JI6ddssE3Fu7peQV9V4MXfbo7cPBCOAmgVWA9XlGP4xX1aPb5MefnQyNa1o5C\nvNi0hSPMx/J7Btj9+tipOk1PpMoxnbyuGUNqyxeKLW+sNx3jHbF+at1e5GTYQ44dGOtvk4gNg3rl\nmmo2Ei8bB/ECCXxRpLgoz/D9Uj12pyMF2Rl25kSjtQP6zF92yDp9OLscT91bHPKzrLzP1DZyT6LK\nZ3ccrMKp1zbj2Qf5B4hwTqjCCRwbLmYOgtJ30HIhffi0K8h2oqZeruZZU+/BfYs3h23voNUHeAX9\n0k1lMmHParHALzFRbg2sS/DgavDirY8PBAUjFtsk35mB380oDrTZh1uPRXzxO6xPZlDsS1GYB4xv\n/sTyewbY/XrnwaogT6TSbz/SDloSnT7dcsKy2Xv9o/3Yf7x1HDleUY/GJi8evXNEWGVKJCGSFV8u\n1NiB0fw2V8y9GqUb9ePLdjQiFSA+WtDGgRwS+KLInkPGBpPD5WflP7T48NS98tMULfW9dzZ+j//b\nXRn0e7R3OaSDRp3LG1QW3gW9crcGAE4bXMMvfncXzrtbhRyvy4PFq3fh5YfHGEskgVB69VLCuzkQ\nrtCn1Qd41TKUv7cEWR2Gpr6l3Hjh2bhp74u4OSu+kl3vPlyN3X/4StbG0ntEV+uRdHQw5/bLA/82\ncxNLjZvnrQv6zcz3Y/VrlifScJ13xRvt2UHGgRO1mtehEGvNFTOJZuxAMxE3f/a/uAWN3rYz9DR7\nxz5Dj1SA+GgR6029eIMEvijSzBESRbpQrHHLH6hx++Fq9HIvHFnCXnFRHiaN7Y2Stfvlux4Cghao\nLOb98WtDp2MVZ91Y9Na3MrsJpyMFmak2uJp8qKxxo7pWLnCoDfhq7pPvf2EzstPtWDBteKA8SvvD\nwrwM/FjlDopLd97dLKtT1mLkuV9dIXtPV4MXK97fg8On204bnI5k1NY3BxZsWRnJeHzaCNPt21iC\nBATITmNYqC2oRNU8NbXOE5X1mPfK11xtLdbdE/eMMOzqnDXpS0MsSFHbsFBuCGSnJ6PW3XaC2ejx\n4b7FmwOqXGpl3Lq7HKs2Hgpct7pdz5PVud5JMe8ibuM/juGV//0ucD3jhn4YM6SQWa544MiPtYbb\n1ijKur33hv74y4YyWV2brarD/K4MYjQwPOsdTlTUx4VzpPa+YWEGrLlA6ZsoOHgOG63xIh4EnnVf\nHsK6r8sD16E6Kwnlu4wntbvfzigOW1X9yMlaLH5nF5T+gPTmnXgkUgHiidjQsbcv4hBpcFLm3w0E\nK2Ux82eD8OEXx4ICoPIGRa2p98Dra0HNBfstPZau2RO0YM/OsCO/cwZq6j34odKNBo9cDFMb8NUW\nHIIA1Lq9svIo7Q/LGcKeiF6dKt+zdFOZTNgDgBqJsAe0CpI89WMUVjuVbirDnsNn0eDxB9WlHnpe\nvQQBsrbmcXKwZPVuQ2UA2EFxWcKe1P5QyfSJ/VFclIde+Q4UF+VhwbQRgWupA5pmv6BZRqmwBwDv\nfXYMM382CE/dW4yZPxuEzDR7wJZR7VvgXcRJhT0AePvjQ8z74oVQ2tYoyrp9+b/3BdW1sq3DVdUJ\nJyi0iNHA8Kx3eOTOwWF7pjMDM+rDTJSn6lcP7R6TcmSny+eg7Aw+IVhrvIiHIPZSYQ9odVYSCmKf\n7leYw/1dmv0th4M4H772m3FYPmt0SBu2S97bHSTsAfrzTjzgavCiZO1+PPOXHShZux/OzBTVezu6\nPVx7JKInfGVlZXjooYdw7733Ytq0abK/jR8/Hvn5+bBarQCAZcuWoWvXrgCApqYm3HTTTXjooYcw\nefLkSBYx7tDbNdlxsAo7OFV8ePNg5cmze6Nl/6V1T25OGjP9rp3ScFGeA9Mn9g9J7aem3oMHl21B\nRqoxj4F676p8B96dLfE55YlROKc4oewGp6dYw/ZUKb7LgmnD8ftVuzTvbfYLshPk64sL8Ora74N2\nt6W73ql2KwZf3An1Dc2BcrJOc7XUM1jqG5PG9MbSNXuCTk2MumNXnmwr+4TyOpxda2XfN0vdTe8E\nSrnLzyIabuyVdanM0d3YbLqqjhmnLEYDw7PeQeq0gFeV0yy08ov1br4y/8pzDTEpx4Jpw0M6AdIa\nLxLJzkjs00biiWWm2TH9+v6BE+XSjWWmnyj/z+aD2PDt6cD1jVd1x23XFJmWPgAsfHUzKs5r3xPv\nYUCUminD+nZGcVGe6QHiidgQMYGvoaEB//Vf/4WrrrpK9Z433ngDGRnBOyglJSXIzs6OVNHiGpad\nWqTzEBejyt/0ypHB4YpdaSOWbLVg+sT+KN1YFpR+1blGPP+Aen8pWbtfNz+vr0XTJo2F3mJc+Z68\nbSQ+pzwxevvjQyELfDxtp6TB4w/LuQXQ9i486igWQDZp7Dl0JjDRST17yjx++lpw8oxbdtpohgt1\nNS+kRtOSeiZdvHpXUL9W9pF4XMSxTqCkDkH0hD0gOm7slXWrDA/CM+4YhfVdGR2HzY4hFU+I40ys\nVD2V7dG1U3rE82QRapwzrfGC7IyCBQ3lZl+XTGDJ7NA3vqTCHgD8fdtp0wU+PWEPiP8wIMqNlVqX\nN2xHfUT8EDGVTrvdjjfeeAN5ecY8Ux45cgSHDx/GuHHjIlOwOEdUbzCDyWMLmdcsFQpetQqnIwV2\nWxKcjhSu3c35U4fJnvndf17euqPHSF8AAuoELNQ8aIUT87l/YZbuYlx8T1HdoeKsG8pDRKcjWbbA\ny8qIjKt6tbYb1rcz0lOsSE+xYVBvJ4b364Je+Q5kpMn3dELZqZe29bJ3vtG9P7+zXIBW7mqKu9t6\np2QLpg0PTJChuFBnpcmT1owbtG1X6huag/q1sq3FRZxUDTTWGD2BYhFKGxhFWbeP3DnY8LhjFDPU\nyqTqmGaGUYklyvqIlaqnsn1m3ta+wqvojRexRrlWSEoC5r3yNSpq3FHJX29eqnZp/rldEOocFk3i\nQb2YiBwRO+Gz2Wyw2bSTX7RoEU6dOoXLLrsM8+bNg8ViwQsvvIDf/va3WLt2baSKFjN4BDlxoRiu\n2iYA3DSqH9PwWm1HUfmbMzNFFlzZ6UgxvLuptiOamWYP2hEH1IU6NUR1t3mvfM0sq9rveumxUHqs\nUoYsMAutky21tlOLL/fWhoP4am/b7mYoA7i0vv5VHqxKpayzkrX78ePZtglc+T7i7rbeKVm4LtRZ\nefD04TFDCmUnsL9c8jn8LW3lT7JYQt7pjyWhnEBpfQ+R8qzIqtvls9Sdn5gB67tav/xWbrU0wPwY\nUvHguVK5u2+G6mso76Vsn6wMO840GNPkMIqZ9R/v44W4Vpj3x69RU+9BS0ub7XY0yh0NzSYezPYg\nG8tvWOmlPSXZAkGwICvDjkfvHCqzT5Sq+wNy8xoicYiZl845c+ZgzJgxyM7OxqxZs7Bx40Y0NTVh\n2LBhKCzkV3dzOtNhs1kjWNLwubh7FrrnZmLmbUORxWnkrcalPTPw/Qm+XbfcXEdYeT0/62o8+drX\nqG/wwpFux7MPjkZubqZpeT39wJV4+o1vIAitp3TdOmfgdLWxHUUxX7WyGnkHPWrd3qBrnvee84sh\nWPG372TXWs89P+tqLHz1azT7WpBsS8JzD40OuS3FnfDKcw3o2ik9pD6ol7fy77++6zKU/O/eQJ4/\nu6YPFq/aodk26ak2XNwjG8+/syvkcrIwo/0zUi043yAVWC2G2qPO7cVrkvow+m7hfsciyu/t6V9e\nKUv77hv6468fl8muzco73mG1EWBe3bdXlO9f0NUhW5gXdHXErI46ettEgoam5qDrUOvZyHPKOUO6\nSRlKekp+cd3F+NtnR2XXvOmFk28s+6jSS7unWQAgoLquCS+u2Yu3n5oY+NvLL2yWbQZW1TTiz09c\nH52CEjIi2WdiJvD97Gc/C/x77NixKCsrw9GjR1FeXo4tW7agoqICdrsd+fn5GDVqlGo6NTWxMd42\nQuesVNz30yJ4Gjzcu5JvPT4es1/aigZPW2iG9BQr5k25QnafpqG9gd1pFnYLsGSmtO4FZppGDLSl\nFHZKx5uPte2AlazdLxP4RFWi0o2tNiOsHUAxX7Wy8r4DDzmKRXpOhp0rrWG9uwTt9Gk91yk9Ga/9\nZhz3/Vrk5jpw30/bbBWM9EHevFl/l+YJ6LdNydr9gdPTQ+W18Hh8ppyemtH+5xvkztfPu1sMpaH1\nbspTJNb3HO53LKL83pRpjxtSgHFDCiKSd7zDaqOnfnlVh3l/gH0aoXz/O8ZdDI/HF7Dhu2PcxTGp\no1DnnEjRnmMLSklPSYanuW1+SE9NDqmeQ2kf6Zzx9d7TQdoI4bT3xJG9MHFkL9lvvOmFk2889VEp\n591eWdkEhaqVIMRv2RMZM8Y1LYExJgJffX09fv3rX6OkpAR2ux07duzAxIkTMWfOnMA9K1euRI8e\nPTSFvfbCyRAbUGn7FO8ensKF5ehCqsqz498/ouTDA4H7Z04aGPPyJToDe8qdtBQVpOLgySbZtRnE\nQyyqSJHI75YomN1GogfaercHFosFec50dO+S0e7j2ZGDkcRGjMsaThw6M0i2JcHra5FdE+ahNJ9I\nZIdTRBsRE/j279+PF154AadOnYLNZsPGjRsxfvx4FBQUYMKECRg7dix+8YtfICUlBZdccgl+8pOf\nRKooMefHs43cwatlsLZdOJg5aSCKB3Rj7jo+MX0E00V+pJAGz9YLPKq3mCge0A3Fj3eLVFF16WiL\nnfQUG1KTbbLA9I7MLABtAl/rdfjEU/BdszHybu3xVCARMKP/ScOMNPtaJAsoAaeq3Th1QXuhI40h\niQRrPl0x9+p2LcAriRdbQz377ngk3sbuCSO74tOd6jZ8Uh65czBeWiMP2UMkHhET+AYNGoTS0lLV\nv99zzz245557VP/+8MMPR6JYMYPHAFoqHLFo9guY98rXuPeG/vjLhjLVOHglHx5QFYyWvLtb5iJ/\n4Z+2w5mZIhP8frV4M5QpP3HPCPTplsOM5XWtxhGy9H3EwKPhOuJQcuRkLX6/Wh4b7lFFjDGjRML9\neKxcmvNgB+BV/Nbg8WH34WoIfz8QcAqjdxIS6jsm8ump1rvdPG9d0P3xtnDoCJjR/9RCgEih093E\nonRjGQnwESBWJ43FA7Kw49/nZdftkYqzbuz8dy3stqSgjX2W2qDZDqcSkURQ246ZDV9HRC9QuZaw\nJ1Lj8uDl/94Xkkt1gK0WqhRGWaUUBTVWLK9riy9WXeiz1FJL1u43VdhZ8t7uoN+UMcaM8uqH3+Fg\neevAf7yiHvXuJiyYOjLk9IDgWENA/Oz2L5tzdaD9yitd8EtOk8vKawP/1jsJCfUdE/n0NJHfLVEw\no430xncgsU6uCRLgI0WsThpnThqJmVHP1XxkMW6j6G2ViG9I4IsiemoJvDZ64VjyKV3ki+gtVsRn\n1GJ5GVno7zhYhWafXzWUgFFY7xOutaMo7Kldh0I823IpQ07IadPo1zsJqTjr1rwmiESFFTDemoQg\nGz4icSABnoglaqdOejFuCWNoOUdsT5DAFwWsSUBWhn6wVTVhTAkrfp0yPzUWTBuOVz/4Pkj1SE8Y\nFWPBqRn3qgkzRYVZTGFJemoULqx6i0ej43i2U9MSPgdc1GZzqXcS4mryaV4TRKLCUkOLpH00EXtI\ngCfikfZoA0lEHhL4ooC/BVzH6QumDceS1dpqnU5HCmbc2B9v/73Vhi/J0gJp6BxrkgWPTx8OQF2/\nePms0aiocavqyLMEygXTWtNUM+5VE2YemjwEpRvLsPPfVQqfM+aJZAumDcfvV8lt+MI1OtYKfh4q\n8Wynpmw/pyMF2Rl2w+V0pNtkmwmOdBpiiI5BvDi8ICJDe7PXITou8eJtlYgvaDUWR/TplhNwaMI6\nQs5ItQYWFMtnhe6QBNBenPxh7tWB2HdKxxtqxr1qwox4IrTy/e+w+3B14H7pqVG49OmWY/pkLBW+\nRe+i4RLPtlxqITGM0tWZgR8q3bJrgiAIgiCiA20+RZ5ohwUzAxL44pRrhnbB1r3Vst8u6dU5KnmH\nIpjoPTPjxiLYFEJkPCMVvjsCZgmj8XyKSRAEQRAEES7FA2IXIixUSOCLAqHsBNzz0yG4bZw36KSt\nvRLPp1uEeVA7G2P98luDXGQTBEEQhB7OdKCmQX5NmE+i1DMJfFFAKy6eFo+t/AqNLa3/Pl5RH/Ci\nKNrODeqVmxCxQYjYQ/2IIAhCnXiOo0p0TFzeJAAtimvCbK4c1B0bvj0duB41tHsMSxM61DvimMYW\n9u9i/DuCIAiCICKPGLpG3Hwt3VgW6yIRHZxmX4vmNWEOUmEPAP6+7bTKnfENnfBFifsWb0bXLOD5\nh7RPTaS7iFpohWW4b/Fm7tMZ2rUkCIIgEpmKs24sXXPBa2FqMuZPNR4yI57jqBL8kDYL0VGhE74o\nUskRu1u6i6iFWUENaNeSIAiCSGSWrtmDmnoPvL4W1Lg8WPruHsNpKOOmxlMcVYIgCD3ohC/O4N01\nvG5k14jkR7uWBEEQ4SGeKNW7PbBYLMhzpqN7lwzSoIgR7sZmzWseyAMxQRDtGRL44gxlAGw1Pt1Z\niVqXgBVzr8acP3xlWn5m71qSymhiQe1JEPqIJ0qtCDhV7cap6tb4lOTFNvpkpCbD6/K0XaclG06D\nPBATBNGeIYEvyujZ102f2B8HjlbB5dVPS/TaqZZPJ4cdfXrkBBblLDuGSO9aiiqjAAKCJc+kadTm\nYuP2Y/jb58cC11Ou640JI3tzldFMIUYtLVeDF299fABl5bUALBhQmIMZNxZFVFhyNXjxp7e+wb7D\n1ablGWp7AsCRk7VY8l5bMPvZPx+Er/ZWhlzvobab9LmcTDssFgtq6j3tUoDVqoN4FM7NsKWKFUbq\nU+0EiUeDIhZjhTTvSPQZVrujBZp9wcyyzJ86DEvfvZBXWjLm3zUs7Hcyk32Hz+Dl9/cFbPOtSRb4\nW1rHyQXThqNPt5yYli/Rkda/1As6EJ/jKEGEgkUQBC3/H3FPvMWwYhkEKykuymMKBOKgwnPCJ5Ke\nYsXiB69CZppdNe/BF3fCI3cMw9wVX6K+oW0h4khPxh/mjFEd0JQLdLWJJzfXodoOz/xlR9D78Exi\n8/74tWSHHHA6UrB81mjV+1nvXlyUpzk4S99PyrC+nZFssxoe4JVCp0iy1YK+Bdk4cKI26G9P3DMC\n8EO1npVtM2lsb3z4xTHNsqm9FwA4M1Pwu/uLg55R6xtKlO3ZK9+Bp+4tVq0TrbJYIHc+VFyUZ2gH\nvWTtftmmB+/zyueksNIw08g/nLRY3+Om7Sdl75KeYsOlvTth+sT+KN1YFlL9SDF7sWP0uw4VM8qt\nHNeM9Ld5r3yNGsmJEs8zIkve2YmD5XKDb6cjBdkZ9ohtSImE+k3pwWp3ALLfgNbxUBz7tMqiNeeY\nCW8/CneM0Fo3JFst+NP8a1X/zjtPRxOt9jG7vGakd//izbK5yALgzQvtF6lvIlZE69shjGNG2+Tm\nOlT/Rid8MUB6QtLs8yPZZsX3x86iweM3nFaDx4/SjWWaA9C+o+cAQLagl16XrNsfEEaOV9TD1ejF\n/CkjZAv1Zr+AJat3a048LJyZKTgOeQfmScsMmwuxntXqRk0QKSuvDbSFkVMslrAHtL4vS9gDgCWr\ndwfuEf8vrRvlidrhU3WBRZJa2dTeCwBqXB5mf/l/00dw7YAbVQHWKovyV7XTD7VFV6j2p1r3GbFh\njfbOL+t77JGbKbunweML9Bet+uEte6gnumrpq33XZtclb7mN5Gukv4knSiwbPj2Uwh7QKhjV1HsM\nn6oreevjA9hz+CyAtvlnzs+HBv4eKZtu3vFcOvbFg315OBoNZqE2foqEMk+H872FK2Cxyrt81uiQ\ny2PGOkVZw9LreOiHBGEGJPDFGKlwESo7DlZhB8fJohpKYUS8Vk40ehMPC0ElgIReWmbYXADag7N6\nGeQ+UCM5wLPKIP1NmbdyocQqm17dsp7Jd2ZwnbQYVQHWKovyhE9NeFRbdIVqf6plJ2vEhjXai0HW\n96j2LmL7qNUPb9lDXeyopa/2XZtdl7zlNpJvTqZd81oK7/cUCuGMR61qourXkbLpZra7ANlvgLyP\nR9q+nId4WOwnW7V9cocyT4fzvYUrYLHKG055zFinaBEP/ZAXNZV5qYBf0NWBO8ZdTGqpHRAS+GKO\nsQALorqhlv2eVk5KtQUtkq0W2eCpN/GwqFUxRtRLyyybC63BWfl+QKu6hs/Xgt2Hq7nS4MVqAVqE\n4J1EsR7U6lk52SgXTqyysd5LSjjvY9RxgVpZkq0WPHz7IHy5p1JXeFRbdIVqfyp9jmXDp0RNNSva\ni0HW9yiWV6khIH0XVv3wlj3UxY5a+mrftdl1yVtuI/laLBbNa7OI5PcbPOrLryNl063W7gv/tF31\nmXjwisnbj8KN4yba7CkRT9C0CGWeDud7C1fAYpU3nPKYsU7RIh76IS9SZ1HeC+FHxNNTqUDt8fja\ntVoqERok8MUAmwXwXRifGj0+5j0WAPmd09DVmc5ckIYi8C28ZwSWrJarYgCtwoh0zBbHywXThjPv\nNwLrBIInLaM75F07paHyXNskYbNaMLxfrubgzHq/Pt1y4Gr0wraxjDnAazmdmHJdb7z3WZtaZ9IF\nIU/6vr9ftSvwd6vkd7V6Vk42k67pjQ+3HtOcfKTvZbclYfbPL+USrCKBWh0DrWpFX6JSNw21RVeo\nXvPM8rYX7Z1fVl2K7+Jq9KJ0Y7BKlNp78pY91MWOWvpq37XZdclbbiP5Ku3NlNdmsWDacDy3apeK\nbgTC+n4HFObINrMGXCRXxYuUJ0q1di8qzJKpsBYVZkW8LEaI1mL/8enDZXMDwG/fGso8Hc73Fq6A\nxSrvpu0nQy6PGesULeKhH/KipjrNEqhDUc3Vcm4DBKv73nV9X7y76TAzDzNtOaVpWS1A/4ty0Ojx\nR8TUoj07HiOnLSbD47SFddLWM9+BExX1st+1jLV58mHB2ok88mOt6qKcBy1DU7WFqNlEy7DaDGcy\n4e4GGyGeDbR52yxafcgoZpQrVu0T6To1mn6s2lgr33CctphVLtbGXjjjR7x9S6GWJ57HtVCpqHEH\nnYJGaiEZTj/gWS8YbZ9Y98svvyvH2x8fClzPuKEfxgwpjFr+ZqF0FmVNsmBE/9wgraXiojzsOXQm\nSHDXU83Vcm4DAL9a+rnmia/VArzx2HjmvTz5q6GVr9njdCQdj5HTlgSEZSD81L3FQcKB2broavTp\nlhPyh6ZHtHbHorUTa4YzGaIVXjWeeN1hjddy8RDpshtNP1Z1aSRfs8YYHocZYrnqV/8DB082BX4v\nKkgNKU9luvFCvJUnlkTS7lNJOPUeifVCrPvBmCGF7VLAUyKqTte6PBAEwN8iYMfBKgzr2zngHV60\n4VNuJvGsN7Wc2/CkIf2zmbaXWs+abWrRnteAJPBFAeWOLGtnQ/x/JHXRE5loTRhmOZPRIlyVgVAM\ntHnzNNObYnsyhicIs8YYIw4qFkwbFXZ+BEF0DMRNA2X4pH8dr8HQvl3w6C+GovdFnXHsxNkgTTOg\nTSMpCUCL5PfcnFT0ys/S9QOhZ38MtGpKnKltDEor2WrBLxdvhtSFoQ3A6xfWz1ohqljv0lb2tnWF\nuM5heU9mrWNcDV68/lGrF/sWANnpdqSmWOH1tdVOJNaAkSIp1gXoiCyYNlwm5Ik652q/E/HD/KnD\n4HSkwG5LgtOREpEAvqLhtdfXgpoLhtdGEBeUxyvq8dXe0yjdWGY4z4V/2o77Fm/Gr5Z+jiM/tnny\nk6a942AVV9pqTJ/YH8VFeeiV7wjETCSIRCcePD8SBJG4KDdPvb4W2XxduqlMVUAC5MIeAJypbcKO\ng1Xo0z0zIOSJNnxSFkwbrukM0JGeHFg/iHaAQNt6V+mvXurhQrn2WPreHmZaUiyQ2zyL6xxfS+up\n4Klqt+Y6pnRTGfYfr4VfAAQBqHV70dLSEvE1YKSgE74ooGVv1+wXgoy1tX6Xkmy1YPK4Xvjb/wXH\nf+uVZ8PxKrZDGJ7yicf/malWnKxuQEOTL3Dyw/KsZoZdWqzt3fRQls9b70Fmqvm7O0oVgZp6jyzv\nYX0yMef2ywGwT9yUC0hl2A5pnYo7XmoOKKT9sG83O3xCiuzvRherW3eXY9VGpa2E/HQjnFNEBKuM\nrQAAIABJREFUXhvanvkO7rS//f5HvLb+QOC6Tw8H/H7w2aZpvMs7G7/H/+1uc1ozYWRXTLnuUt3y\nP/LyZtS1afnBmQ4snyP/TsKpQ55nw/lWQy3bH9/fiX8eljj4KEjFkR89wU6XONIP96Ra7/nfrNiM\ncw3Bz3XJtqMwN0sWm9TIyTZP27NQ9rWuzhQ8cXcxMtPs2Lj9mCyG6JTremPCyN4Agvv+zEkDUTyg\nm2o+rgYvlr67E+XVbYXUsoda9+UhrPu6PHA9eWwhbhrVL5CWWMdKb7o3XX0xFv35m8BzVqsFjzNs\nyVwNXiwu/Rana9jeogf1TMejU67UPD3Q60Onqurx47nGwAI6KyMZj08bwaWV4Wrw4q2PD1wIj2HB\ngMIc3D6+j2reav2Otz9Hut+LHDx+Dgtf/YrLL0Ck4pnynua4GryYs+KroOeNrj1Y/bW6thE1riY0\nNPkhoPWEaMG04RF38iEKOXsPV8tOo8T5OtRNJl+LRWazp6RPtxz0zHfIThfTU6zIc6YjNycNlTVu\nWTzonvkOPHVvMVfeeiGqlPkCrad+0rZWU79Uqw/W795mASvmRkf12mxI4GvHNPsFprAHAA9MukzT\n5bUeLGcB3hBOm3gI1QFNtFAuSqToBb0PBaXaqJI9R1xt+TPUw7TizCnREvaUHP7Ri+KinLDUMKXC\nHgC8/fGhoMVgpOPbCRfS5U1buuAFgCOn6gNla2zy4tE7R6g+q/Uu0gU4AHy6s5JL4JMu+AGghiFY\nGKlD5YLL52/B7kPVXM+GQqjtKxX2AMhs26TxwHjSD7eP6T3PEvYAoLrOi4JcIbChZtQWkKftWSj7\nWmWNJzB2SYU9AHjvs2MBgU/Z90s+PIDix9UFvtJNZTJhD2B/4yLKcfWDL8oDAp+0jqUcr6jHzn/L\nf/erxIMr3VSmKuwBwP4TDUF5Ha+ox+FTdYFxkacPSTnvbg64w9ejdFMZ9hw+G7jefbgaxyvrVfNW\n63e8/Vl5385/VyEnI4XbbIA3nydKvuaO1Rep8V4+t7We5pyqdgelX7opdC0VKWr9QUqt28vdN8JB\nVD9XOpoS52sjawQpPPO9Mu1Le3cO1HfJ2v34odJtKD21dFkhqk6dcWmaRamtrdTKwaqn9qTCqYQE\nvgQlHGFPi/ZioGqm61w1YQ+IjDqWMmaVlkDGUg979BdDA//WG9SNtmc0nONEU+Ut3LQPnKjV/Lve\naWukMFKHygVXeop8WjC7/iPVvuJEz5N+uGWoPOeWX9e4Ve4Mptbl5d7VjiSR+K6MpOlqUBfE9NJi\n+RZn2Q7xlkfv9ICnD2k9z5uvXt5q/Za3Pyt/FwQEzAZ4hBDefJp9cqVAI041zOqXvKc5ZuXHm040\n11Bq87Xy95EDO6Pkw7bNHTUbPp75XmuNoLd+sEGuximdiXhCVF1/RYFmiA5xbcU69VV7l8Ymb5sN\nX4a9XalwKiGBr4PxzF92hKU2kZGWDG+E4k+ZiVoAUi3Y6obanruOV9TjvsWbmTFpgNBUUpXe2lgn\noGqnork5aTLnEnqnp3qniUq0HFeoxeiRniDxoNxVE+tYyahLnfjPm9sG9Iqz/ItuaV7h4BfkdaxU\nXwplJ5WlYmS3At1zHVzldTV4UeeSL6ZPVtYHXGor4xQFCyvyxdnxinp8+V257rdQsnY/17gSKWc9\n4m6uXvqs+qlzeeFq9HKPifUNPs1rLeLFOZFWOULVuuDt7/sOn8FL7+9j/k106qBsIykWS7DQx3Jy\nxlOeVRu+4zo9UG4iFuSpbyB6fS1BdSiODScr6oM0HaQonUKojX8AUFXTiJK1++HMTGGqCStVctXs\nq0SzAa0YZhVn3Th1xiV7TsxHOXeyOPJjLVOtMzVZXqofz7q5xxIteE9z1PrI/Ys3B83pSm2IUOIh\nh3pCpFS9njS2ECerPFzefpWwftc6uTeC1hpBz/HV6xrrJdazyuvMNLumB1mjnnAz0+yaGjztDXLa\n0o4JxYsnr7ON4qI82G3y7mG1oN3sboTiOpelbsiLAODFNewFTLgM65Ope0+ojk9EJzQ89O2mPfm+\ndEHYA+T1ITW2VjLjhn5Bv/G+wz++r5FdL13Dp25sgbH6mjlpIFe6QJv6kojUMY0eE0Z2BcBWMfL6\n275dJc50+XXppjJZLCYA8AltYpxfaD2ZFNOrd8uFlf6FwYsynm+B14lPqM56igdkya6LClKZTq70\n0mfVT43LY8gBUWaafK80M1V+3UXlk+2SbWe+732LNwf9x0LZ1sprNcS+JdLVmRIox5TrevMlAv1v\nYfrE/ijsIg8dwfrGX1YR9np0SQuMFTUuD5yOFPTKd2BY384Y3q9LoE2f/uWVsuesKk7OePrW1r3V\nQX1m/tRhQX1I6djqRGU9iovy0L1TmqajChFxbNATjFpaWlBclIf0FKvqPeLfGjw+7DhYBQECs88r\nVXL1HN8rxwbpN7F0zZ4gdTkxH713AiAbF6UcOS2fFzzNLdxjiRbi3GZLai1rjy4ZzPFArY8IAF5S\nzOlKxyEsrEmWQH8tzM1AZpoVSZbWTYqczNBPiJSq1x9+UW6aAzWiY0AnfDFA9OyT78zA/uNn8NKa\n4FMRvR1WMZhkqDux0tMWtVMopf73iAF5yHdmBN0fiSC4Rk/GlLuvZrrOnTy2EB98EexYIFq2h6KD\nFhFWvmoqYuuX36rZNuKOl9a7hOs4R3my10vHUDvUXV0tod5uS8JrvxkXUrrFA7qhBAf0b7yAdFGk\nd9qakpyEknnycumdhOrVn1EVpcw0G/oWZMt2iuf8IdiJgRSxTyjdf/PkHWp4g5mTRmImx3166Rsx\n0Fcjv3MGys+4ZddSlsyOjLMpHgctLKZcd6mqfeiEkW1OWgD1071e+Q5Nhy1Aa93/7j/1Q0moCR7J\nNvmSJDvDzuzrubkOrnGJdyzhOT1Qji9NHr/sHuW3wIIn1pi3WcDMnw3STC/PmS77m1RNeN/hM7rf\nbxKAbEcK3I3NsnlSifSbUL6/xWIxNFarvbva7+GqWvKe5mSm2QN9Sdn3lSXjKZM1yYI5Px/KXU6z\nIG+/hB4k8EWZrlnA8w+1DUKDeuUyvR49eudg5omR3ZaEjNRkTLpGe1fWmgT41cdxLrWiaAUzNwOl\nCmdmmhXOCxNaRlpyWCeTN43qF3AkYJR49zwaDaIVb09LPTUcgV/N1siZmRJ0UgQYO3l3pAcvmPTU\n0PTqz6gaaX7njJCdJLTHWIpq9WOk7LEeGyPl2VALM9uWFTcrKSky/UkrRpcR9GKw8nx3PHHKxHS1\n0tOqJ7XTUynZjpSAMKSMC6zMJ1CuMGPQqo2LanUSi7FEL84cTxvHyqmHWF96/gtOVrnw2Ctfor6h\nGUkWCy7p5cR1l/XAKx/sZ7aD1GuvlCMna7HkvVZ7OakqsOihtPKsG2fqmgCLBWl2K3rmO1Df0Kw6\nXh05WYvfr27zTG+1WnDTqAKs+7Jts/3eG/rh+6N1po57sRhLYwUJfFHm+Yf4FvtKWzARr68FXpcH\nH249prlIUxP2eknc0esRrWDmZghAyt3HUFznzrihn0x1jaWKJKV/YRbKys/LrhMNI+qMavURyuJ4\nynW98d5nbA+0IqMudcqupc5u7MkWJCUlocnjD1vgZ6lYFg/IwqRxA7H0XbmXU6PxM599cDSUy9Hp\nE/sHqQtJbfj06m/6xP4yL4NKWHY6SnrlZ+J4hUt2rZYX0D42hUTEMlacdcPV5IMj3YauTnXDfRbR\nGhvViKQnW2e63Pun1dKq3WFm2z7C2NC8tFeniPSnR+4cHNCiYdElm29xp3SmpRxTpGX3ejxB3kHF\nseH0mXrZPDN5bCE+310VlK6Y3r9PnMH5xrbSz7ihH4b36xrIS1lPesKtMnbYgmnDA44utMYGrfdX\nzp02qwV2G+D1AT4VBxqs/C0A8junoSDXEZOxRNpXWHHmlP2TpdYZKbMX5Zw4eWwhyhU2fIC+/4Lf\nvvY1zrtb10t+QcC+o+ew/+g51X4j9dorRRT2WtPRcmAmoNnXgn1HzwFQH6+WvCdX+fX7BZmwBwB/\nkfQxs8a9SHsFjycsgsDyd9V+MFuVMFyMqPnlO1NQ6/KiqVneBFZL66676EKYhS3JguH9cw0bDQ++\nuFPQLgtPDCIIUN0Fkap0immJi6n0lCQ0eFpkiyq13ZNwdloeXfkVat1tE2xOph0vzr46pHSlO1es\nGELKd9R6t3BP+MLdfbKnp2DaUxuCfg/YMgjAWx8fkLkG5y1nUL+54DXrhx/rUFXngYBgJyZq8HpV\n1YrNNX1if1SebWC2HSve1YwbizT7tYhStaowNwMZqVYcvCDcivlk2JOxdM0e1NW3vrvNmoTMtOB3\nkb5DQVcH7hh3cVgx8p4o+Qr12g4PAbSeSD40+VJs+vak6rct1un3x87JVL1ENVJp7DGt3dt/HT3L\nFb/NSMw8aZ6ZYXre5ck7FFX1UL9X3nFCTF8ZX0tPzdfImBUKrgYvXv3wu8A3AQCpya024Kl2G7Iy\nk4PyczV68dbfg79JnvlB77vRilfHGu/EeHy87yqOJS0tgur7GcUsz9KicyY1RM0Xu82CJGsSGhqb\nNePUsdCLIar8dqTtwYrtm+/MiPpJC0+Z9Kg458bS99heH10NzVj87q6AcJVmt6LoIiezj0v7lM/n\nhwCL5jinVVcPLtsiGxuU5gwzl2+Bp1lD/YsBaywKx6SFNV6Fkp7euMeDcn43I81QMcM8KjdX3V8A\nnfDFkIoa9g68X4CmsAcAvhYhJA9RrF0WnhhEAHR3QVwNXjz15nbUuttO22rqxf97AvFX1HZPWDst\n06/vzzUJFOSmywS+gi5t3gyM7uBId65YMYSU8Xb69sgOpKcciFkYmdjC3X167X/3Mn+Xlp8l7PGU\nWa1sDyz9PLDgaPYLeGH1bryu4TnL1eDFore+DdS5lldVrdhcALDn0Blm27HiXdkuGLnr1a/SA159\nY7PMfkvMJzPdLjtVa/a3yFyesya04xX1cLk9SLZZQ+oPzT4/l7AHtDomWfJOW99mfdtqiH05uP7Z\nu7fK9Eo+PICBczsHvZfRmHlinkZcyavB+21F43stLsqTvWNxUZ5u+lL01N+Uz/GMx0Yo3VQmE/YA\noOnCorKp2Ytatzcov8y01s2FBo8fQOs3iY8P4uHbhui+w/GKeng8PkNziTjXscY7MR4f77tK01B7\nP6M8t3onXI2tdeF1efDcX3dixdxrDKfDOj0FWk+sMtJsbac/PgDwX/grO06dWt83GkNUrd9Kx/pI\nnLSIgtTBE+fQ7APsyUkBoYunTHp8+MUx1Vh/h0/VBYQ9AGj0+gPzDmuMk/dLAVrjnFZd6aneOtLt\n8CgCeoai9syjnqwGa7wKJT0z1H7bo1lCqJDA14FRi+ETagyi0k1lMmFPK0+ev52pbeRflDX5Va+N\nxt1RDjrKa630WOVVYmRiCz9emPpCRi0t1g4Xq8xqZfMp6kt5raR0U1lQHfPGUFL+Ta3tePsw6zdB\nMRV6vP6ge5r9gmqZ9TzElpXXBha9RvtD6+kIP3p9WYndloShfbvIVJn0ULunlLHQCSVmnki48ax4\nv61ofK+hxlFTtg9v+kbLp0eo7/nvH2o1r7WeNTqXGCmnFkbyNYIo7Kld8zKoV66qdsaDy7boPq83\nn4UihPHELIxEfDylICUVuiIVR1H83cgcZrQsWnWlp3r87IOjseCVL2Q2fBMu74GV/6Nuw8dCTRWY\nacOXYkXPrnItEFZ6v18lt+G7dXSBzGHejBv6Yb/Chi9c2qNZQqiQwNfOSU+x4pVH5LuAPN7CgLad\nDJ4YRAB0d0F4Bmit3RPWTgvvJKC1S2N0B0e506Q0NtdKL5QFsdYz4e4+de2UjkMqQgGrXdXyYJXZ\nrJ0x1vurGb7rOTI4dcbFbDvWc7z9ulYRD8zC8D2QbLWoOo3RN+KXJ2ikP6hH1uJDrQ+IDO3bRbbA\n43FaoHYP6714+pBaeuE6R+Dtv9H4XnmfU96nbB/e9I2WL9T09fNTLjDVN4eM1K3avUYdGvGkrfxb\nPMMTd1VrPgtVCNOqMzUnNWbUpZZAxlMmPbS+qzqXlysOoFY6amXRqis976Q98jLx8sNjgn7Xil/H\nok+3HMPP6KXH2qhQOszTiwdrlFjbY0cTEvjaOayYWTyTmtPRFodJucMh2mKxdjy0dkFY+abYLEhP\ns3M5RmDttJRuLOOaBLR2aYzu4Eh3rljG5lrphbIg1prYwt19mnnbUHy193TQ79J4RM0+f5vKiz0J\nPl9LUBBqVpnVyjbwomwc+KEucO/Ai7I1y6hMO9lqUTV8l+bJsuG7/ooCZttNn9gfzT5/m73QRTkh\n9+v+hTlo8jQH2/ClJmPpuwobvnRthzFXD+0Ot9vbqs4myU8NZZ37fC2yZ3lwOlKQnWFnftusOmXl\nL7PhY+zejhzYGSUfykNZsN6Lp3+z8swM0xEPb95iuSP9vfI+F2764Tiq0Uu/3t3EtuFLsSErI5mZ\nX//CHNkJDGs+U76D1IaP515pPYn/V6ryDerJGdAQ8rGkpUXQfD8jZGUky1QAszLM9/bIcmzFsuET\nUev7E0Z2xac75TZ8WkjbQ2Yvx3BSY+ZJi5ZAxlMmPbS+K1dTMxavVtjw9XSqjnFin5LZ8KmUhVVX\n7cXbpKvBi9c/2o8DJ2rRAiA73Y4F04aHZY9tNu2lLo1CTltMhtfwNNmWFPiYlR29osYdNFD06ZGF\nZJsV1bWNukb3rkYvSjeW6S7KzOrAoqFpkBH+RTmYcYO6ET4P4ru0lw9PWV414Tla78RrBKyMuSjG\neRQx0g5G2yze29is8rHGhvXLb8WxH86GnD6rbAB0+2A06jfe21UP6bjWnt8jngm1biMR+zXWVNS4\ng1TxYr0Ibu/tI65JpBuaRRc5w16XxCPKOTw9xYb+hdmwWCyydeNF+dmGHIWZgdRpVMW5hiDVUZsV\neH3++IDjIj3HZ0Cwc73ZPx+Er/ZWMvsqj9MqqZBX5/bK7PGdmSn43f3FkQ99E2GnLSTwmQyvwJdI\nsdjiZXAnguFtm3jyVJWoqAl89O3EJzSuxS/UNvENtU/04TXlAYI3dCONUhhl8dbj4zHvj18zwwk5\nJXEjRZTxI5WOZ6TvqJY/zz2seyNFpAW+pLBSJggiIVCqqcW7LQpBEARBEK0YmbPNctZkdn5GHJ8p\nTwmVJ1fSPHmcVumVMdp1FglI4CMIAtMn9kdxUR565Ttk9n0EQRAEQcQ34hyenmLVvTfaG7q8+WWk\nsu1WWY5rlM70lO7LlI779MqlvIflrK+9Q05bokAiqW8SiUlH8lRFEARBEImEOIdL7S5FJ1wsG75o\nonRuo1TbFJ0miU6FeByfKZ3rPXz7IHy5p5Lp9IfHaZUR54XtFbLhI8KG9PXjF2qb+IbaJ36htolf\nqG3iG2qf+IXaJn4hGz6CIAiCIAiCIAgiJEjgIwiCIAiCIAiCSFBI4CMIgiAIgiAIgkhQSOAjCIIg\nCIIgCIJIUEjgIwiCIAiCIAiCSFBI4CMIgiAIgiAIgkhQSOAjCIIgCIIgCIJIUEjgIwiCIAiCIAiC\nSFBI4CMIgiAIgiAIgkhQLIIgCLEuBEEQBEEQBEEQBGE+dMJHEARBEARBEASRoJDARxAEQRAEQRAE\nkaCQwEcQBEEQBEEQBJGgkMBHEARBEARBEASRoJDARxAEQRAEQRAEkaCQwEcQBEEQBEEQBJGg2GJd\nACL2uN1uPPbYY6irq0NzczNmzZqF0aNH48UXX8T777+Pb775JnDvqlWrsH79egiCgMmTJ2Pq1KlY\nuXIl1q9fj65duwIAbrnlFtx+++34xz/+gRdffBFWqxVjx47FrFmzAADPPfcc9u7dC4vFgoULF2LI\nkCExee/2AG/bnDx5EjfffDMGDRoEAHA6nVixYgXq6+sxb9481NfXIz09HcuXL0dOTg61jQnwts2W\nLVvw5ptvBp77/vvvsWHDBrz00kv4/vvvkZOTAwC4//77MW7cOHz00UdYtWoVkpKScMcdd+D2229H\nc3MzHn/8cZw+fRpWqxXPP/88CgsLY/Le7QVW++Tm5uKZZ55BUlISsrKysHz5cqSlpeHPf/4zPvnk\nE1gsFsyePRvXXHMNfTsRxEjb0JwTXXjb5uzZszTnRBnettm+fTvNOTGA1T5erxevv/46kpOT0alT\nJyxduhQpKSmxmXMEosNTWloqLFu2TBAEQaioqBAmTpwolJSUCKtXrxYuv/zywH0//PCDcMsttwjN\nzc2Cx+MRrr32WuH8+fPCihUrhNLS0qB0f/rTnwqnT58W/H6/MGXKFOHQoUPC9u3bhQceeEAQBEE4\nfPiwcMcdd0TnJdspvG1TXl4uTJo0Kej5lStXCm+88YYgCIKwZs0aYcmSJYIgUNuYAW/bSDl+/Lgw\nc+ZMQRAE4bHHHhM2b94s+7vb7Rauv/564fz580JjY6Nw4403CjU1NcIHH3wgPP3004IgCMKXX34p\nzJ07N4Jvlhiw2mfq1KnC3r17BUEQhMWLFwurV68WfvjhB2HSpEmCx+MRzp49K0ycOFHw+Xz07UQQ\nI21Dc0504W0bmnOiD2/bSKE5J3qw2ufuu+8Wzp8/LwiCIDz++OPCRx99FLM5h1Q6CTidTtTW1gIA\nzp8/D6fTiWnTpmHq1Kmy+3r06IF3330XNpsNdrsdqampcLlczDTLy8uRnZ2Nbt26ISkpCddccw22\nbduGbdu24brrrgMA9OnTB3V1dappEPxto8a2bdswYcIEAMC1116Lbdu2UduYRChts3LlSsyePVv1\n73v37sXgwYPhcDiQmpqKESNGYNeuXbJ2HDVqFHbt2mXuyyQgrPZ57bXXArugnTp1Qm1tLbZv344x\nY8bAbrejU6dO6NGjBw4fPkzfTgThbRuac6IPb9uoQd9N5AilbWjOiR6s9lm1ahUcDgd8Ph/OnDmD\nrl27xmzOIYGPwI033ojTp09jwoQJmDZtGh577DFkZmYG3ZeUlISMjAwAwFdffQWn04lu3boBAD75\n5BPMmDEDv/rVr1BeXo4zZ86gU6dOgWc7deqEM2fOoLq6Gk6nM+h3gg1v2wBAdXU15syZgzvvvBMf\nffRR4DexHTp37oyqqipqG5Mw0jYAUFlZierqalxyySWB31avXo27774bjzzyCM6dOydrL0DeNuLv\nSUlJsFgs8Hq9kXu5BECrfRoaGrBu3Tr85Cc/4apz+nbMhbdtaM6JPrxtA9CcE22MtA1Ac060YbUP\nAHzwwQe47rrrcNFFF+Hyyy+P2ZxDAh+BdevWoXv37vj000+xatUqPPPMM5r379mzBy+88AKWLVsG\nALjmmmswd+5cvP3227jlllvw7LPPcuctCEJYZU90eNsmJycHc+fOxfLly/Hqq6/iD3/4A6qqqmT3\nGK1rahttjH43a9euxS233BK4vvXWW/Gb3/wGf/3rXzFw4EC88sorQc+otQG1jT5q7dPQ0ICZM2fi\nvvvuQ58+fYKeY9UtfTvmYrRtaM6JHrxtQ3NO9DH63dCcE13U2mfy5Mn47LPPUFdXh/Xr1wc9F605\nhwQ+Art27cLVV18NACgqKkJVVRX8fj/z3oMHD+LJJ59ESUlJYKd1yJAhKC4uBgCMHz8eZWVlyMvL\nQ3V1deC5yspK5OXlBf1eVVWF3NzcSL1au4e3bTIzM3HbbbcFDIMHDRqEo0ePIi8vL7Dro9YG1Dah\nYeS7AVqdt4waNSpwfdVVV2HgwIEA1L+bqqqqQNuI7djc3AxBEGC32yPxWgkDq328Xi8eeugh3HTT\nTZg8eTIAaH4P9O1EBt62AWjOiTa8bUNzTvQx8t0ANOdEG2X7nDx5Elu2bAEA2Gw2/Md//Af++c9/\nxmzOIYGPQM+ePbF3714AwKlTp5CRkQGr1Rp0n9/vx8KFC7FixQoUFBQEfn/22Wexc+dOAMC3336L\nfv36oaCgAC6XCydPnoTP58Pnn3+O0aNHY/To0di4cSOAVs9ReXl5mmpwHR3etvnmm2/w/PPPA2jd\n7Tt48CB69+6N0aNH45NPPgEAbNq0CWPGjKG2MQnethEpLy9Hfn5+4Prhhx9GeXk5AGD79u3o168f\nhg4din379uH8+fNwu93YtWsXRo4cKWvHzz//HFdccUUE3ywxYLXPm2++icsvvxy333574L4rr7wS\nW7ZsgdfrRWVlJaqqqtC3b1/6diIIb9vQnBN9eNuG5pzow9s2IjTnRBdl+zgcDixatAiVlZUAgO++\n+w69e/eO2ZxjEeictsPjdruxcOFCnD17Fj6fD3PnzsVnn32GsrIy7Nq1CyNGjMD48ePRr18/PPro\noxgwYEDg2fnz5yMlJQWLFi2CzWaDxWLBs88+i549e2LHjh0BFZzrr78e999/PwBg2bJl2LlzJywW\nCxYtWoSioqKYvHd7gLdtpk+fjieffBLHjh2D3+/HlClTcNttt8HtdmP+/Pmora1FVlYWli5dCofD\nQW1jArxtM2PGDNTU1OCuu+7Chg0bAs9/8803WLp0KdLS0pCeno7nn38enTt3xieffII333wTFosF\n06ZNwy233AK/348nn3wSx48fh91ux+LFiwOnHQQbVvvMnz8fBQUFSE5OBgBcccUVmD17NkpLS7F+\n/XpYLBb8+te/xlVXXUXfTgThbZthw4bRnBNleNvmwQcfpDknyhgZ02jOiT6s9vF6vVi5ciXsdju6\ndOmCF154AWlpaTGZc0jgIwiCIAiCIAiCSFBIpZMgCIIgCIIgCCJBIYGPIAiCIAiCIAgiQSGBjyAI\ngiAIgiAIIkEhgY8gCIIgCIIgCCJBIYGPIAiCIAiCIAgiQSGBjyAIgiAIgiAIIkEhgY8gCIIgTGTd\nunWafz9z5gzmzJkT9LvP55PFnCMIgiAIMyCBjyAIgiBMorKyEmvWrNG8Jzc3FytWrIhSiQiCIIiO\nji3WBSAIgiCIaFNaWooNGzbA7/fj4osvhtvtxoQJE3DzzTcDAJ544glceumluPHGG7Hmr4Q5AAAC\n4UlEQVRo0SKcO3cOLpcLM2bMwM0334yVK1eitrYWFRUVOHHiBK644gr89re/xbx581BWVoYFCxZg\nyZIlzLxPnjyJu+66C1988QWOHj2K+fPnIy0tDVdccUU0q4AgCILoINAJH0EQBNGh+O677/Dpp5/i\nnXfewd/+9jc4HA4MGDAAGzduBAA0Nzdj69atuOGGG/Dyyy9jzJgx+Otf/4rVq1djxYoVOHfuHADg\nX//6F1asWIH3338fH3zwAerq6vDwww+jf//+qsKekj/+8Y+47bbbsHr1alLnJAiCICICnfARBEEQ\nHYrt27fjhx9+wN133w0AaGhowMiRI7F37140NDRgx44dGDJkCHJycrB9+3bs27cPa9euBQDYbDac\nPHkSAHDZZZfBarXCarXC6XSirq7OcFnKysrwwAMPAACuvPJKk96QIAiCINoggY8gCILoUNjtdowf\nPx5PPfWU7He3240tW7Zg69atuPXWWwP3Llq0CIMHD5bdu3XrVlitVtlvgiAYLosgCEhKalW28fv9\nhp8nCIIgCD1IpZMgCILoUIwYMQJffPEF3G43AOCdd97B7t27cfPNN+PTTz/FP//5T1x77bUAWk/x\nNmzYAABoamrC008/DZ/Pp5p2UlKS5t+V9OnTB3v27AEAbNu2LdRXIgiCIAhVSOAjCIIgOhSDBw/G\n1KlTMX36dEyZMgXffvstioqKUFxcjL179+Kqq66C3W4HAMyePRsnTpzAlClTMHXqVFxyySWw2dSV\nY/r27YuzZ89ixowZXGWZNWsW3n33Xdx///04evSoZtoEQRAEEQoWIRQdFIIgCIIgCIIgCCLuoa1E\ngiAIgjCZ8vJyLFy4kPm3hQsXYuDAgVEuEUEQBNFRoRM+giAIgiAIgiCIBIVs+AiCIAiCIAiCIBIU\nEvgIgiAIgiAIgiASFBL4CIIgCIIgCIIgEhQS+AiCIAiCIAiCIBIUEvgIgiAIgiAIgiASlP8PBB2Y\niUIOIhYAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "8vuJU0Ba6PD5",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "# Classifier\n",
+ "\n",
+ "- My original idea is to build a predictor and a classifier, the output of the predictor(prediction of features) as the input of classifier, but the performance of classifier is not good, thus killed this idea.\n",
+ "\n",
+ "- The first half of data has too many noise and a sharper trend in `event_counts` vs `timestamp`, so I tried to drop the first half, and classifier performance improved.\n",
+ "\n",
+ "- Tried to include time feature by translating `timestamp` into `minute`, `hour`, etc. They improved the classifier performance, please check the `feature importance` part."
+ ]
+ },
+ {
+ "metadata": {
+ "id": "3nF_lSklVcUD",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "unixtime = pd.to_datetime(sample['timestamp'], unit='s')\n",
+ "sample = pd.concat([sample, unixtime.apply(lambda x: x.minute).rename('minute'), \n",
+ " unixtime.apply(lambda x: x.quarter).rename('quarter'), \n",
+ " unixtime.apply(lambda x: x.hour).rename('hour'), \n",
+ " unixtime.apply(lambda x: x.dayofweek).rename('dayofweek'), \n",
+ " unixtime.apply(lambda x: x.day).rename('day'), \n",
+ " unixtime.apply(lambda x: x.week).rename('week'), \n",
+ " unixtime.apply(lambda x: x.month).rename('month'), \n",
+ " unixtime.apply(lambda x: x.year).rename('year')], axis=1)"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "FSPiUvZg1u5S",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "tmp = sample.set_index('event_id').join(pd.DataFrame(res['event_id'].value_counts().rename('res_counts')))\n",
+ "tmp = tmp.loc[tmp['res_counts'].notnull()]"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "TzMEQcGjYdaY",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "unixtime = pd.to_datetime(tmp['timestamp'],unit='s')"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "s8dXuSTmZx_K",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "tmp = pd.concat([tmp, unixtime.apply(lambda x: x.minute).rename('minute'), \n",
+ " unixtime.apply(lambda x: x.quarter).rename('quarter'), \n",
+ " unixtime.apply(lambda x: x.hour).rename('hour'), \n",
+ " unixtime.apply(lambda x: x.dayofweek).rename('dayofweek'), \n",
+ " unixtime.apply(lambda x: x.day).rename('day'), \n",
+ " unixtime.apply(lambda x: x.week).rename('week'), \n",
+ " unixtime.apply(lambda x: x.month).rename('month'), \n",
+ " unixtime.apply(lambda x: x.year).rename('year')], axis=1)"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "63Wz8lFyfOOX",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "tmp = tmp.loc[817020:]"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "5Cz0YpP7f2C6",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "from sklearn.model_selection import train_test_split\n",
+ "x_train, x_test, y_train, y_test = train_test_split(tmp.drop(['timestamp','res_counts','class'], axis=1), tmp['class'], random_state=1984)"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "-a8zqhzzeW-o",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "## with time feature"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "4SXbqLvm6SJ3",
+ "colab_type": "code",
+ "outputId": "9fd54425-e0a3-4d75-da96-250cf37208be",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 119
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "model = lgb.LGBMClassifier(objective='binary')\n",
+ "model.fit(tmp.drop(['timestamp','res_counts','class'], axis=1),tmp['class'])"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "LGBMClassifier(boosting_type='gbdt', class_weight=None, colsample_bytree=1.0,\n",
+ " importance_type='split', learning_rate=0.1, max_depth=-1,\n",
+ " min_child_samples=20, min_child_weight=0.001, min_split_gain=0.0,\n",
+ " n_estimators=100, n_jobs=-1, num_leaves=31, objective='binary',\n",
+ " random_state=None, reg_alpha=0.0, reg_lambda=0.0, silent=True,\n",
+ " subsample=1.0, subsample_for_bin=200000, subsample_freq=0)"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 27
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "jpzfrA6FcXjA",
+ "colab_type": "code",
+ "outputId": "f9f739a9-4de4-4a95-e3bd-d01b95b750df",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "pred = model.predict(tmp.drop(['timestamp','res_counts','class'], axis=1))\n",
+ "from sklearn.metrics import classification_report, confusion_matrix\n",
+ "print(classification_report(tmp['class'], pred))\n",
+ "print(confusion_matrix(tmp['class'], pred))"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ " precision recall f1-score support\n",
+ "\n",
+ " 0 0.82 0.87 0.84 9992\n",
+ " 1 0.83 0.77 0.80 8316\n",
+ "\n",
+ " micro avg 0.82 0.82 0.82 18308\n",
+ " macro avg 0.83 0.82 0.82 18308\n",
+ "weighted avg 0.83 0.82 0.82 18308\n",
+ "\n",
+ "[[8729 1263]\n",
+ " [1944 6372]]\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "EfqXsdkENBvQ",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "### feature importance"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "48-_Ve8Lc06A",
+ "colab_type": "code",
+ "outputId": "25da2b79-6184-4290-9aad-bbbdad83f9cd",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 386
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "lgb.plot_importance(model, figsize=(15,5))"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 30
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5gAAAFMCAYAAACu+BOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XlcVPX+x/EXDG5sJohLmgvmGmpq\nmm2mGImmWRlpGGZXM3PrpumAmiKhWC65UKQJuOKSUkaauaFp7qbZZmlWJFmyqSAi2/z+8HenSB2o\nYIbl/Xw8fFzme5Z5n+Fze/CZc8732JlMJhMiIiIiIiIi/5K9rQOIiIiIiIhI+aAGU0RERERERIqF\nGkwREREREREpFmowRUREREREpFiowRQREREREZFioQZTREREREREioUaTBERKfeaN2+Oj48Pvr6+\n5n9Dhgz5x/vLzs7mgw8+KMaEBW3bto2goKAS278l69ats8n7iohI+WCn52CKiEh517x5c3bv3k2d\nOnWKZX/Hjx9n3rx5LF26tFj2V1okJSUxcOBAtm7dausoIiJSRukMpoiIVGi//fYbw4cPp0ePHvTo\n0YPdu3ebl7333nv07NmThx9+mIEDB5KYmEhycjKjRo3i+PHj+Pv7c/bsWVq1amXe5s+vY2NjGTVq\nFM8++yxvvPEGAGvXrsXX1xdvb2/Gjh1LVlbWdZliY2MZPHgwAIGBgbz55psEBATQuXNn5s6dy3vv\nvUefPn3w9vbmxIkTAAQEBLBw4UKeeuop7r33XiZPnkxeXh4ABw8e5PHHH8fX1xc/Pz++/PLLG+Yb\nMGAAv/76K76+vmRnZ3Ps2DGeeOIJfH196dWrF/v27TMf4/3338/y5cvp06cPDzzwAJs3bwbAZDIR\nFhaGt7c3PXr0YMmSJebx8PBwevToQbdu3QgNDTXnExGR8kMNpoiIVGhGo5EWLVrwySefsHjxYiZM\nmEBaWhopKSmEhIQQHR3N1q1badCgAW+//TY1a9Zk7Nix3HnnncTExBS6/88++4xp06YxYcIEjhw5\nwvz581m2bBk7d+7E2dmZ+fPnF7qPTz/9lEWLFrF8+XKWLFlCamoqcXFx9OjRgxUrVhRYb9myZezY\nsYPDhw8THx/P5cuXeemll5g8eTJbtmxh6NChvPLKK+Tn51+Xb8aMGdStW5ctW7ZQuXJlpkyZwpAh\nQ9iyZQvDhg1j6tSp5vdKS0vD3t6euLg4Jk6cyLx58wD48MMPOXHiBJ988gkbNmxg5cqVnDhxgo0b\nN7JlyxbWr1/Ptm3b+OWXX1i9evXf/XWJiEgppwZTREQqhICAgAL3YE6ePJnMzEwOHjxoPlvYsGFD\nOnTowO7du3F3d+fo0aPmy2rvuusufvnll7/9vo0aNaJRo0YA7Ny5k169elG7dm0Ann766SJdjnrv\nvffi6OhI06ZNyc/Pp1u3bgA0a9aM8+fPm9d75JFHqFatGtWqVeOBBx7g2LFjnDhxgjp16tChQwcA\nevToQVpaGomJidfl+6sPPviAnj17AtChQ4cCx5+bm8sTTzwBwB133MGvv/4KXGtye/ToQaVKlXB2\ndmbz5s20bt2a+Ph4+vXrh4uLCw4ODvj5+elSXBGRcsjB1gFERESsYcWKFdfdg/n7779jMpkYMGCA\neSwzM5POnTuTl5fHggUL2LlzJ3l5eVy+fJnGjRv/7fetXr26+ef09HS2bdvG3r17gWuXjebk5BS6\nDycnJwDs7Oywt7fH0dERAHt7e/OZyL++V/Xq1Tl//jypqam4uroW2J+LiwspKSnXbfNXcXFxLF++\nnMuXL5Ofn8+fp20wGAw3zJGWllbg/f63Tnp6OpGRkaxduxaAvLw83NzcCj12EREpW9RgiohIheXu\n7o7BYGDDhg3mJu5/4uLi2LlzJytXrsTNzY1169YRFxd33T4MBoO5+bKzs+PSpUs3fb9atWrx+OOP\nYzQai/1Y4Fpz9z8XL16kevXquLu7c+HCBfO4yWTi4sWLuLu7c+bMmZvu6/fff2fy5Mm89957tGzZ\nkp9++okePXoUmqFGjRoFciQnJ1O1alVq1aqFt7c3zzzzzD88OhERKQt0iayIiFRYDg4OPPjgg6xZ\nswaAK1euEBQUxLlz50hJSaFevXq4ubmRlpbGxx9/zOXLl83bZWRkYDKZqFGjBgaDge+++w7A4uNL\nvL292bp1K6mpqQBs376dxYsXF9vxbNu2jezsbDIzM/n000+56667aNOmDcnJyRw7dgyATZs2UadO\nHerXr3/DzyMzM5Pc3FxSU1NxdHTE09OT3Nxc85nH/30Glo5x06ZN5hz+/v58//33dO/enY0bN3Ll\nyhUA1qxZw/vvv19sxy4iIqWDzmCKiEiFFhwczNSpU3nvvfcAePTRR6lbty69e/dm06ZN+Pj4cNtt\nt/Hf//6XF198kZkzZxIQEMDs2bN54IEH2L17N6NHj2bo0KHUqlWLgICAm77XHXfcwfDhwwkICCA/\nPx93d3emTZtWbMfSrl07Bg0axE8//YSPjw9dunTB3t6eefPm8dprr5GZmYmbmxtz587Fzs7uuu2b\nN29O9erVue+++4iNjaVLly706NEDd3d3AgMD+fzzzwkICGDBggU3zdCrVy++++47Hn74YapUqcKT\nTz5J+/btMZlMnDp1iscffxyABg0aMH369GI7dhERKR30HEwREZFyICAggCeffJK+ffvaOoqIiFRg\nukRWREREREREioUaTBERERERESkWukRWREREREREioXOYIqIiIiIiEixUIMpIiIiIiIixUKPKfmb\ncnPzSEvLtHUMKaVq1HBUfYhFqhGxRPUhhVGNiCWqD7GkOOvDw8Plpst0BvNvcnAw2DqClGKqDymM\nakQsUX1IYVQjYonqQyyxVn2owRQREREREZFioQZTREREREREioXuwRQREREREfmTvXt3s2TJInJy\nsnF1rc748UFs2bKJvXs/Na+TlZXFLbfUICpqJWfP/sKsWTP4/fffqFKlKpMmTaVZsxY2PALbUYMp\nIiIiIiLy/5KSzhMaGkxERCSNG3sSG/ses2bNICIiihEjXjKvN3v2TBo1agTAtGmT8fXtRb9+/Tl4\ncD9TpgSxenUsdnZ2NjkGW6qQl8jm5OTg5+eH0WgEIDk5mY4dO3Lw4EEbJxMREREREVtycHAgOHg6\njRt7AtCmzZ38+OOZAuucOXOa48c/57HHnuTy5Qy+/fZrevV6FIC7774HBwcHTp/+3urZS4MK2WAm\nJSWRnZ3N66+/DsAbb7zBbbfdZuNUIiIiIiJiazVquNG5873m1wcOfEarVl4F1omKepeBAwfh4OBg\nPktpMuWbl1erVo2zZ3+xTuBSpkI2mGFhYSQkJBAUFMT+/ftxcnKiWbNmto4lIiIiIiKlyJEjh1i3\nbjWjR481j509+wvffPMVPj6+ADg6OtGqlRdr1qzCZDJx+PBBzpz5gezsbFvFtqkKeQ+m0WgkMTGR\nadOm8Z///Ie3336bGTNmFGnbPuM2lnA6ERERERGxpqhA7+vGPv10F/PmzeKNN940Xy4LsGPHVrp0\n6YqDwx+t1NSpocyeHcbTT/ejXbsOtGlzJ87OLlbJXtpUyAbzfxYvXoyfnx+urq62jiIiIiIiIjbi\n4VGwGdy3bx/h4XNZujSaJk2aFFh2+PB+Ro4cWWAbD4+WrFy53Pz6oYceomPHttft19askadCN5h7\n9+4lPz+fVatWkZCQwIkTJ5g/fz5Nmza96TZxc/qSlJRuxZRSlnh4uKg+xCLViFii+pDCqEbEEtXH\nP/fnzy0rKwujMZAZM2bj6lrrus/05MmT1KhRp8C40fgyPXv2pmvX7mzZsomaNWtRubJrqfp9FGd9\nWGpUK3SDuWbNGvPPgYGBPP744xabSxERERERKd/27NnFhQtphIRMLjAeHr4YBwcHsrKycHNzL7Bs\n4MBneeONGbz11gLq1KnD5MnTrBm5VKnQDaaIiIiIiMif+fj4mifwuZG9e49cN9amzZ2sXLmuJGOV\nGRWywaxfvz6xsbEFxmbOnGmjNCIiIiIiUlL27t3NkiWLyMnJxtW1OuPHB7Flyyb27v3UvE5WVha3\n3FKDqKiV5rErV64QEPAUPXv2ZsiQF2wRvUyqkA2miIiIiIiUf0lJ5wkNDSYiIpLGjT2JjX2PWbNm\nEBERxYgRL5nXmz17Jo0aNSqwbVTUYqtmLS/K9XMwc3Jy8PPzw2g0cujQIe655x7i4+PNy3fs2EH/\n/v155plnGDNmDFevXrVhWhERERERKU4ODg4EB083P2akTZs7+fHHMwXWOXPmNMePf85jjz1pHjt9\n+hRHjx7i4Yd7WjVveVCuG8ykpCSys7MZOXIk0dHRtG/fvsDy5cuXs2TJElauXImTkxNbt261UVIR\nERERESluNWq40bnzvebXBw58RqtWXgXWiYp6l4EDB5mfa2kymZgzJ4yXX56AwWCwat7yoFw3mGFh\nYSQkJBAREUF4eDguLgWn0122bBkuLi7k5uaSlJRE7dq1bZRURERERERK0pEjh1i3bjWjR481j509\n+wvffPNVgUl9Nm7cQKNGnrRu3dYWMcu8cn0PptFoJDExkbCwsJuuExsby4IFC/D29qZTp06F7rPP\nuI3FGVFERERERIpJVKD3Dcc//XQX8+bN4o033jRfLguwY8dWunTpaj57mZqawtq1MSxaFG2VvOVR\nuW4wi+KJJ57g0UcfxWg0EhcXR58+fWwdSURERERE/gEPD5frxvbt20d4+FyWLo2mSZMmBZYdPryf\nkSNHmrfbvz+eixcvMGhQfwAyMzP//38vERISUsLpS96NPp/iVmEbzKtXr3Lw4EG6dOmCg4MD3bt3\n59ChQ4U2mHFz+pKUlG6llFLWeHi4qD7EItWIWKL6kMKoRsQS1QfXHX9WVhZGYyAzZszG1bXWdctP\nnjxJjRp1zOP33NONzZu7mZdHRi4CYMiQF8r8Z1uc9WGpUa2wDabBYODVV19l3bp11K5dmxMnTtC4\ncWNbxxIRERERkWKyZ88uLlxIIyRkcoHx8PDFODg4kJWVhZubu43SlU8VosHctWsXkZGRnDlzhq+/\n/poVK1YQFRVFSEgII0eOpHLlytSsWZOXXnqp8J2JiIiIiEiZ4OPjW2ACn7/au/eIxe2HDHmhuCOV\ne3Ymk8lk6xBlTVk/PS4lR5emSGFUI2KJ6kMKoxoRS8p6fezdu5slSxaRk5ONq2t1xo8PwtPzdr74\n4jizZ8/g6tWr1KlTlylTXqNmTQ8A3n9/PTExywHo2PFuxo41mifskYKsdYlsuX5MiYiIiIiIlH5J\nSecJDQ1m6tRQVq1aj4+PL7NmzeDy5QymTAnEaHyVdes20qlTZ7Zt+wSAL744ztq1q1i8eBmrV8eS\nmZnJiRPHbXocUkEukf2rnJwc/P39cXZ2xt7enuzsbPLz8wkKCsLLy6vwHYiIiIiISLFxcHAgOHi6\n+REibdrcyeLFb7Fnz26aN2+Bl1drAJ55ZrB5m82bP+TRR5+gRo0aAAQHT7d6brlehWwwk5KSyM7O\npkWLFjRs2JABAwbw+eef8+abbxIZGWnreCIiIiIiFUqNGm507nyv+fWBA5/RqpUXp0+fonr1WwgK\neoUffzxD8+bNefllI7fccgunT5+iVq3ajBgxlLS0VLp27c7QocMxGAw2PBKpkJfIhoWFkZCQQFRU\nFBcuXADg0qVL5m8/RERERETENo4cOcS6dasZPXosGRnpHDp0gJEjX2LlynVUqlSZBQvmAJCRkc6J\nE18we/Z8IiKi2LdvD5s3x9k4vVTIM5hGo5HExETWrFnDk08+yQcffEBGRgarV68udNs+4zZaIaGI\niIiISPkWFeh93dinn+5i3rxZvPHGmzRu7ImTkzN33dWR+vVvA8DP72nGjRsNgJOTMz4+D+Po6ISj\nI/Ts2ZtDhw7Qp89jVj0OKahCNpj/s2TJEnr27MmLL75IfHw8r7/+OuHh4baOJSIiIiJS7v11JtJ9\n+/YRHj6XpUujadKkCQC3396Ifft+Na+bkuJCpUoOeHi40LDhbUCueZmrqyOOjlUsznBa0Vnjs6nQ\nDebnn3/Of//7XwDuu+8+pk2bVug2cXP6lunpn6VklfXpwaXkqUbEEtWHFEY1IpaUtfr4c9asrCyM\nxkBmzJiNq2st87J27e5h3rx5HDhwjCZNbmfp0pW0b38XSUnp3H9/N6KiFtO1qy+VKjkQG/sBjz32\nRJn6DKzJWo8pqdANZsOGDfniiy/w8vLixIkTNGzY0NaRREREREQqnD17dnHhQhohIZMLjIeHL2bi\nxKlMnPgKdnZ2NG7chAkTJgHQvfvD/PjjGQYN6k/lylV44IEH6dmzjy3iy5/YmUwmk61DWNvZs2cZ\nM2YM77zzDpMmTSIrKwuASZMm0aJFi0K317cicjNl7ZtDsT7ViFii+pDCqEbEEtWHWKIzmCWofv36\nxMbGAvDuu+/aOI2IiIiIlGd79+5myZJF5ORk4+panfHjg/D0vJ3IyEXs2LGV/HwTzZo1Z/z4ibi4\nuJCamsKsWWH8+OMZ7Oxg7NgJdOzY2daHIVIkFfIxJSIiIiIi1pCUdJ7Q0GCmTg1l1ar1+Pj4MmvW\nDLZt28LhwweJjl5FTMx68vPzWLEiCoB582ZTr1591qyJJTT0DUJCppCZedmmxyFSVBWywczJycHP\nzw+j0UhkZCR9+/alX79+nDhxwtbRRERERKQccXBwIDh4Oo0bewLQps2d/PjjGRo18mTcuECqVKmK\nvb097dp1ICHhZwAOHz7II488CkCTJrfTvHkLjhw5bLNjEPk7KuQlsklJSWRnZzN06FCMRiMbNmzg\nu+++Y8eOHbRp08bW8URERESknKhRw43One81vz5w4DNatfKiadNm5rGMjAzi43fg69sLADs7O/Lz\n883Lq1Vz5OzZX6wXWuRfqJBnMMPCwkhISKB379707NkTBwcH7rjjDsaMGWPraCIiIiJSTh05coh1\n61YzevRY81hw8CT69u1BvXr18fXtDUDHjp1Yty6GvLw8Tp8+xeefHyY7+6qtYov8LRV6FtnWrVtj\nMBj4+eefyc3NJSgoqNBZZPuM22illCIiIiJSFkUFel839umnu5g3bxYzZsyiRYtWBZZdvXqViIgF\npKamEhISRlpaKrNnh/HDDz/QrFnz/z8Z4kW/fv0tvq9mkRVLNIusFZhMJvLy8liyZAlHjx5l0qRJ\nbNiwwdaxRERERKQM++sf3/v27SM8fC5Ll0bTpEkTAPbv30/NmjVp2rQp4MKgQQMZOHAgHh4ueHi4\nsHjxO+btBw0aRPv2bSz+UX+z9xb5M2vUR4VuMGvWrImnpyd2dnbcddddJCYmFrpN3Jy++mZIbkrf\nHEphVCNiiepDCqMaKRv+/DvKysrCaAxkxozZuLrWMi/bs2c/X375BTNnzqVy5cp89NEWPD1vJykp\nnblzX6devfr07z+Qzz8/wq+/nqNBg2aF/u5VH2KJzmBaQZcuXVizZg29e/fmhx9+oG7duraOJCIi\nIiLlyJ49u7hwIY2QkMkFxufODSclJZlnnx2AyQS1a9fGaLy2Tr9+/QkJeZUNG9bh4uJKaOgbGAwG\nW8QX+dsqdIN555138umnn9K//7Xr2adMmWLjRCIiIiJSnvj4+OLj43vDZa+8EnTD8YYNGxEZuaIk\nY4mUmAo5yc+/pUsP5GZ0aYoURjUilqg+pDCqEbFE9SGW6BJZEREREREr2Lt3N0uWLCInJxtX1+qM\nHx+Ep+ftREYuYseOreTnm2jWrDnjx0/ExcWFnJwc5syZyfHjxzAY7HnssSfx8xtg68MQKRUq5HMw\nRUREREQAkpLOExoazNSpoaxatR4fH19mzZrBtm1bOHz4INHRq4iJWU9+fh4rVkQBsGbNKi5dukRM\nzHoWL17KunWrOXnyG5seh0hpoQYT8Pb25vLly7aOISIiIiJW5uDgQHDwdBo39gSgTZs7+fHHMzRq\n5Mm4cYFUqVIVe3t72rXrQELCzwDEx2/n0Ucfx97eHicnZ7p182bnzu22PAyRUkMNpoiIiIhUWDVq\nuNG5873m1wcOfEarVl40bdqMpk2bAZCRkUF8/A7uv78LAL/8kkC9evXN29x6a30SEn6yam6R0qpM\n34Pp6+vLpk2bMJlMdOzYkeXLl9O6dWuGDBlCu3bt2Lt3L/b29jz00EP85z//ISMjg4kTJ3Lx4kXy\n8vKYPHkyLVq0MO/v3LlzjBw5knfeeYdatWrd8D37jNtorcMTERERkWIWFeh902VHjhxi3brVzJ8f\nYR4LDp7Enj27eOihHvj69gbg6tUsKleubF6nSpUqXLmSVXKhRcqQMt1g3nHHHZw6dYrs7Gy8vLw4\nfvw4d9xxB8ePHyc7O5vVq1cD8PTTT+Pr68v777/PAw88gJ+fH6dPn2b69OlER0cDcPXqVSZMmEBo\naOhNm0sRERERKdtuNvvl9u3bmTnzNRYvXkTr1q3N42+9tYCrV68ya9YsXn99GvPmzaNatWo4O1cy\n76tSJbjlFheLM2taS2nIIKWXNeqjTDeYnTp14vjx42RlZREQEMDWrVvp2LEj1atX5+eff2bQoEEA\nXL58mcTERI4dO0ZqaioffvghAFeuXDHvKzg4GG9vb1q1amXxPePm9NX0z3JTmh5cCqMaEUtUH1IY\n1ci/d6PP7/Dhg8yc+Rpz5iykTp1GJCWlc/ToYWrUcMPTswkADz30CCNHDiUpKZ0GDRpy4sRJnJzc\nAfj221PcemsDm/9uVB9iibUeU1Km78Hs1KkTX3zxBV988QX33nsvGRkZHD16lDFjxtC1a1dWrFjB\nihUriIuLo2PHjlSqVIlXX33VPL5+/XrzvmrXrs3GjRvJzs624RGJiIiIiDVlZWURFhbC9OmzaNSo\nsXn8xInjhIe/af7b8LPPPqVJk6YAdOvmw4YNa8nLyyM5OZkdO7bi7e1jk/wipU2ZbjAbN27MuXPn\nSE9Px9nZmZo1a7Jjxw46derEwYMHuXLlCiaTidDQULKysmjbti3bt1+b4ev06dPmy2MB/vvf/+Lt\n7c1bb71lq8MRERERESvbs2cXFy6kERIyGX//fuZ/PXv25tZb6/HsswMYMOAJjh49jNE4GYCnnnqa\nmjU98Pfvx5gxLzB48FDzhEAiFV2ZvkQWwN3dHScnJwDatm3L4cOHufXWWxk0aBADBw7EYDDw0EMP\nUbVqVZ555hmCgoLw9/cnPz+fSZMmFdjX8OHD6d+/Pz4+Pnh5ednicERERETEinx8fPHx8b3hslde\nCbrhuIODA4GBr5ZkLJEyy85kMplsHaKs0bXtcjO690EKoxoRS1QfUhjVyB/27t3NkiWLyMnJxtW1\nOuPHB+HpeTtLly5h69aPyc830axZcyZMmISzszMZGRnMmjWdU6e+Jz/fRPfuPjz//Iu2PoxipfoQ\nS3QPpoiIiIjIDSQlnSc0NJipU0NZtWo9Pj6+zJo1g/j47ezcuY0lS5YTE7MeOztYtWoZAG+/PR93\n95rExGzg3XeXsXXrFvbv32vT4xApj8p1g5mTk4Ofnx9Go5FDhw5xzz33EB8fb15+8uRJ/P39eeaZ\nZxgxYkSBWWVFREREpHRycHAgOHg6jRt7AtCmzZ38+OMZGjZszMSJwTg6OmFvb4+XV1t++ukMAF27\ndmfgwGcBcHFxoXnz5iQk/GyzYxApr8p1g5mUlER2djYjR44kOjqa9u3bF1geGhpKYGAgK1eupGHD\nhsTGxtooqYiIiIgUVY0abnTufK/59YEDn9GqlReenk1o0aLln8b30arVtXk1OnXqjLt7TQASEn7m\n22+/oWPHztYNLlIBlPlJfiwJCwsjISGBiIgIwsPDr5vU55133sHZ2RkANzc3Lly4UOg++4zbWCJZ\nRUREROTGogK9b7rsyJFDrFu3mvnzIwqML1sWSVpaCk8+OcA8lpeXh79/P1JSknnxxTHmZ1yKSPEp\n1w2m0WgkMTGRsLCwGy7/X3OZmZnJxo0bmT9/vjXjiYiIiEgR3GxCke3btzNz5mssXryI1q1bm8fn\nzJnDvn2fsWzZUtzc3Apss3PnDlJTUxkxYgTVqzvy9NNPl2h2a7M0+YqINeqjXDeYRZGZmcmLL77I\nf/7zH5o0KfxbrLg5fTU7l9yUZm+TwqhGxBLVhxSmotbIjY758OGDzJz5GnPmLKROnUbmdSIjF/H5\n50d48823ycurZB7fsmUT993XBRcXF6ASDz7YnR074nnood7WPJQSVVHrQ4pGs8haQW5uLiNGjKB3\n79488cQTto4jIiIiIkWQlZVFWFgI06fPolGjxubxkye/ZcuWzbz++ps4OjoV2Gbz5jjWrYsBrv0N\neOjQAZo0aWrV3CIVQYU+g/nuu+/SqVMn/Pz8bB1FRERERIpoz55dXLiQRkjI5ALjXl5tyMhIZ9iw\nZ81jderUZe7ccCZOnMrs2WH4+/cjLy+P1q3bmmeVFZHiY2cymUy2DlFSzp49y5gxYxgzZgyRkZGc\nOXMGNzc3PDw8iIqK4v7776d+/fpUqlQJgLvvvptRo0YVul9deiA3o0tTpDCqEbFE9SGFUY2IJaoP\nscRal8iW6zOY9evXNz96pGvXrtct37tXD9cVERGR8mvv3t0sWbKInJxsXF2rM358EJ6et7NuXQwb\nN8aSn59P27btGDcukEqVKpGRkcGsWdM5dep78vNNdO/uw/PPv2jrwxCRMqRC34MpIiIiUl4lJZ0n\nNDSYqVNDWbVqPT4+vsyaNYOvvvqS995bwzvvRBMTs4GMjHTee28NAG+/PR9395rExGzg3XeXsXXr\nFvbv1xfyIlJ05foM5s3k5OTg7+/PN998Q/v27QHIz88nOTmZTz75xMbpRERERP49BwcHgoOn07ix\nJwBt2tzJ4sVvER+/HW9vn/+fTRUeeeRRoqLexd8/gK5du9Okye0AuLi40Lx5cxISfuaee+632XGI\nSNlSIRvMpKQksrOz+frrr81j77//PikpKTZMJSIiIlJ8atRwo3Pne82vDxz4jFatvPjllwTuv7+L\nebxevfokJPwEQKdOnc3jCQk/8+233/Cf/7xgtcwiUvZVyAYzLCyMhIQEgoKCCAsLIzc3l9WrV7N8\n+fJCt+0zbqMVEoqIiIj8fVFeDF3FAAAgAElEQVSB3jccP3LkEOvWrWb+/AjmzZtF5cqVzcsqV65K\nVlaW+XVeXh7+/v1ISUnmxRfH4OlZ+HPCRUT+p0I2mEajkcTERMLCwgDYunUr999/P1WrVrVxMhER\nEZF/7kYzO27fvp2ZM19j8eJFtG7dGldXZ6pUsTeve+nSeRwdHQtsu3PnDlJTUxkxYgTVqzvy9NNP\nW+0Y5N+xNLuniDXqo0I2mH+1YcMGpk2bVqR14+b01fTPclOaHlwKoxoRS1QfUpjCauSvyw4fPsjM\nma8xZ85C6tRpRFJSOnXr1ufbb0+Z1z1x4iQNGzYmKSmdLVs2cd99Xf7//sxKPPhgd3bsiOehh3qX\n5GFJMdF/Q8QSaz2mpMLPIpuZmclvv/1G/fr1bR1FREREpNhkZWURFhbC9OmzaNSosXnc29uH7ds/\nITU1hdzcXN57bw0PPfQwAJs3x7FuXQwAubm5HDp0gCZNmtokv4iUTRX+DObJkyfx9PS0dQwRERGR\nYrVnzy4uXEgjJGRygfHw8MU8/XQAI0Y8D5i46667eeyxJwGYOHEqs2eH4e/fj7y8PFq3bsvAgc/a\nIL2IlFUVvsFMSkrCzc3N1jFEREREipWPjy8+Pr43XObnNwA/vwHXjdepU5fZsxeUdDQRKccq5CWy\n9evXJzY2FoAePXoU+f5LEREp+3Jzc1m48E3uv/8uzp//3TweGbkIf/9+DBjwBFOmBJGeXvA+lfz8\nfJ5//lmmTw+2cmIREZGyo0I2mCIiUnEFBo7F0dGxwNi2bVs4fPgg0dGriIlZT35+HitWRBVY5/33\n15OWlmrNqCIiImVOuW4wc3Jy8PPzw2g0cujQIe655x7i4+PNy0+ePMmAAQMYMGAAU6dOtWFSERGx\nlsGDhzJkSMEHxzdq5Mm4cYFUqVIVe3t72rXrQELCz+blycnJbNiwlqee8rd2XBERkTKlXDeYSUlJ\nZGdnM3LkSKKjo2nfvn2B5dOnT2fixImsWbOGjIwMdu/ebaOkIiJiLV5eba4ba9q0GU2bNgMgIyOD\n+Pgd3H9/F/PyBQvm8Nxzz+Ps7Gy1nCIiImVRuW4ww8LCSEhIICIigvDw8P9/ptM12dnZJCYm0qbN\ntT80unXrxv79+20VVURESoHg4En07duDevXq4+t77bl/Bw7sIz390k0nSxEREZE/lOtZZI1GI4mJ\niYSFhV23LC0tDVdXV/Nrd3d3kpKSCt1nn3EbizWjiIiUrKhA7yKvGxw8natXrxIRsYCQkFeZNGkq\nb701j7CwOSWYUEREpPwo1w3m32EymWwdQURESoCHh8tNl7m7O+Ph4cL+/fupWbMmTZs2BVwYNGgg\nAwcO5LfffiY5OYlRo54Hrj24Picnh8zMdBYvXmz1vCKgGhHLVB9iiTXqo8I2mG5ubly4cMH8+vff\nf6dWrVqFbhc3py9JSemFricVk4eHi+pDLFKNWJ+lzzslJQODIZ09e/bz5ZdfMHPmXCpXrsxHH23B\n0/N2GjZszscf/zE53ObNcRw7dpRJk4JL5Peo+pDCqEbEEtWHWFKc9WGpUa2wDWalSpXw9PTkyJEj\n3HXXXWzdupWAgABbxxIRkRKUmprCqFHDzK9Hj34Bg8HA/PkRpKQk8+yzAzCZoHbt2hiNk22YVERE\npGyyM5Xja0PPnj3LmDFjGDNmDJGRkZw5cwY3Nzc8PDyIiori9OnTTJkyhfz8fNq2bUtQUFCR9qtv\nhuRm9M2hFEY1IpaoPqQwqhGxRPUhlljrDGa5bjBLiv6PKzej/7BLYVQjJSM3N5eIiIWsXbuK2NhN\n1KpVG4DIyEXs2LGV/HwTzZo1Z/z4ibi4uJCTk8OcOTM5fvwYBoM9jz32JH5+A2x8FKoPKZxqRCxR\nfYgl1mowy/VjSkREpGIIDByLo6NjgbFt27Zw+PBBoqNXEROznvz8PFasiAJgzZpVXLp0iZiY9Sxe\nvJR161Zz8uQ3toguIiJSrlTIezBzcnLw9/cnOTmZ/Px8GjRoAMC9997Liy++aON0IiLydw0ePBQv\nrzZER79rHmvUyJNx4wKpUqUqAO3adeDw4YMAxMdvZ9iwEdjb2+Pk5Ey3bt7s3LmdFi1a2SS/iIhI\neVEhG8ykpCSys7MZPXo0p06dwmg02jqSiIj8C15eba4ba9q0mfnnjIwM4uN34OvbC4BffkmgXr36\n5uW33lqfAwc+K/mgIiIi5VyFvEQ2LCyMhISEIk/qIyIiZVdw8CT69u1BvXr18fXtDcDVq1lUrlzZ\nvE6VKlW4ciXLVhFFRETKjQp5BtNoNJKYmMgzzzzDqlWrGDJkCLm5uRiNRlq1snx5VJ9xG62UUkRE\nbiYq0LvI6wYHT+fq1atERCwgJORVQkLCqFq1GtnZ2eZ1rl7NwtGxWklEFRERqVAqZIP5P23btsXN\nzY2uXbty7NgxjEYjcXFxto4lIiKFsDR7nbu7Mx4eLuzfv5+aNWvStGlTwIVBgwYycOBAPDxcaNLE\nk/T0ZDw87gAgJeV3WrVqYXG/1lIaMkjpphoRS1QfYok16qNCN5hNmjShSZMmALRr147U1FTy8vIw\nGAw33SZuTl9N/yw3penBpTCqkeJh6TNMScnAYEhnz579fPnlF8ycOZfKlSvz0Udb8PS8naSkdB54\nwJuoqKU0b96WtLQ04uI+Ytas+Tb/3ag+pDCqEbFE9SGWWOsxJRW6wXz33XepW7cuvXv35vvvv8fN\nzc1icykiIqVPamoKo0YNM78ePfoFDAYD8+dHkJKSzLPPDsBkgtq1a2M0TgbgqaeeJiHhJ/z9+2Ew\nGBg8eGiBSYFERETkn6nQDWafPn0YP348a9asITc3l+nTp9s6koiI/E1ubu7ExGy44bJXXrnxZG4O\nDg4EBr5akrFEREQqpArZYNavX5/Y2FgAVqxYYeM0IiJSmNzcXCIiFrJ27SpiYzdRq1ZtAJYuXcLW\nrR+Tn2+iWbPmTJgwCWdnZ0aNGkZqaop5+4sXL+Dr25vRo1+21SGIiIhUCBWywRQRkbIlMHAsLVve\nUWAsPn47O3duY8mS5VStWo1p0yaxatUyXnhhJOHhi83r5eXlMXRoAL6+j1g7toiISIVTrp+DmZOT\ng5+fH0ajkUOHDnHPPfcQHx8PXPuDIyAgwPyvR48evPPOOzZOLCIiNzJ48FCGDHmhwFjDho2ZODEY\nR0cn7O3t8fJqy08/nblu2w8/fJ9mzVroHksRERErKNdnMJOSksjOzmbkyJGEhYXRvn178zKDwVDg\n8tihQ4fSt29fW8QUEZFCeHm1uW7M07NJgdcHDuzjzjvbFRjLyclh5cqlLFigLxBFRESsoVyfwQwL\nCyMhIYGIiAjCw8NxcbnxdLr79u2jUaNG1K1b18oJRUSkOCxbFklaWgpPPjmgwPjWrR/TsuUd1KtX\n30bJREREKpZyfQbTaDSSmJhIWFiYxfWWL1/OxIkTi7TPPuM2Fkc0ERG5iahA77+1/jvvhHPo0AHm\nzn2LatWqFVi2bdsWHn/8yeKMJyIiIhaU6wazKH7//XcyMzNp0KCBraOIiAiWH94M4O7ubF5n4cKF\nnDz5FatXr8LZ2bnAehkZGXzzzVcsWhRx3bLSrLDjF1GNiCWqD7HEGvVR4RvM3bt307lz5yKvHzen\nL0lJ6SWYSMoyDw8X1YdYpBopXGGfT0pKBgZDOidPfsuGDe8THb2KK1dMXLlScLtvvvmK6tVvueGy\n0kr1IYVRjYglqg+xpDjrw1KjWuEbzC+//JJu3brZOoaIiNxEamoKo0YNM78ePfoFDAYDbdu2IyMj\nnWHDnjUvq1OnLnPnhgOQlHQeNzd3q+cVERGpyCpEg7lr1y4iIyM5c+YMX3/9NStWrCAqKgq4NtOs\nu7v+ABERKa3c3NyJidlww2VG4+Sbbvfgg948+ODfu59TRERE/h07k8lksnWIskaXHsjN6NIUKUxF\nrZHc3FwiIhaydu0qYmM3UatWbQCWLl3C1q0fk59volmz5kyYMMl8v+TJk98yZUog7dvfRWDgq7aM\nbzUVtT6k6FQjYonqQyyx1iWy5foxJSIiUjoEBo7F0dGxwFh8/HZ27tzGkiXLiYlZj50drFq1DIBj\nx44SFhZCy5Z32CKuiIiI/ENlusFMSkpiypQpf3u7w4cPk5KSUgKJRETkRgYPHsqQIS8UGGvYsDET\nJwbj6OiEvb09Xl5t+emnMwDccksN3n77XRo0aGiLuCIiIvIPlekG08PDg5CQkL+93YYNG9RgiohY\nkZdXm+vGPD2b0KJFS/PrAwf20aqVFwCNG3vi5FR2Hi0iIiIi15T6SX5iY2M5fPgwaWlpnDp1ipdf\nfpmPPvqIH374gdmzZzNt2jRiY2Px8fGhf//+xMfHk52dTXR0NFu3buXUqVMYjUYuX75Mnz59eO21\n19i+fTunTp1i4cKFfPXVV0RFReHg4ICXlxeBgYG2PmQRkQpn2bJI0tJSePLJAbaOIiIiIv9CqW8w\nAX766SdiYmJ47733WLRoER988AGxsbEsWrTIvE5eXh6enp4MHTqUl19+mQMHDtxwX/fddx8tW7bk\n1VdfpXr16kRERLB27VoqV67MSy+9xNGjR+nQocNNs/QZt7HYj09EpDyJCvx7M7e+8044hw4dYO7c\nt6hWrVoJpRIRERFrKBMNppeXF3Z2dnh4eNC8eXMMBgM1a9YkPb3gLEh33XUXAHXq1Llu2Y2cPn2a\nX3/9lSFDhgCQnp7Or7/+arHBFBERyyzNLAfg7u5sXmfhwoWcPPkVq1evMs8e+2dOTlVIT69U6D7L\nk4p0rPLPqEbEEtWHWGKN+igTDaaDg8MNf65Xrx7ff/+9+bXBYDD/bDKZsLOzM7/Ozc29br+VKlXC\ny8uLyMjIImeJm9NX0z/LTWl6cClMRaiRwo4vJSUDgyGdkye/ZcOG94mOXsWVKyauXLl+u8uXr5KV\nlVPuP7P/qQj1If+OakQsUX2IJdZ6TEmZaDD/KWdnZ86fPw/A0aNHzeN2dnbk5eXRuHFjfvjhB1JS\nUnB3d2fBggX079+f2rVr2yqyiEi5k5qawqhRw8yvR49+AYPBQNu27cjISGfYsGfNy+rUqcvcueG8\n+24E8fHbuXjxAnl5eZw4cZwuXboxfPgoWxyCiIiIFFG5bjDvueceIiIiCAgI4MEHHzSf0ezUqRNj\nxozh7bffZuLEiTz//PNUrlyZVq1aUatWLRunFhEpX9zc3ImJ2XDDZUbj5BuOP//8izz//IslGUtE\nRERKgJ3JZDLZOkRZo0sP5GZ0aYoUpqzXSG5uLhERC1m7dhWxsZuoVevaFR9paalMmzaZc+d+Ze3a\nDwps8/7764mJWQ5Ax453M3asscDtDvKHsl4fUvJUI2KJ6kMssdYlsv/oOZj5+fn/OIyIiJRdgYFj\ncXR0LDB26dJFRo0aRpMmt1+3/hdfHGft2lUsXryM1atjyczM5MSJ49aKKyIiIlZWpK+QY2NjuXLl\nCv379ycgIIDffvuN559/Hn9//5LO97fl5OTg7+9P9erVAbh69So5OTkEBQXRtm3bAutevHiRsWPH\n4uTkxIIFC2wRV0SkTBk8eCheXm2Ijn73T6N2hIXNJjk5mb17Py2w/ubNH/Loo09Qo0YNAIKDp1sx\nrYiIiFhbkc5grl27Fj8/P7Zv307Tpk3ZsWMHH3/8cUln+0eSkpLIzs7mvvvuo2/fvqxYsYKxY8cy\nf/7869adOnWqHkkiIvI3eHm1uW7M1dWVBg0a3XD906dPceVKJiNGDOXpp59g0aK3yMvLK+GUIiIi\nYitFajCrVKlC5cqV2b17Nz179sTe/h9dWWsVYWFhJCQk8P3339OnTx8Azp07d8OZYUNDQ9VgioiU\noIyMdE6c+ILZs+cTERHFvn172Lw5ztaxREREpIQUeZaFadOm8fnnnxMaGsqxY8fIzs4uyVz/mNFo\nJDExkbCwMJKSkhg+fDiXL19m2bJl1617o4d6F6bPuI3FEVNEpNSLCvT+1/twcnLGx+dhHB2dcHSE\nnj17c+jQAfr0eawYEoqIiEhpU6QGc/bs2WzevJlBgwZhMBhITExk2rRpJZ3tX/Pw8GDDhg3s3r2b\noKAgoqKibB1JRKTMsDRDHIC7u3OBdW65xRGDwb7AWMOGtwG55jFXV0ccHasUuu+KTJ+NFEY1Ipao\nPsQSa9RHkRrMWrVq0bBhQz777DMaN25MmzZtuO2220o6279y6NAhmjdvTvXq1XnwwQeZMGFCsew3\nbk5fTf8sN6XpwaUwZalGCsuZkpKBwfDHOhcuZJKXl19gu/vv70ZU1GK6dvWlUiUHYmM/4LHHnigz\nn4G1laX6ENtQjYglqg+xxFqPKSlSgzlr1ix+/vlnfv31V5555hni4uJITU3l1VdfLZaAJWHr1q18\n8803DB48mO+++466devaOpKISJmWmprCqFHDzK9Hj34Bg8FAQMBzrFgRTVZWFqmpKfj798PDoxbz\n50fQvfvD/PjjGQYN6k/lylV44IEH6dmzjw2PQkREREpSkRrMw4cPs27dOgICAgAYOXIkAwYMKNFg\n/9aIESMIDAxk27ZtZGdnExwcDMDixYvp2LEjbdq0YfDgwVy6dInff/+dgIAARowYwT333GPb4CIi\npZSbmzsxMRtuuKxnz9433W7o0OEMHTq8pGKJiIhIKVKkBrNKlSoA2NnZAZCXl1dqp5mvX78+sbGx\nwLVm8q+GDfvj2/cVK1ZYLZeISFmVm5tLRMRC1q5dRWzsJmrVujYrd1paKtOmTebcuV9Zu/YD8/rT\npwdz6NB+nJz+mEht8uRptGrlZfXsIiIiYl1FajDbt29PUFAQ58+fJzo6mq1bt9KpU6eSziYiIqVA\nYOBYWra8o8DYpUsXGTVqGJ0738u5c79et80LL4yiVy9dCisiIlLRFKnBfPnll9myZQtVq1blt99+\n47nnnuPhhx8u6Wz/Wk5ODv7+/nh6etKvXz9eeuklZsyYQbdu3QAICAggMzMTR0dH4NojTry89A27\niMifDR48FC+vNkRHv/unUTvCwmaTnJzM3r2f2iybiIiIlC5FajAXL17MsGHD8PX1Lek8xSopKYns\n7GxGjhxJWFgY7du3v26dsLAwmjVrZoN0IiJlg5dXm+vGXF1dcXV1JTk5+YbbbNu2hdjY98jKusLD\nD/ckIOA5820WIiIiUn7ZF2Wl77//np9//rmksxS7sLAwEhISiIiIIDw8HBcXPRdIRKSk3Xlne7p3\n92HRomjmzFnIli2b2LJlk61jiYiIiBUU6Qzmd999R69evbjllluoVKkSJpMJOzs7du3aVcLx/h2j\n0UhiYiJhYWE3XWfBggWkpaXRpEkTJk6cSNWqVS3us8+4jcUdU0SkVIkK9P5X2z/yyKPmn2vXrsOj\njz7Ovn17Lc40KyIiIuVDkRrMd955p6Rz2MSgQYNo3rw5DRo0YOrUqaxatYohQ4bYOpaIiE1Zeniy\nu7tzgeW33OKIwWBfYOz777+nUaNGVK5cGYCqVR1wcqpqcb/yB31OUhjViFii+hBLrFEfRWow9+/f\nf8PxJ598sljDWJuPj4/5Z29vbzZv3lzoNnFz+pKUlF6SsaQM8/BwUX2IRWWhRizlS0nJwGD4Y/mF\nC5nk5eUX2CYoaBJdunTF338Qly5dYsOGWAIC/lPqj7s0KAv1IbalGhFLVB9iSXHWh6VGtUgN5tGj\nR80/Z2dnc+LECdq3b1+mG0yTycRzzz3HggULcHV15eDBgzRt2tTWsURESpXU1BRGjfrj+cGjR7+A\nwWAgIOA5VqyIJisri9TUFPz9++HhUYv58yOYPHkas2bN4MMPP8BgsKdHj174+PSw4VGIiIiItRSp\nwfzrPYxXrlwhKCioRAKVhF27dhEZGcmZM2f4+uuvWbFiBVFRUTz11FMMHjyYatWqUbt2bUaPHm3r\nqCIipYqbmzsxMRtuuOxm91TWr38b8+dHlGQsERERKaWK1GD+VbVq1UhISCjuLMWufv36xMbGAtC1\na9frlvfq1YtevXpZOZWISOmSm5tLRMRC1q5dRWzsJmrVqg1AWloq06ZN5ty5X1m79gPz+pcvZzBn\nzuucPPkN+fkmHnroYYYOHW6r+CIiIlKKFKnB9Pf3L/D8st9//13PjhQRKScCA8fSsuUdBcYuXbrI\nqFHD6Nz5Xs6d+7XAskWL3sLBwYGVK68953LwYH/atr2Tjh07WzO2iIiIlEJFajD/+9//mn+2s7PD\n2dmZli1bllio4nT58mX69OnDzp07bR1FRKRUGjx4KF5ebYiOfvdPo3aEhc0mOTmZvXs/LbD+gw96\nU7/+bdjb2+Po6MTttzfjxx/PqMEUERER7IuyUmxsLJ06daJTp0507NiRli1b6nEeIiLlhJdXm+vG\nXF1dadCg0Q3X79ChI7Vr1wGuXS771VcnaNXKqyQjioiISBlh8Qzmhx9+yJo1azh16hQDBw40j+fk\n5JCcnFzi4f6pjIwMRo8ezdWrV+nQoQNw7VhWrlyJvb09TZs25bXXXsPPz485c+bQoEEDfvvtN0aM\nGGG+Z1NERCzLyclh2rTJ3Hdflxs2qSIiIlLxWGwwH330Ue6++25eeeWVAjOs2tvbc/vtt5d4uH9q\n48aNNG3alIkTJ7J582Y2bdrElStXWLJkCa6urgwcOJDvvvuOvn37snnzZoYPH86OHTt45JFHCt13\nn3EbrXAEIiIlJyrQ+1/vIzMzk0mTxuPhUYvx48vOrOIiIiJSsgq9B7N27dqsWLGiwFhOTg7jxo1j\nwYIFJRbs3/jhhx/o2LEjAJ06dQKgevXqjBgxwrz8woULPPLIIwwZMoThw4eza9cuQkNDbZZZRMRa\nLD0c2d3ducDyW25xxGCwLzCWm5vLhAljaNWqBRMnTizRrBWRpd+PCKhGxDLVh1hijfoo0iQ/Gzdu\nJCwsjIsXLwLXzmB27lx6J3MwmUzY21+7vTQ/P5/s7GxCQkLYuHEjHh4evPDCCwDUqFGDOnXqcOLE\nCfLz86ldu3ah+46b05ekpPQSzS9ll4eHi+pDLCoNNWLp/VNSMjAY/lh+4UImeXn5BbZZs2YlDg5V\neP750TY/lvKmNNSHlG6qEbFE9SGWFGd9WGpUi9RgLl++nLi4OMaOHcuiRYuIi4vDxaX0fjvSuHFj\nvvrqK3r06MHBgwe5fPkyzs7OeHh4cO7cOb766itycnIA6Nu3LyEhIfTv39/GqUVErC81NYVRo4aZ\nX48e/QIGg4GAgOdYsSKarKwsUlNT8Pfvh4dHLebPj2DjxliysrLw9+9n3q5bt4d4/vkXbXEIIiIi\nUorYmUwmU2ErDR48mKVLl+Lv709MTAwAQ4YMITIyssQD/hOXLl1i5MiR2Nvb06FDBz744AM6derE\nqVOnaNGiBbfffjvr16/ngw8+wGQycf/997N9+3ZcXV2LtH99MyQ3o28OpTCqEbFE9SGFUY2IJaoP\nsaRUncE0GAzEx8dTt25dFi5cyO23305iYmKxhCsJrq6uBe4bHTNmzHXrPPfccwAcOHCAbt26Fbm5\nFKnokpOTCA2dytmzv+Dk5MTLL0/Ay6sNEREL2b9/L1evXqVfv6fw9x9k66giIiIiYmVFajDfeOMN\nzp8/z8SJE5k3bx7ffPMNr776aklnK3ELFixg7969LFy40NZRRMqM0NCpdO58LwMGPMPnnx9hw4Z1\n/PjjGb755iuio2PIycnhhRcGc8cdrWnbtp2t44qIiIiIFRXpElmAtLQ0zp49S+vWrcnLy8NgMJR0\ntr/l4MGDrFq1yioz2+rSA7mZ8n5pyu+//8bgwf7ExW3FweGP76cmThzPXXd14okn/ABYtWoZycnJ\nvPTSOFtFLbXKe43Iv6P6kMKoRsQS1YdYUqoukf3oo49YsGABlStX5qOPPiI0NJRWrVrh5+dXLAFF\npGw4ffoUdeveSkTEQvbt24O7e03GjBmLnR3k5+eZ16tWzZHExF9smFREREREbMG+KCtFR0ezceNG\natSoAYDRaGTdunUlGuyfuHz5Mq+88gp9+vQhPDyc7777joEDBxIQEMDw4cO5cOECBw8eLHBP5t13\n3w1AQEAAISEhhISE2Cq+SKmXkZHOmTOnufPOdqxeHcvDD/dk0qQJtG9/Fx999CHp6elcvHiBTz7Z\nzNWr2baOKyIiIiJWVqQzmC4uLlSrVs38umrVqlSqVKnEQv1TP/zwAx9//DH5+fl0796dQ4cOMWHC\nBNq2bUtkZCTLly83N5Q30rRpU55++mmL79Fn3Mbiji1SakUFehd47eTkjJubOw880BWAPn0e4623\n5tG2bXt+++03hg17Fnf3mnTseDc//XTGBolFRERExJaK1GDWqFGD999/n6tXr/L111+zefNm3Nzc\nSjrb39aqVStzI2wymfjhhx9o27YtcO1MZXh4uMUGs02bNlbJKVJW/PX6+pYtm3DlSibu7k7Y21+7\nAMJgMFC79i0EB08GJgMQHh5O69Z3WLw+vyLT5yKWqD6kMKoRsUT1IZZYoz4sNpgnT56kRYsWTJs2\njXnz5pGRkcHkyZPp0KEDoaGhJR7u7/rzpCN/lZOTg729PXZ2dgXGc3NzzT8X5axs3Jy+unlabqq8\n3Vz/12Nxc7sVd/eaREWtoG/fJ9i5cztOTi7s3XuQ2bPnMnXqdFJTU1i/PpY33wwvV59FcSlvNSLF\nS/UhhVGNiCWqD7GkVEzyM2PGDJYvX46rqytTpkwhICCgwPMlS7umTZty7Ngx2rVrx+HDh/Hy8sLZ\n2Znz588D1xroy5cv2zilSNlhZ2fHa6+9zowZwaxcuYwaNWrw2mszadiwEXv27KZ//8cwGAwMHz6K\n+vVvs3VcEREREbEyiw3mX59g8tezf6Xd5MmTmTZtGnZ2dlSvXp2wsDAcHR1xdHRkwIABtGvXjnr1\n6tk6pkiZ0rixJ+++u/y68RkzZtkgjYiIiPxfe3ceVmWd/3/8edhUzAUUxVxyydSUTAWXJnPJbTTD\nxjTFpZrKTM1MUtDcwtnqHGIAACAASURBVAVyS8WfGgrqCGoujKSY+1ImS06TW06WjqJmiiIiJB6Q\n8/vDq/PVxINNwA2c1+O65hrO577Pfb/uw5s73+feRIoSmw3m7xvKh3xkpiFatWp1z/WVCQkJALke\ncY2IiLD+HBAQ8MD5RArTxYs/06/fS1SvXsM61qhRYyZO/L87Gy9cOI99+3azYcNmIyKKiIiIiNj0\nUDf5+U1xO4IpUtx4eFRh9eqNuU778ceTfPXVvsINJCIiIiLyB9hsMP/973/Tvn176+urV6/Svn17\nLBYLJpOJffv2FXC8gpGVlYWfnx/VqlUD4MqVK5QpU4aQkBA8PDwMTidyv5ycHObMCeGtt95hyZKF\nRscREREREcmVzQZz27ZthZWjUCUnJ2M2m2nevDnJycksWLCAQ4cOsWDBAqZOnWp0PLFjGRkZjBvn\nz9mzZ/D0fJSRI0dTu3YdYmKiqVu3Ho0bexkdUURERETkgWw2mCX1BjjBwcEkJSXxww8/WI/Qent7\nM2nSJGODiV1zdXWlc+eu9O8/iKpVPfnss9UEBvqzYMFi1q1bzaefriAjI93omCIiIiIiD/SHrsEs\nKQICArhw4QJeXl7s37+frl27kpiYyM8//5zne3v6xxRCQrEHEYEd73ldoUJFRo8OsL7u128AK1Ys\n5ZNPZvH6629Rvnx5NZgiIiIiUqTZZYP5m5dffpkffviB/v3707JlS9zd3Y2OJHbk9w+ovX79Omlp\nadSseef5kRaLBYvFQmJiHCdOHGPRovncvn2b69ev06tXN/bu3YuLi4sR0eVPsvVwYhHVh+RFNSK2\nqD7ElsKoD7tuMF1cXPjoo4+AO9e+7d69O8/3bJ7jS3LyjYKOJsWUh0e5h66P38+XmJjIrFkzCAtb\niZubGzEx0VSpUpWVK9fi6OgI3HmUybvvvs2GDZu5fv0WcCu/N0EK2B+pEbE/qg/Ji2pEbFF9iC35\nWR+2GlW7bjD379/Pv//9b0aNGsXnn39O27ZtjY4kdqxly9a89NLLvPPOGzg4mPDwqMK0aTOtzaWI\niIiISFFn1w1mq1atiIqKom/fvlSoUIG5c+caHUnsnJ/fYPz8Bj9werVqj7Jhw+ZCTCQiIiIi8vDs\nssGsUaMG0dHRAISFhRmcRuzZxYs/06/fS1SvXsM61qhRYyZODCI8/FN2795BTo6FJ55owJgx4ylX\nTtdViIiIiEjRZZcNpkhR4uFRhdWrN94ztnPnNr75JoHly6NwdnZh0qRAVq2KYNiw9wxKKSIiIiKS\nNwejA4jI/WrXrou/fyClSpXGwcGBZs1akJR01uhYIiIiIiI26QimiMEyMjIYN86fs2fP4On5KCNH\njqZ+/Ses09PT09m7dzfdunU3MKWIiIiISN5KzBHMPn36kJSUBMAvv/xCr169GD9+PIMGDaJ///7E\nxcUBcPDgQV555RUGDhzIsGHDMJvNJCQk8PbbbzNo0CCOHTtm5GaInXF1daVz566MHOlPZOR6fHxa\nERjoT3Z2NgBTpnyIr29XqlevQbduLxicVkRERETENpPFYrEYHSI/REZGkp6eztChQ4mKiiI1NRWz\n2cz7779PSkoKr776Kps3b+aLL76gSZMm1KxZk7Fjx9KtWzfKli1LYGAg27dvz/PB9T39Ywppi6Sk\nigjs+MBpFouFbt3as2TJcurUqQvArVu3WLx4ASkpKQQFBRdWTCkgekaZ2KL6kLyoRsQW1YfYoudg\n/kE9evTgjTfeYOjQoezbt4/KlStz9OhRvv32W+DOP9LNZjPu7u5MmDCB27dvc+7cOVq3bk3ZsmVp\n0KBBns2lSH64+w/y+vXrpKWlUbNmTeBOg2mxWDh9+gRubq7Ur18fKMfgwQMYMGCAzT9mKT70exRb\nVB+SF9WI2KL6EFsKoz5KTIPp5uaGp6cnR44cIScnh7JlyzJ06FBeeOHe0wrHjx9PWFgY9erVIygo\nyDr+sM3l5jm++mZIHuhhvhm6e3piYiKzZs0gLGwlbm5uxMREU6VKVc6evUBs7BeEhMzFxcWFLVu2\nUbfu46q9EkDfLostqg/Ji2pEbFF9iC06gvk/8PX1JSgoiFdeeYXSpUuze/duXnjhBa5evcrKlSsZ\nPXo06enpVKtWjbS0NBISEmjQoIHRscWOtWzZmpdeepl33nkDBwcTHh5VmDZtJtWqPUpo6FxefbUf\nFgtUrVqVgIAJRscVEREREbGpRDWYHTp0YOLEiXTt2hVXV1fi4+Pp168ft2/fZsSIEQD4+fnRv39/\nateuzZtvvkloaCijR482OLnYMz+/wfj5Db5v/IMPxhmQRkRERETkf1dibvIDEB8fzz//+U8+/vjj\nAl2PTj2QB/mjpx5cvPgz/fq9RPXqNaxjjRo1ZuLEIMLDP2X37h3k5Fh44okGjBkznnLldF1FcafT\nl8QW1YfkRTUitqg+xBadIvsHLViwgAMHDhAaGmp0FJE/xMOjCqtXb7xnbOfObXzzTQLLl0fh7OzC\npEmBrFoVwbBh7xmUUkREREQkbyWmwRw5ciQjR458qHmzsrLw8/OjQoUKwJ07zGZlZTFu3DiaNm1a\nkDFFHkrt2nXx9w+kVKnSADRr1oJvvkkwOJWIiIiIiG0lpsH8I5KTkzGbzfzlL3+hcuXK9OzZk8TE\nRObPn09ERITR8cTOZGRkMG6cP2fPnsHT81FGjhxN/fpPWKenp6ezd+9uunXrbmBKEREREZG8ORgd\nwAjBwcEkJSVx8uRJevbsCcDFixepWrWqwcnE3ri6utK5c1dGjvQnMnI9Pj6tCAz0Jzs7G4ApUz7E\n17cr1avXoFu3F/JYmoiIiIiIsUrUTX4e1vnz5xk5ciTR0dEkJyczdOhQMjIyWLlyZZ5NZk//mEJK\nKSVVRGDHB06zWCx069aeJUuWU6dOXeDOKdyLFy8gJSWFoKDgwoopBUQ3YBBbVB+SF9WI2KL6EFt0\nk59C4uHhwcaNG9m/fz/jxo3TKbJS4O7+g7x+/TppaWnUrFkTuNNgWiwWTp8+gZubK/Xr1wfKMXjw\nAAYMGGDzj1mKD/0exRbVh+RFNSK2qD7ElsKoD7tuMBMTE2nQoAEVKlSgXbt2jB07Ns/3bJ7jq2+G\n5IEe5puhu6cnJiYya9YMwsJW4ubmRkxMNFWqVOXs2QvExn5BSMhcXFxc2LJlG3XrPq7aKwH07bLY\novqQvKhGxBbVh9iiI5iFYMeOHXz//fe89tpr/PDDD1SrVs3oSGJnWrZszUsvvcw777yBg4MJD48q\nTJs2k2rVHiU0dC6vvtoPiwWqVq1KQMAEo+OKiIiIiNhk1w3msGHDCAwMZOfOnZjNZqZMmWJ0JLFD\nfn6D8fMbfN/4Bx+MMyCNiIiIiMj/zi4bzBo1ahAdHQ1AWFiYwWmkKDh48ABjx45i/frPqVbtUS5c\nOM/EiQGUK1eB+fMXGR1PRERERKRYsMvHlIjcLTMzkyVLQilfvgIASUlnGDt2FA0bPmlwMhERERGR\n4qVQGsyMjAw6dnzwoxke1ubNm+natSuHDh3Kh1R3hIaGEhkZmW/Lk+InIuJTunbtjqurKwAuLqWY\nP38JTZo8ZXAyEREREZHipVgdwTx48CBjxozB29vb6ChSQpw69RPffJPAK68MsI55elajcuXKBqYS\nERERESmeCuwazPT0dN59911u3bpFixYtAPj888+JjIzEwcGB+vXrM3XqVPr06cOcOXOoVasWv/zy\nC8OGDeOzzz5j0qRJnDt3DrPZzMiRIzGZTHz55ZccO3aMlStX0r9/f7p3786kSZNwcnJi0qRJbNmy\nhTNnztCtWzeCgoIwmUyULVuWkJAQypcvT1RUFJs3b8bBwYFOnTrx97///Z7M/v7+tG3bll69ehXU\nxyJFiMViYfbsGYwaNRYnJ7u8HFlEREREJF8V2L+qY2JiqF+/PuPHj2fr1q3ExsZy8+ZNli1bRvny\n5RkwYAA//PADvr6+bN26laFDh7J792569OhBbGwsLi4uREZGcunSJQYPHsz27dtp27YtXbt2xcXF\nhf3799O9e3euXLmCxWIB4Ntvv+Wvf/0rU6dOJSgoiNq1axMVFUVUVBQvvPAC27ZtY82aNQD079+f\nbt26WfOGh4dTvXr1PJvLnv4xBfWRSSGICPy/U7VjYqKpXbsuTZs+bWAiEREREZGSo8AazFOnTuHj\n4wNAy5YtAahQoQLDhg2zTk9NTaVHjx688cYbDB06lH379jFt2jSWLl1Kq1atgDvP/3NxcSE1NdW6\n7GbNmrF48WKuX7/OI488QnZ2Njdv3uT7778nMDCQI0eOMHHiRADMZjNeXl4cPXqUs2fPMnjwncdB\nZGRkcOHCBQDi4uK4ePEiGzduLKiPQ4qIux8Km5j4NceOHaNXrztfNKSkpDBkyKvMmzeP1q1bU65c\naVxcHG0+SDavdYjkRjUitqg+JC+qEbFF9SG2FEZ9FFiDabFYcHC4c4lnTk4OZrOZoKAgYmJi8PDw\n4O233wbAzc0NT09Pjhw5Qk5ODlWrVrW+/zdms9m6LABXV1ccHBxITEykadOmZGZmEhcXh6urKy4u\nLpQpU4Z//OMfmEwm63t27txJ+/btCQoKuidnfHw8165dw8XFhX/96195Xt+5eY4vyck3/tyHI4a5\n+3c3Y8bce6a9/HJPQkM/pVq1R0lOvsGNG5mYzbf/0O/bw6Oc6kNsUo2ILaoPyYtqRGxRfYgt+Vkf\nthrVArvJT506dTh27BgACQkJZGRk4OjoiIeHBxcvXuTYsWNkZWUB4OvrS1BQkPWUVS8vLxISEgC4\nePEiDg4OlC9f/p7lN23alKioKJo1a0bTpk2JjIy0NocNGzbkyy+/BCA2Npa4uDgaN25MQkICN2/e\nxGKxMG3aNDIzMwHo3r0706dP56OPPrKOif3atGkDfn69+fTThRw/fgQ/v95MnTrJ6FgiIiIiIkWe\nyXL3ocJ8lJaWxvDhw3FwcKBFixZs2rSJli1b8uOPP9KwYUMef/xxNmzYwKZNm7BYLDz77LPs2rWL\n8uXLk52dzeTJk0lKSiIrKwt/f398fHwIDAyka9eudOjQgS+//JL33nuPQ4cOkZWVhbe3NytWrMDb\n25tTp04xceJEHBwcKFWqFHPmzKFixYpERUWxceNGHB0d6dSpE2+//TahoaG4ubkxcOBAwsLCuHLl\nCuPHj7e5bfpmSB5E3xxKXlQjYovqQ/KiGhFbVB9iS2EdwSywBvOPiI+P55///Ccff/yx0VEeiv5w\n5UG0Y5e8qEbEFtWH5EU1IraoPsSWwmowDX82w4IFCzhw4AChoaFGR5ESaN++3axYEY7ZfIsKFSoy\nZsw4HnusDgsXziM+/mscHBxo3NiLUaPG4OrqanRcEREREZFircCuwXxYI0eOZN26ddab+4jkl19+\n+YXZs4MJCZnD6tUb6dChE8HBQcTGfs7Jk/9h5cq1rFq1DrPZTGTkCqPjioiIiIgUe4YfwTRCVlYW\nfn5+1KpVCycnJ5KSkrh9+zZjx47N8y6yUnw4OTkxefI0PD2rAeDt7UN4+BJOn/4JL6+muLi4ANCs\nWQvi4782MqqIiIiISIlg+BFMIyQnJ2M2m3nmmWcoU6YMa9asYfr06YSEhBgdTfJR5cqV8fFpDUB2\ndjZbt27h2Wfb0aKFD/HxB0lLS+PWrVscPPgV3t6tDE4rIiIiIlL82eURzODgYJKSkjh06BBTpkwB\nwN3dndTU1Dzf29M/poDTyZ8REdjxvrF169awYsUyqlevQXDwHCpXrsz+/Xvx9e2Kk5MTTzzRkBdf\nfMmAtCIiIiIiJUuRuItsYTt//jwjR44kOjraOjZ37lwcHBwYNWqUzfeqwSzaNs/xzXXcYrEQGxvL\n3LlzefXVVzlw4AALFizA2dmZoKAgHBwcrF82iIiIiIjI/8Yuj2D+XlRUFMePH2fJkiV5zrt5jq9u\n/1yE3f27OXPmvyQnX8bH587pr61atePGjSD27fuSZ59tR3p6NpBN69bPMX/+nHz5ver24JIX1YjY\novqQvKhGxBbVh9hSWI8psctrMO+2fv169uzZw6JFi3B2djY6juSj1NRrTJs2mStXkgE4cuQ7srOz\nqVGjJvHxB8nOzgYgLu4AdevWMzKqiIiIiEiJYNdHMM+dO8fatWuJjIykVKlSRseRfPb0080ZPPjv\njBo1jJycHJydXfjoo+k0adKUuXM/ZsCAlzGZHKhVqxZjxow3Oq6IiIiISLFn1w3m+vXrSU1NZciQ\nIdax8PBw6+MrpPjr3bsvvXv3vW988uRpBqQRERERESnZ7LLBrFGjhvUGP6NHjzY4jQDs27ebFSvC\nMZtvUaFCRcaMGUfduo+zbt1qYmKiycnJoWnTZvj7B+pUZhERERGRIsrur8EU4/3yyy/Mnh1MSMgc\nVq/eSIcOnQgODuLYsaOsX7+WJUuWs3r1RtLTb7B+/Vqj44qIiIiIyAPYZYOZlZVFnz59CAgIIDEx\nkTZt2rB3716jY9ktJycnJk+ehqdnNQC8vX1ISjrL3r276NixM+XKlcNkMtGjx4vs3bvL4LQiIiIi\nIvIgdtlgJicnYzabGT58OMuXL6d58+ZGR7JrlStXxsenNQDZ2dls3bqFZ59tx7lzSVSvXsM6X/Xq\nNUhKOmNQShERERERyYtdXoMZHBxMUlISixcvZuHChXz44YcP/d6e/jEFmMx+RAR2vG9s3bo1rFix\njOrVaxAcPIepUyfec8MlF5fSZGZmFmZMERERERH5A+yywQwICODChQsEBwcbHcVu5fZw1uHDhzBs\n2FvExsYyfPgbPPbYY5Qq5WCdNy3tMq6urjYf7FoUFPV8YjzViNii+pC8qEbEFtWH2FIY9WGXDeaf\nsXmOL8nJN4yOUezd/RmeOfNfkpMv4+PTCoBWrdpx40YQWVm3OXHiR+u8R478h8ceq1OkP38Pj3JF\nOp8YTzUitqg+JC+qEbFF9SG25Gd92GpU7fIaTClaUlOvMW3aZK5cSQbgyJHvyM7O5tVX32DXru2k\npFwlOzub9evX0qlTF4PTioiIiIjIg+gIphju6aebM3jw3xk1ahg5OTk4O7vw0UfTefrp5vTvP4hh\nw94CLHh7t6JXr5eNjisiIiIiIg9g1w3mvn37CA8P5/Tp0xw/fpxVq1YRERFhdCy71Lt3X3r37nvf\neJ8+/ejTp58BiURERERE5I+yywazRo0aREdHA9C+fXtjw9iJAwf2s2zZp2RlmSlfvgJjxoxj27ZY\nDhz40jpPZmYmFSu6ERERaWBSERERERH5X9llgymFKzn5MtOmTWHx4nDq1KlLdPR6Zs2aweLFEQwb\n9p51vtmzQ6hdu7ZRMUVERERE5E8q0Tf5ycrKok+fPgQEBJCYmEibNm3Yu3fvffOtXbuWjh3vfy6j\n5A8nJyemTJlOnTp1AXjqqaf5739P3zPP6dM/8d133+oaSxERERGRYqxEN5jJycmYzWaGDx/O8uXL\nad68+X3zXL16lZ07dxqQzn64ubnTuvUz1tfx8V/z5JNN7pknImIpAwYMxslJB9VFRERERIqrEv2v\n+eDgYJKSkli8eDELFy7kww8/vG+eWbNmMXLkSN5///2HWmZP/5j8jlkiRQTmfkT40KFE1q1bw/z5\ni61j58+f4/vvjzFlyvTCiiciIiIiIgWgRDeYAQEBXLhwgeDg4FynJyQkUKpUKZo2bVrIyUq+3B6+\numvXLkJCphIW9ileXl7W8Q0b9tO1axeqVXMrzIgFxtaDZ0VANSK2qT4kL6oRsUX1IbYURn2U6AbT\nFrPZzIIFC1i0aNEfet/mOb4kJ98ooFQlx+8/o2++SSAkZCpz5oTi6Vn7nuk7d+7m9dffKhGfq4dH\nuRKxHVJwVCNii+pD8qIaEVtUH2JLftaHrUa1RF+DacuJEye4cuUKb731Fn379uXy5csPfZqs/DGZ\nmZkEBwcxffosateuc9/0U6d+zHVcRERERESKF7s9gtm0aVO2b99ufd2xY0c++eQTAxOVXF99tY/U\n1GsEBU24Z3zhwjCcnJzIzMzE3b2SQelERERERCS/2EWDuW/fPsLDwzl9+jTHjx9n1apVREREGB3L\nbnTu3I3Onbs9cPqBA4cKMY2IiIiIiBSUEt1g1qhRg+joaADat29vc949e/YUQiL7cuDAfpYt+5Ss\nLDPly1dgzJhx1K37OIcPf8fs2TO4desWnp7VmDRpKpUrexgdV0RERERE/iS7vQZTClZy8mWmTZvC\n5MnTiIraQOfO3Zg1awYZGelMmhRIQMBE1q2LoWXL1uzcuT2vxYmIiIiISDFgFw3mzz//zJEjR4yO\nYVecnJyYMmU6derUBeCpp57mv/89zVdf7adBg4Y0aXLnMSUDB75G//4DjYwqIiIiIiL5pESfIvub\n+Ph4fv31V5566imjo9gNNzd3Wrd+xvo6Pv5rnnyyCT/99CMVKlRk3LgP+O9/T9OgQQPefz+AihUr\nGphWRERERETyQ5FtMNPT0xkxYgS3bt2idevWxMTEALB582bKli3Lxx9/TP369enSpQv+/v78+uuv\nZGZmMnHiRJ566im6dOnCc889R8WKFYmOjsbJyYlq1arx2GOPERQUhMlkomzZsoSEhJCWlsaYMWNw\ndXVl4MCBdOjQweCtL1kOHUpk3bo1zJ+/mM8+iyIxMZ7/9/+W4ulZjZCQqSxYMIdJk6YaHVNERERE\nRP6kIttgxsTE0KhRIwICAoiNjX3gfMnJyfTp04dOnToRFxfH0qVLCQ0NJTs7m+eee47nnnsOi8WC\nm5sbzz//PK+++ipBQUHUrl2bqKgooqKi6NmzJydOnGDv3r24ubnZzNXTPya/N7XEiAjseN/Yl1/u\nY968Wcyc+Ql16tSlbNlH8Pb2oUaNmgD06dMff/93CzuqiIiIiIgUgCLbYJ46dYqWLVsCWP8/N5Ur\nV2bRokWEh4djNptxdXW1TsvtlNgjR44wceJEAMxmM15ed64FrFmzZp7Npdjm4VHuntcHDx5k4cK5\nrFixnHr16gHw+OO1OXjwZ+u8V6+Ww9nZ6b73FmclaVukYKhGxBbVh+RFNSK2qD7ElsKojyLbYFos\nFkwmEwCOjo73Tc/KygJg5cqVVK1alVmzZnH06FFmzpxpncfZ2fm+95UpU4Z//OMf1mUDnD9/Ptd5\nc7N5ji/JyTf+0LbYi7s/l8zMTAICApkxYzbly1exTmvWrA3z5s0jPv7f1Kv3OCtWRNK8uXeJ+Uw9\nPMqVmG2RgqEaEVtUH5IX1YjYovoQW/KzPmw1qkW2waxbty6HDx+ma9euxMXFAfDII4+QnJxM6dKl\nOXz4ME8++STXrl2jQYMGAOzatcvaeN7NZDKRnZ0NQMOGDfnyyy9p164dsbGxuLu7U7NmzcLbMDvx\n1Vf7SE29RlDQhHvGFy4MY/z4yYwf/wEmk4k6deoxduyHBqUUEREREZH8VGQbTF9fX4YPH86AAQNo\n0aIFAAMHDmTo0KHUqVOHxx9/3DpfQEAA27ZtY8CAAWzZsoWNGzfes6xmzZoREBCAu7s7H374IRMn\nTmTp0qWUKlWKOXPmkJ6eXujbV9J17tyNzp275TqtXbuOtGt3//WaIiIiIiJSvJksFovF6BB5ycjI\noGfPnuzZs8foKAAl/tSD7OxsFi8O5bPPooiOjqVKlarWsbi4A9y6dYvevfvi5zfY6KhFjk5Nkbyo\nRsQW1YfkRTUitqg+xJbCOkXWIV/WICVKYODoe26WBLB58ya+//4Yy5evZuXKtcTGfs7hw/82KKGI\niIiIiBRFxaLBLFu2bL4evdy2bRtw5+Y+f/vb3/JtuSXFa6+9yRtvvH3P2DffJNC5czdKlSrFI488\nQvfuPdm3r2gcURYRERERkaKhWDSY+S0sLMzoCEVakyb3P97FZIKcnNvW12XKuHLhwrnCjCUiIiIi\nIkVckb3Jz+9FR0fzzTffcO3aNX788Ufef/99tmzZwqlTp5g9ezbfffcdW7duBeD5559nyJAhBAYG\nUqVKFY4fP87PP//M7NmziYuL44cffmDEiBEEBgZisViYPHkyR48epXHjxkydOtXgLS2afHxasWlT\nNF279iAn5zbbt2+ldOkyRscSEREREZEipNg0mABnzpxh9erVrF+/nk8//ZRNmzYRHR3NkiVLuHjx\nIhs2bACgT58+dOt25w6mZrOZ8PBw1qxZw6ZNm/jwww9ZunQpCxcu5Pz585w5c4awsDAqVapE+/bt\nSUtLo3z58g/M0NM/plC2tbBEBD7c3VxfeKEXFy5cYMiQV6lUqTI+Pq04c+Z0AacTEREREZHipFg1\nmE2aNMFkMuHh4UGDBg1wdHSkcuXK/PDDD7Rt2xYnpzub07x5c/7zn/8A4O3tDYCnpydHjhy5b5m1\natXCw8MDgMqVK3Pjxg2bDWZJY+sOUACVKj1inWfKlAnAnedaLly4EC+vxnm+3x7pM5G8qEbEFtWH\n5EU1IraoPsSWwqiPYtVg/tZA/v7n69evc/fTVrKysnBwuHN5qaOjo3U8tyey3D39QfPcbfMc3xJ1\n++e8tuXq1XQcHW+wY8cXfP31l0yePJ2UlKts2BDNJ58sLFGfRX7Q7cElL6oRsUX1IXlRjYgtqg+x\npbAeU1KsGswH6dy5M9999x3Z2dkAHD58mLfffptdu3blOn8xePSnYVJSrjJixBDr63fffRtHR0fm\nz1/Mvn17eOWVXjg6OjJ06Ahq1KhpYFIRERERESlqSkSDCfDKK68wcOBALBYLffr0oXr16g+ct1Gj\nRrz88svMmzevEBMWD+7ulVi9emOu02bMmFXIaUREREREpDgxWXQ47w8riaceZGdns3hxKJ99FkV0\ndCxVqlTl9u3bLFw4j/j4r3FwcKBxYy9GjRqDq6ur0XGLLJ2aInlRjYgtqg/Ji2pEbFF9iC2FdYqs\nXT4HU+4XGDj6vsYxNvZzTp78DytXrmXVqnWYzWYiI1cYE1BERERERIq8EnOKbG6ysrLw8/OjVq1a\nODk5kZSUxO3b71OQiAAAERFJREFUtxk7dize3t785z//YcqUKQA0aNCAjz76yNjABnrttTdp0uQp\nli9fah07ffonvLya4uLiAkCzZi2Ij//aqIgiIiIiIlLElegjmMnJyZjNZp555hnKlCnDmjVrmD59\nOiEhIQBMnz6d8ePHs3btWtLT09m/f7/BiY3TpMlT9421aOFDfPxB0tLSuHXrFgcPfoW3dysD0omI\niIiISHFQohvM4OBgkpKSOHToEOPGjQPA3d2d1NRUzGYzFy5c4Kmn7jRWHTp0IC4uzsi4RU7btu15\n/PH6+Pp25YUXOpGens6LL75kdCwRERERESmiSvQpsgEBAVy4cIHg4GDr2MqVK3nhhRe4du0a5cuX\nt45XqlSJ5OTkPJfZ0z+mQLIWpojAjg813/r1a0lNvcYXX+zFycmJTz6Zyfz5c/jgg8ACTigiIiIi\nIsVRiW4wfy8qKorjx4+zZMkSUlJS7plmTzfTtXXXJ4BKlR7Bw6Mchw8fokePv1KzpgcAvXr1ZPr0\n6Xm+397p85G8qEbEFtWH5EU1IraoPsSWwqgPu2kw169fz549e1i0aBHOzs7WU2V/c+nSJapUqZLn\ncjbP8S32t3/OK//Vq+k4Ot6gatXq7Ny5h7ZtO+Pk5MQXX+ygVq06xX77C5JuDy55UY2ILaoPyYtq\nRGxRfYgthfWYErtoMM+dO8fatWuJjIykVKlSADg7O1O3bl0OHTqEt7c3O3bsYNCgQQYnNUZKylVG\njBhiff3uu2/j6OjI/PmLWbRoAQMGvIzJ5ECtWrUYM2a8gUlFRERERKQos4sGc/369aSmpjJkyP81\nUeHh4YwfP55JkyaRk5ND06ZNeeaZZwxMaRx390qsXr0x12mTJ08r5DQiIiIiIlJcmSz2dPFhPvkj\nh5b37dvNihXhmM23qFChImPGjKNu3ccLMJ0YSaemSF5UI2KL6kPyohoRW1QfYkthnSJboh9TYrRf\nfvmF2bODCQmZw+rVG+nQoRPBwUFGxxIRERERESkQJbrBzMrKok+fPgQEBJCYmEibNm3Yu3evdfr2\n7dt55ZVXGDhwIP7+/pjN5nxdv5OTE5MnT8PTsxoA3t4+JCWdzdd1iIiIiIiIFBUlusFMTk7GbDYz\nfPhwli9fTvPmze+ZPm3aNJYtW0ZkZCSurq7s3LkzX9dfuXJlfHxaA5Cdnc3WrVt49tl2+boOERER\nERGRoqJEN5jBwcEkJSWxePFiFi5cSLly954rXLFiRdLS0gBIS0vDzc2tQHKsW7eGF1/syuHD/+ad\nd0YWyDpERERERESMVqLvIhsQEMCFCxcIDg7OdfqECRN46aWXKFeuHE8++eRD3UW2p3+MzekRgR3v\nG+vbtz99+vRj167tvPPO34mMXEepUqUfbiNERERERESKiRLdYNqSk5PDtGnT2LBhAzVr1mTUqFHs\n3r2b559//k8t9+47Kp06dYpLly5ZG1c/vz7Mnz+bGzeuUKNGoz+1Him6bN1VSwRUI2Kb6kPyohoR\nW1QfYkth1IfdNpgpKSkA1KpVC4A2bdpw7NixPBvMzXN8bd7e9+5pp0+fZ/Lk8YSHr6JyZQ+OHPkO\nszmLMmUq6hbSJZRuDy55UY2ILaoPyYtqRGxRfYgthfWYErttMN3c3Lh+/TopKSm4u7tz9OhRfHx8\n8nUdTz/dnMGD/86oUcPIycnB2dmFjz6aTtmyj+TrekRERERERIoCu2gw9+3bR3h4OKdPn+b48eOs\nWrWKiIgIJk2axNChQ3FxcaFGjRr06NEj39fdu3dfevfum+/LFRERERERKWpMFovFYnSI4kanHsiD\n6NQUyYtqRGxRfUheVCNii+pDbCmsU2RL9GNKREREREREpPCowRQREREREZF8oQZTRERERERE8oUa\nTBEREREREckXajBFREREREQkX+gusiIiIiIiIpIvdARTRERERERE8oUaTBEREREREckXajBFRERE\nREQkX6jBFBERERERkXyhBlNERERERETyhRpMERERERERyRdORgcoTmbMmMHhw4cxmUyMHz+ep556\nyuhIYqCEhATee+896tevD8ATTzzBm2++ydixY7l9+zYeHh7MmjULFxcXg5NKYTt58iTDhg3jtdde\nY+DAgVy8eDHXuvj8889ZuXIlDg4O9O3blz59+hgdXQrB7+sjMDCQ48ePU7FiRQDeeOMN2rdvr/qw\nYzNnzuRf//oX2dnZvP3223h5eWkfIla/r489e/ZoHyIA3Lx5k8DAQK5evcqtW7cYNmwYDRs2LPz9\nh0UeSkJCgmXIkCEWi8Vi+emnnyx9+/Y1OJEYLT4+3vLuu+/eMxYYGGjZunWrxWKxWObMmWOJiooy\nIpoYKCMjwzJw4EDLhAkTLKtWrbJYLLnXRUZGhqVLly6WtLQ0y82bNy09evSwXLt2zcjoUghyq4+A\ngADLnj177ptP9WGf4uLiLG+++abFYrFYUlJSLO3atdM+RKxyqw/tQ+Q3sbGxlrCwMIvFYrGcP3/e\n0qVLF0P2HzpF9iHFxcXRqVMnAOrVq8f169dJT083OJUUNQkJCTz//PMAdOjQgbi4OIMTSWFzcXFh\n6dKlVKlSxTqWW10cPnwYLy8vypUrR+nSpWnevDnffvutUbGlkORWH7lRfdgvHx8f5s+fD0D58uW5\nefOm9iFilVt93L59+775VB/2qXv37rz11lsAXLx4kapVqxqy/1CD+ZCuXLmCm5ub9bW7uzvJyckG\nJpKi4KeffmLo0KH079+fr7/+mps3b1pPia1UqZJqxA45OTlRunTpe8Zyq4srV67g7u5unUf7FPuQ\nW30AREZGMnjwYN5//31SUlJUH3bM0dERV1dXADZs2MBzzz2nfYhY5VYfjo6O2ofIPfr168cHH3zA\n+PHjDdl/6BrM/5HFYjE6ghisdu3ajBgxgr/+9a+cO3eOwYMH3/MtompEcvOgulC92C9fX18qVqxI\no0aNCAsLY+HChTRr1uyeeVQf9mfXrl1s2LCBiIgIunTpYh3XPkTg3vo4duyY9iFyj7Vr13LixAnG\njBlzz+++sPYfOoL5kKpUqcKVK1esry9fvoyHh4eBicRoVatWpXv37phMJmrVqkXlypW5fv06mZmZ\nAFy6dCnP0+DEPri6ut5XF7ntU1Qv9qlNmzY0atQIgI4dO3Ly5EnVh5376quvWLJkCUuXLqVcuXLa\nh8g9fl8f2ofIb44dO8bFixcBaNSoEbdv36Zs2bKFvv9Qg/mQ/vKXv7B9+3YAjh8/TpUqVXjkkUcM\nTiVG+vzzzwkPDwcgOTmZq1ev8re//c1aJzt27KBt27ZGRpQi4plnnrmvLpo2bcrRo0dJS0sjIyOD\nb7/9Fm9vb4OTihHeffddzp07B9y5Xrd+/fqqDzt248YNZs6cyaeffmq9K6j2IfKb3OpD+xD5zaFD\nh4iIiADuXN7366+/GrL/MFl0zPyhzZ49m0OHDmEymZg8eTINGzY0OpIYKD09nQ8++IC0tDSysrIY\nMWIEjRo1IiAggFu3bvHoo48SHByMs7Oz0VGlEB07doyPP/6YCxcu4OTkRNWqVZk9ezaBgYH31cW2\nbdsIDw/HZDIxcOBAXnzxRaPjSwHLrT4GDhxIWFgYZcqUwdXVleDgYCpVqqT6sFOfffYZoaGh1KlT\nxzoWEhLChAkTtA+RXOvjb3/7G5GRkdqHCJmZmXz44YdcvHiRzMxMRowYQZMmTXL9t2lB1ocaTBER\nEREREckXOkVWRERERERE8oUaTBEREREREckXajBFREREREQkX6jBFBERERERkXyhBlNERERERETy\nhRpMERGxO+fPn6dJkyYMGjTonv+dOHHif1peTExMPieEEydOMHXq1Hxf7oPcvHmTHTt2FNr6RESk\nZHIyOoCIiIgR3N3dWbVq1Z9ezqVLl1i7di2+vr75kOr/NGrUiIkTJ+brMm35/vvv2bFjB126dCm0\ndYqISMmjBlNEROQu169fZ/LkyaSkpJCens7rr79Oz549uXLlCmPHjiU7O5v09HQGDx5Mr1698Pf3\n5+TJk4wdO5bevXszb9481qxZA0BgYCAtWrSgTZs2vPPOOzzxxBPUr1+foUOHMnfuXL799lsyMzPx\n8fFh7NixmEwma46EhATrsgYNGoS3tzdHjhzhzJkzjB8/nk2bNnHy5El69erFO++8Q2hoKOfOnePa\ntWskJyfTunVrAgMDuX37NjNmzOD48eMAtG7dmlGjRpGQkMCiRYsoVaoU7dq1Y9WqVaSlpTFz5kxG\njBhBQEAAqampZGRk0K1bN4YMGUJCQgJhYWF4enry008/4eTkxLJlyyhTpgzr169nzZo1ODs706pV\nK0aPHv3Az1JEREouNZgiIiJ3mTdvHm3btqV37978+uuv+Pr68pe//IXLly8zYMAAnn/+eS5fvkzP\nnj3p1asX7777LvPmzWPmzJkkJCQ8cLmnTp1i/vz51K1bly+++IJLly4RGRkJwPDhw9m7dy8dO3Z8\n4PstFgvh4eGEhoYye/ZsYmJiuHz5srXBBPjxxx9Zv349OTk59OjRg169evHTTz9x/vx51qxZQ05O\nDv369eOZZ54B4NixY+zevZuKFStSpkwZDh48yNixYzl37hzPP/88vXr1wmw206ZNG/z8/AD47rvv\n2LFjB5UqVWLQoEEcOHCAJ598kiVLlhAbG0vp0qUJDAzk9OnTrFq1KtfP0t3dPb9+XSIiUsSowRQR\nEbuUkpLCoEGD7hmbP38+CQkJHD16lE2bNgHg5OTE+fPnefTRR1m2bBnLli3D0dGR1NTUP7S+ChUq\nULduXeDO0cnvvvvOuv4bN25w/vx5m+9v3rw5AJ6enjRu3BgXFxc8PT25ceOGdZ7WrVvj5HTnP+1N\nmjTh1KlTHD58mDZt2mAymXB0dMTb25ujR4/SpEkT6tSpQ8WKFe9bV6VKlfjXv/7F2rVrcXZ25tat\nW9btrVevHpUqVQKgevXqpKamcvToURo3bkzp0qUBCAkJsW5nbp+lGkwRkZJLDaaIiNilB12D6eLi\nwuTJk/Hy8rpnfMKECTz22GPMnTuXjIwMa8N3t7tPcQXIysqy/uzs7HzPOvr27csbb7zx0Hl/axx/\n//PdcnJyrD9bLBZMJtN9mX4b/32mu61cuRKz2cyaNWswmUy0atXKOs3R0fG++U0mExaL5b7xB32W\nIiJScukusiIiIndp0aIFX3zxBQCZmZlMmTKF7Oxsrly5Qv369QHYsmULDg4OmM1mHBwcyM7OBuCR\nRx7h0qVLWCwWbt68yeHDhx+4jp07d1rft3DhQs6cOfOns3/zzTfcvn0bs9nM0aNHadCgAU8//TQH\nDx7EYrGQnZ1NYmIiTZs2ve+9d2/H1atXqVevHiaTid27d5OZmYnZbH7ger28vDhy5Ajp6ekAvPfe\nexw7duyBn6WIiJRcajBFRETuMmLECM6ePUv//v0ZMGAATz75JE5OTgwcOJD58+fz+uuvU7ZsWdq0\naYO/vz+PP/44V69e5fXXX6dhw4Y0aNCAl156iYCAAJo1a5brOrp06UKzZs3o168fr7zyClevXqVm\nzZp/OnvNmjV577336Nu3Lz169KBevXp069aNWrVq0b9/f/z8/OjUqRMtWrS4771eXl4cOnSIcePG\n0bt3b/75z38yePBgzp8/T8+ePfnggw8euN5HH32UESNG8Nprr9GvXz+qV69OkyZNHvhZiohIyWWy\n5HZOi4iIiBQroaGhZGdn8/777xsdRURE7JiOYIqIiIiIiEi+0BFMERERERERyRc6gikiIiIiIiL5\nQg2miIiIiIiI5As1mCIiIiIiIpIv1GCKiIiIiIhIvlCDKSIiIiIiIvlCDaaIiIiIiIjki/8Psg0N\nlZesxhMAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "lVqgPYkdeiJu",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "## without time feature"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "I50-lpjz646w",
+ "colab_type": "code",
+ "outputId": "a735eab4-4e3b-4cdc-dacf-a8a375f4cda6",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "pred = model.predict(tmp.drop(['timestamp','res_counts','class'], axis=1))\n",
+ "from sklearn.metrics import classification_report, confusion_matrix\n",
+ "print(classification_report(tmp['class'], pred))\n",
+ "print(confusion_matrix(tmp['class'], pred))"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ " precision recall f1-score support\n",
+ "\n",
+ " 0 0.80 0.87 0.84 9992\n",
+ " 1 0.82 0.75 0.78 8316\n",
+ "\n",
+ " micro avg 0.81 0.81 0.81 18308\n",
+ " macro avg 0.81 0.81 0.81 18308\n",
+ "weighted avg 0.81 0.81 0.81 18308\n",
+ "\n",
+ "[[8670 1322]\n",
+ " [2104 6212]]\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "C6a0XgUlfTMC",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "## later half data with time feature"
+ ]
+ },
+ {
+ "metadata": {
+ "colab_type": "code",
+ "outputId": "3e141989-0e6e-4c2f-dc96-a9cc75e10aca",
+ "id": "HQLM1e8AfVXP",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 119
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "model = lgb.LGBMClassifier(objective='binary')\n",
+ "model.fit(x_train,y_train)"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "LGBMClassifier(boosting_type='gbdt', class_weight=None, colsample_bytree=1.0,\n",
+ " importance_type='split', learning_rate=0.1, max_depth=-1,\n",
+ " min_child_samples=20, min_child_weight=0.001, min_split_gain=0.0,\n",
+ " n_estimators=100, n_jobs=-1, num_leaves=31, objective='binary',\n",
+ " random_state=None, reg_alpha=0.0, reg_lambda=0.0, silent=True,\n",
+ " subsample=1.0, subsample_for_bin=200000, subsample_freq=0)"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 44
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "MFtRS6hLM4ko",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "### valid on train set"
+ ]
+ },
+ {
+ "metadata": {
+ "colab_type": "code",
+ "outputId": "289e9f06-5ec5-4c52-ba00-3fd251f60a33",
+ "id": "Z30xXxXKfVXT",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "pred = model.predict(tmp.drop(['timestamp','res_counts','class'], axis=1))\n",
+ "from sklearn.metrics import classification_report, confusion_matrix\n",
+ "print(classification_report(tmp['class'], pred))\n",
+ "print(confusion_matrix(tmp['class'], pred))"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ " precision recall f1-score support\n",
+ "\n",
+ " 0 0.84 0.89 0.86 6744\n",
+ " 1 0.86 0.80 0.83 5675\n",
+ "\n",
+ " micro avg 0.85 0.85 0.85 12419\n",
+ " macro avg 0.85 0.84 0.84 12419\n",
+ "weighted avg 0.85 0.85 0.85 12419\n",
+ "\n",
+ "[[5987 757]\n",
+ " [1150 4525]]\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "hWJsJOa5M6Yp",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "### test on test set"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "r3Uc1wvWgwEy",
+ "colab_type": "code",
+ "outputId": "2eae339a-4a6e-4168-eb2f-88215c82cf95",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "pred = model.predict(x_test)\n",
+ "from sklearn.metrics import classification_report, confusion_matrix\n",
+ "print(classification_report(y_test, pred))\n",
+ "print(confusion_matrix(y_test, pred))"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ " precision recall f1-score support\n",
+ "\n",
+ " 0 0.79 0.81 0.80 1678\n",
+ " 1 0.77 0.74 0.76 1427\n",
+ "\n",
+ " micro avg 0.78 0.78 0.78 3105\n",
+ " macro avg 0.78 0.78 0.78 3105\n",
+ "weighted avg 0.78 0.78 0.78 3105\n",
+ "\n",
+ "[[1367 311]\n",
+ " [ 368 1059]]\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "YZFbi0HqNUDo",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "# Predictor\n",
+ "\n",
+ "Input are 10 timestamps of 25 features(original + `minute`, `hour`, etc.) extracted, input shape (-1, 10, 25)\n",
+ "\n",
+ "Output is the next `class` value.\n",
+ "\n",
+ "Evaluation Metric: Accuracy"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "S3GZJBYQB3zZ",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "## Preprocessing\n",
+ "\n",
+ "Normalize and generate input."
+ ]
+ },
+ {
+ "metadata": {
+ "id": "dSqo98PI-yXz",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "tmp = tmp.drop(['year', 'res_counts', 'timestamp'], axis=1)\n",
+ "class_0 = tmp.pop('class')"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "TaYgdUoR1gU4",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "from sklearn.preprocessing import MinMaxScaler\n",
+ "need_to_normalize = ['f2', 'f4', 'f5', 'f6', 'f8', 'f9', 'f10', 'f12', 'f13', 'f15', 'f17', 'f18', 'f20']\n",
+ "features_to_normalize = tmp[need_to_normalize].astype(np.float32)\n",
+ "for col in need_to_normalize:\n",
+ " features_to_normalize[col] /= np.max(features_to_normalize[col])\n",
+ "for col in features_to_normalize:\n",
+ " tmp[col] = features_to_normalize[col]"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "cCRNULV48pXS",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "def create_dataset(dataset_x, dataset_y, length_x, lentgh_y):\n",
+ " data_X = []\n",
+ " data_Y = []\n",
+ " head_index = 0\n",
+ " tail_index = head_index + length_x\n",
+ " while (tail_index + lentgh_y <= tmp.shape[0]):\n",
+ " data_x = dataset_x.iloc[head_index: tail_index].values\n",
+ " data_y = dataset_y.iloc[tail_index: tail_index + lentgh_y].values\n",
+ " data_X.append(data_x)\n",
+ " data_Y.append(data_y)\n",
+ " head_index += 1\n",
+ " tail_index += 1\n",
+ " #return np.array(data_X), np.array(data_Y)\n",
+ " return data_X, data_Y\n",
+ "x,y = create_dataset(tmp, class_0, 10, 1)"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "S_e00eWW_8Gv",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "cell_type": "code",
+ "source": [
+ "x = np.array(x)\n",
+ "y = np.array(y)"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "metadata": {
+ "id": "YjzIOks4qorf",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "## LSTM\n",
+ "\n",
+ "Loss metric: validation set mean squared error\n",
+ "\n",
+ "Min `val_loss`: 0.2483, Accuracy: 0.545"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "W0aDdXNTqqj2",
+ "colab_type": "code",
+ "outputId": "02b30818-7102-4b38-fad2-0d31be0a4e35",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 204
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "from keras.layers import CuDNNLSTM, CuDNNGRU\n",
+ "from keras.layers import Dense\n",
+ "from keras.models import Sequential\n",
+ "\n",
+ "#callback\n",
+ "model = Sequential()\n",
+ "model.add(CuDNNLSTM(units = 100, input_shape=(10,25)))\n",
+ "model.add(Dense(1))\n",
+ "model.compile(loss=\"mse\", optimizer='adam')\n",
+ "model.summary()\n",
+ "\n"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "_________________________________________________________________\n",
+ "Layer (type) Output Shape Param # \n",
+ "=================================================================\n",
+ "cu_dnnlstm_3 (CuDNNLSTM) (None, 100) 50800 \n",
+ "_________________________________________________________________\n",
+ "dense_4 (Dense) (None, 1) 101 \n",
+ "=================================================================\n",
+ "Total params: 50,901\n",
+ "Trainable params: 50,901\n",
+ "Non-trainable params: 0\n",
+ "_________________________________________________________________\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "OxUK52HTsU6f",
+ "colab_type": "code",
+ "outputId": "9a9a3c79-620b-4cd0-ef6f-cab1a73579d1",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 901
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "from sklearn.model_selection import train_test_split\n",
+ "from keras.callbacks import EarlyStopping\n",
+ "\n",
+ "callback = EarlyStopping(patience=15)\n",
+ "x_train, x_mid, y_train, y_mid = train_test_split(x, y, random_state=1984)\n",
+ "x_val, x_test, y_val, y_test = train_test_split(x_mid, y_mid, random_state=1984)\n",
+ "\n",
+ "model.fit(x = x_train,\n",
+ " y = y_train,\n",
+ " epochs = 100,\n",
+ " batch_size = 128,\n",
+ " callbacks = [callback],\n",
+ " validation_data = (x_val, y_val)\n",
+ " )"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "Train on 13723 samples, validate on 3431 samples\n",
+ "Epoch 1/100\n",
+ "13723/13723 [==============================] - 2s 124us/step - loss: 0.3065 - val_loss: 0.2539\n",
+ "Epoch 2/100\n",
+ "13723/13723 [==============================] - 1s 65us/step - loss: 0.2480 - val_loss: 0.2495\n",
+ "Epoch 3/100\n",
+ "13723/13723 [==============================] - 1s 65us/step - loss: 0.2461 - val_loss: 0.2483\n",
+ "Epoch 4/100\n",
+ "13723/13723 [==============================] - 1s 66us/step - loss: 0.2432 - val_loss: 0.2492\n",
+ "Epoch 5/100\n",
+ "13723/13723 [==============================] - 1s 66us/step - loss: 0.2412 - val_loss: 0.2489\n",
+ "Epoch 6/100\n",
+ "13723/13723 [==============================] - 1s 67us/step - loss: 0.2394 - val_loss: 0.2535\n",
+ "Epoch 7/100\n",
+ "13723/13723 [==============================] - 1s 66us/step - loss: 0.2393 - val_loss: 0.2508\n",
+ "Epoch 8/100\n",
+ "13723/13723 [==============================] - 1s 65us/step - loss: 0.2403 - val_loss: 0.2490\n",
+ "Epoch 9/100\n",
+ "13723/13723 [==============================] - 1s 66us/step - loss: 0.2373 - val_loss: 0.2492\n",
+ "Epoch 10/100\n",
+ "13723/13723 [==============================] - 1s 65us/step - loss: 0.2365 - val_loss: 0.2482\n",
+ "Epoch 11/100\n",
+ "13723/13723 [==============================] - 1s 66us/step - loss: 0.2349 - val_loss: 0.2542\n",
+ "Epoch 12/100\n",
+ "13723/13723 [==============================] - 1s 66us/step - loss: 0.2350 - val_loss: 0.2491\n",
+ "Epoch 13/100\n",
+ "13723/13723 [==============================] - 1s 66us/step - loss: 0.2329 - val_loss: 0.2506\n",
+ "Epoch 14/100\n",
+ "13723/13723 [==============================] - 1s 66us/step - loss: 0.2315 - val_loss: 0.2505\n",
+ "Epoch 15/100\n",
+ "13723/13723 [==============================] - 1s 66us/step - loss: 0.2302 - val_loss: 0.2499\n",
+ "Epoch 16/100\n",
+ "13723/13723 [==============================] - 1s 65us/step - loss: 0.2295 - val_loss: 0.2513\n",
+ "Epoch 17/100\n",
+ "13723/13723 [==============================] - 1s 66us/step - loss: 0.2287 - val_loss: 0.2554\n",
+ "Epoch 18/100\n",
+ "13723/13723 [==============================] - 1s 65us/step - loss: 0.2262 - val_loss: 0.2514\n",
+ "Epoch 19/100\n",
+ "13723/13723 [==============================] - 1s 65us/step - loss: 0.2242 - val_loss: 0.2532\n",
+ "Epoch 20/100\n",
+ "13723/13723 [==============================] - 1s 67us/step - loss: 0.2237 - val_loss: 0.2586\n",
+ "Epoch 21/100\n",
+ "13723/13723 [==============================] - 1s 64us/step - loss: 0.2238 - val_loss: 0.2560\n",
+ "Epoch 22/100\n",
+ "13723/13723 [==============================] - 1s 65us/step - loss: 0.2205 - val_loss: 0.2571\n",
+ "Epoch 23/100\n",
+ "13723/13723 [==============================] - 1s 65us/step - loss: 0.2197 - val_loss: 0.2566\n",
+ "Epoch 24/100\n",
+ "13723/13723 [==============================] - 1s 66us/step - loss: 0.2169 - val_loss: 0.2605\n",
+ "Epoch 25/100\n",
+ "13723/13723 [==============================] - 1s 66us/step - loss: 0.2161 - val_loss: 0.2612\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 89
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "pRdanjZV4Ap3",
+ "colab_type": "code",
+ "outputId": "82a39f22-9020-4a9e-daa8-00bd7a0d1ad3",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "import numpy as np\n",
+ "logit = model.predict(x_test)\n",
+ "result = np.where(logit > 0.5, 1, 0)\n",
+ "result = result.reshape(-1,)\n",
+ "\n",
+ "\n",
+ "\n",
+ "#result.shape\n",
+ "y_test = y_test.reshape(-1,)\n",
+ "sum(result == y_test) / len(y_test)\n"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "0.5454545454545454"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 92
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "8h_AuXZPB-SN",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "## GRU\n",
+ "\n",
+ "Min `val_loss`: 0.2510, Accuracy: 0.550"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "JHQA_qAQCNcu",
+ "colab_type": "code",
+ "outputId": "390913e7-8e98-4629-95f7-44a759377a01",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1054
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "from keras.layers import CuDNNLSTM, CuDNNGRU\n",
+ "from keras.layers import Dense\n",
+ "from keras.models import Sequential\n",
+ "\n",
+ "#callback\n",
+ "model = Sequential()\n",
+ "model.add(CuDNNGRU(units = 100, input_shape=(10,25)))\n",
+ "model.add(Dense(1))\n",
+ "model.compile(loss=\"mse\", optimizer='adam')\n",
+ "model.summary()\n",
+ "\n",
+ "\n",
+ "\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from keras.callbacks import EarlyStopping\n",
+ "\n",
+ "callback = EarlyStopping(patience=15)\n",
+ "x_train, x_mid, y_train, y_mid = train_test_split(x, y, random_state=1984)\n",
+ "x_val, x_test, y_val, y_test = train_test_split(x_mid, y_mid, random_state=1984)\n",
+ "\n",
+ "model.fit(x = x_train,\n",
+ " y = y_train,\n",
+ " epochs = 100,\n",
+ " batch_size = 128,\n",
+ " callbacks = [callback],\n",
+ " validation_data = (x_val, y_val)\n",
+ " )\n",
+ "\n",
+ "import numpy as np\n",
+ "logit = model.predict(x_test)\n",
+ "result = np.where(logit > 0.5, 1, 0)\n",
+ "result = result.reshape(-1,)\n",
+ "\n",
+ "\n",
+ "\n",
+ "#result.shape\n",
+ "y_test = y_test.reshape(-1,)\n",
+ "sum(result == y_test) / len(y_test)\n"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "_________________________________________________________________\n",
+ "Layer (type) Output Shape Param # \n",
+ "=================================================================\n",
+ "cu_dnngru_1 (CuDNNGRU) (None, 100) 38100 \n",
+ "_________________________________________________________________\n",
+ "dense_5 (Dense) (None, 1) 101 \n",
+ "=================================================================\n",
+ "Total params: 38,201\n",
+ "Trainable params: 38,201\n",
+ "Non-trainable params: 0\n",
+ "_________________________________________________________________\n",
+ "Train on 13723 samples, validate on 3431 samples\n",
+ "Epoch 1/100\n",
+ "13723/13723 [==============================] - 2s 125us/step - loss: 0.3343 - val_loss: 0.2694\n",
+ "Epoch 2/100\n",
+ "13723/13723 [==============================] - 1s 61us/step - loss: 0.2565 - val_loss: 0.2581\n",
+ "Epoch 3/100\n",
+ "13723/13723 [==============================] - 1s 61us/step - loss: 0.2518 - val_loss: 0.2572\n",
+ "Epoch 4/100\n",
+ "13723/13723 [==============================] - 1s 60us/step - loss: 0.2471 - val_loss: 0.2535\n",
+ "Epoch 5/100\n",
+ "13723/13723 [==============================] - 1s 60us/step - loss: 0.2437 - val_loss: 0.2634\n",
+ "Epoch 6/100\n",
+ "13723/13723 [==============================] - 1s 60us/step - loss: 0.2425 - val_loss: 0.2661\n",
+ "Epoch 7/100\n",
+ "13723/13723 [==============================] - 1s 60us/step - loss: 0.2412 - val_loss: 0.2522\n",
+ "Epoch 8/100\n",
+ "13723/13723 [==============================] - 1s 61us/step - loss: 0.2374 - val_loss: 0.2524\n",
+ "Epoch 9/100\n",
+ "13723/13723 [==============================] - 1s 61us/step - loss: 0.2355 - val_loss: 0.2510\n",
+ "Epoch 10/100\n",
+ "13723/13723 [==============================] - 1s 60us/step - loss: 0.2356 - val_loss: 0.2566\n",
+ "Epoch 11/100\n",
+ "13723/13723 [==============================] - 1s 60us/step - loss: 0.2328 - val_loss: 0.2519\n",
+ "Epoch 12/100\n",
+ "13723/13723 [==============================] - 1s 61us/step - loss: 0.2324 - val_loss: 0.2631\n",
+ "Epoch 13/100\n",
+ "13723/13723 [==============================] - 1s 62us/step - loss: 0.2307 - val_loss: 0.2566\n",
+ "Epoch 14/100\n",
+ "13723/13723 [==============================] - 1s 60us/step - loss: 0.2296 - val_loss: 0.2547\n",
+ "Epoch 15/100\n",
+ "13723/13723 [==============================] - 1s 61us/step - loss: 0.2286 - val_loss: 0.2539\n",
+ "Epoch 16/100\n",
+ "13723/13723 [==============================] - 1s 61us/step - loss: 0.2247 - val_loss: 0.2616\n",
+ "Epoch 17/100\n",
+ "13723/13723 [==============================] - 1s 62us/step - loss: 0.2257 - val_loss: 0.2634\n",
+ "Epoch 18/100\n",
+ "13723/13723 [==============================] - 1s 62us/step - loss: 0.2243 - val_loss: 0.2590\n",
+ "Epoch 19/100\n",
+ "13723/13723 [==============================] - 1s 61us/step - loss: 0.2225 - val_loss: 0.2573\n",
+ "Epoch 20/100\n",
+ "13723/13723 [==============================] - 1s 60us/step - loss: 0.2214 - val_loss: 0.2579\n",
+ "Epoch 21/100\n",
+ "13723/13723 [==============================] - 1s 60us/step - loss: 0.2167 - val_loss: 0.2624\n",
+ "Epoch 22/100\n",
+ "13723/13723 [==============================] - 1s 61us/step - loss: 0.2185 - val_loss: 0.2557\n",
+ "Epoch 23/100\n",
+ "13723/13723 [==============================] - 1s 61us/step - loss: 0.2176 - val_loss: 0.2635\n",
+ "Epoch 24/100\n",
+ "13723/13723 [==============================] - 1s 59us/step - loss: 0.2163 - val_loss: 0.2633\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "0.5498251748251748"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 93
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "9O771Z20CoSb",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "## Bi-LSTM\n",
+ "\n",
+ "Min `val_loss`: 0.2489, Accuracy: 0.524"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "vuJgNLBACm2N",
+ "colab_type": "code",
+ "outputId": "46284a17-c3e1-496d-c0b1-cf97a7fe56c1",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 952
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "from keras.layers import CuDNNLSTM, CuDNNGRU, Bidirectional\n",
+ "from keras.layers import Dense\n",
+ "from keras.models import Sequential\n",
+ "\n",
+ "#callback\n",
+ "model = Sequential()\n",
+ "model.add(Bidirectional(CuDNNLSTM(units = 100), input_shape=(10,25), merge_mode='concat'))\n",
+ "model.add(Dense(1))\n",
+ "model.compile(loss=\"mse\", optimizer='adam')\n",
+ "model.summary()\n",
+ "\n",
+ "\n",
+ "\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from keras.callbacks import EarlyStopping\n",
+ "\n",
+ "callback = EarlyStopping(patience=15)\n",
+ "x_train, x_mid, y_train, y_mid = train_test_split(x, y, random_state=1984)\n",
+ "x_val, x_test, y_val, y_test = train_test_split(x_mid, y_mid, random_state=1984)\n",
+ "\n",
+ "model.fit(x = x_train,\n",
+ " y = y_train,\n",
+ " epochs = 100,\n",
+ " batch_size = 128,\n",
+ " callbacks = [callback],\n",
+ " validation_data = (x_val, y_val)\n",
+ " )\n",
+ "\n",
+ "import numpy as np\n",
+ "logit = model.predict(x_test)\n",
+ "result = np.where(logit > 0.5, 1, 0)\n",
+ "result = result.reshape(-1,)\n",
+ "\n",
+ "\n",
+ "\n",
+ "#result.shape\n",
+ "y_test = y_test.reshape(-1,)\n",
+ "sum(result == y_test) / len(y_test)\n"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "_________________________________________________________________\n",
+ "Layer (type) Output Shape Param # \n",
+ "=================================================================\n",
+ "bidirectional_3 (Bidirection (None, 200) 101600 \n",
+ "_________________________________________________________________\n",
+ "dense_7 (Dense) (None, 1) 201 \n",
+ "=================================================================\n",
+ "Total params: 101,801\n",
+ "Trainable params: 101,801\n",
+ "Non-trainable params: 0\n",
+ "_________________________________________________________________\n",
+ "Train on 13723 samples, validate on 3431 samples\n",
+ "Epoch 1/100\n",
+ "13723/13723 [==============================] - 2s 176us/step - loss: 0.2925 - val_loss: 0.2568\n",
+ "Epoch 2/100\n",
+ "13723/13723 [==============================] - 1s 103us/step - loss: 0.2472 - val_loss: 0.2539\n",
+ "Epoch 3/100\n",
+ "13723/13723 [==============================] - 1s 103us/step - loss: 0.2433 - val_loss: 0.2518\n",
+ "Epoch 4/100\n",
+ "13723/13723 [==============================] - 1s 105us/step - loss: 0.2400 - val_loss: 0.2508\n",
+ "Epoch 5/100\n",
+ "13723/13723 [==============================] - 1s 103us/step - loss: 0.2374 - val_loss: 0.2493\n",
+ "Epoch 6/100\n",
+ "13723/13723 [==============================] - 1s 103us/step - loss: 0.2366 - val_loss: 0.2489\n",
+ "Epoch 7/100\n",
+ "13723/13723 [==============================] - 1s 103us/step - loss: 0.2346 - val_loss: 0.2489\n",
+ "Epoch 8/100\n",
+ "13723/13723 [==============================] - 1s 103us/step - loss: 0.2332 - val_loss: 0.2503\n",
+ "Epoch 9/100\n",
+ "13723/13723 [==============================] - 1s 104us/step - loss: 0.2308 - val_loss: 0.2536\n",
+ "Epoch 10/100\n",
+ "13723/13723 [==============================] - 1s 104us/step - loss: 0.2291 - val_loss: 0.2511\n",
+ "Epoch 11/100\n",
+ "13723/13723 [==============================] - 1s 106us/step - loss: 0.2287 - val_loss: 0.2543\n",
+ "Epoch 12/100\n",
+ "13723/13723 [==============================] - 1s 103us/step - loss: 0.2242 - val_loss: 0.2590\n",
+ "Epoch 13/100\n",
+ "13723/13723 [==============================] - 1s 103us/step - loss: 0.2238 - val_loss: 0.2557\n",
+ "Epoch 14/100\n",
+ "13723/13723 [==============================] - 1s 106us/step - loss: 0.2211 - val_loss: 0.2570\n",
+ "Epoch 15/100\n",
+ "13723/13723 [==============================] - 1s 103us/step - loss: 0.2191 - val_loss: 0.2626\n",
+ "Epoch 16/100\n",
+ "13723/13723 [==============================] - 1s 102us/step - loss: 0.2163 - val_loss: 0.2619\n",
+ "Epoch 17/100\n",
+ "13723/13723 [==============================] - 1s 101us/step - loss: 0.2139 - val_loss: 0.2645\n",
+ "Epoch 18/100\n",
+ "13723/13723 [==============================] - 1s 102us/step - loss: 0.2109 - val_loss: 0.2638\n",
+ "Epoch 19/100\n",
+ "13723/13723 [==============================] - 1s 102us/step - loss: 0.2074 - val_loss: 0.2750\n",
+ "Epoch 20/100\n",
+ "13723/13723 [==============================] - 1s 104us/step - loss: 0.2054 - val_loss: 0.2681\n",
+ "Epoch 21/100\n",
+ "13723/13723 [==============================] - 1s 104us/step - loss: 0.2012 - val_loss: 0.2642\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "0.5236013986013986"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 97
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "QCMqOY2mCVUY",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "## side note: predict using only `class` with lightGBM\n",
+ "\n",
+ "Use last 10 `class` to predict the next `class`."
+ ]
+ },
+ {
+ "metadata": {
+ "id": "P1O_JXRH6Z8Y",
+ "colab_type": "code",
+ "outputId": "ba85c384-e344-4aa2-f7e8-60fa705bf0db",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 119
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "model = lgb.LGBMClassifier()\n",
+ "model.fit(class_0.iloc[:,:-1], class_0.iloc[:,-1])"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "LGBMClassifier(boosting_type='gbdt', class_weight=None, colsample_bytree=1.0,\n",
+ " importance_type='split', learning_rate=0.1, max_depth=-1,\n",
+ " min_child_samples=20, min_child_weight=0.001, min_split_gain=0.0,\n",
+ " n_estimators=100, n_jobs=-1, num_leaves=31, objective=None,\n",
+ " random_state=None, reg_alpha=0.0, reg_lambda=0.0, silent=True,\n",
+ " subsample=1.0, subsample_for_bin=200000, subsample_freq=0)"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 96
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "oQa0P18TFrId",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "### valid on train set"
+ ]
+ },
+ {
+ "metadata": {
+ "id": "kQACIQ9n6v1g",
+ "colab_type": "code",
+ "outputId": "cc257b8a-14df-4d98-8fa5-12525e578172",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 187
+ }
+ },
+ "cell_type": "code",
+ "source": [
+ "pred = model.predict(class_0.iloc[:,:-1])\n",
+ "from sklearn.metrics import classification_report, confusion_matrix, accuracy_score\n",
+ "print(classification_report(pred, class_0.iloc[:,-1]))\n",
+ "print(accuracy_score(pred, class_0.iloc[:,-1]))"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ " precision recall f1-score support\n",
+ "\n",
+ " 0 0.88 0.79 0.83 11125\n",
+ " 1 0.71 0.83 0.77 7083\n",
+ "\n",
+ " micro avg 0.80 0.80 0.80 18208\n",
+ " macro avg 0.80 0.81 0.80 18208\n",
+ "weighted avg 0.82 0.80 0.81 18208\n",
+ "\n",
+ "0.8039323374340949\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "metadata": {
+ "id": "yjtulTa2FuSQ",
+ "colab_type": "text"
+ },
+ "cell_type": "markdown",
+ "source": [
+ "### test on test set: Accuracy=0.7\n",
+ "\n",
+ "The original output was mistakenly deleted. This model performed best."
+ ]
+ }
+ ]
+}
\ No newline at end of file