@@ -64,8 +64,9 @@ def vol_spheres_intersect(
6464 Calculate the volume of the intersection of two spheres.
6565
6666 The intersection is composed by two spherical caps and therefore its volume is the
67- sum of the volumes of the spherical caps. First, it calculates the heights :math:`(h_1, h_2)`
68- of the spherical caps, then the two volumes and it returns the sum.
67+ sum of the volumes of the spherical caps.
68+ First, it calculates the heights :math:`(h_1, h_2)` of the spherical caps,
69+ then the two volumes and it returns the sum.
6970 The height formulas are
7071
7172 .. math::
@@ -79,7 +80,8 @@ def vol_spheres_intersect(
7980
8081 if `centers_distance` is 0 then it returns the volume of the smallers sphere
8182
82- :return: ``vol_spherical_cap`` (:math:`h_1`, :math:`radius_2`) + ``vol_spherical_cap`` (:math:`h_2`, :math:`radius_1`)
83+ :return: ``vol_spherical_cap`` (:math:`h_1`, :math:`radius_2`)
84+ + ``vol_spherical_cap`` (:math:`h_2`, :math:`radius_1`)
8385
8486 >>> vol_spheres_intersect(2, 2, 1)
8587 21.205750411731103
@@ -127,11 +129,13 @@ def vol_spheres_union(
127129
128130 It is the sum of sphere :math:`A` and sphere :math:`B` minus their intersection.
129131 First, it calculates the volumes :math:`(v_1, v_2)` of the spheres,
130- then the volume of the intersection :math:`i` and it returns the sum :math:`v_1 + v_2 - i`.
132+ then the volume of the intersection :math:`i` and
133+ it returns the sum :math:`v_1 + v_2 - i`.
131134 If `centers_distance` is 0 then it returns the volume of the larger sphere
132135
133136 :return: ``vol_sphere`` (:math:`radius_1`) + ``vol_sphere`` (:math:`radius_2`)
134- - ``vol_spheres_intersect`` (:math:`radius_1`, :math:`radius_2`, :math:`centers\_distance`)
137+ - ``vol_spheres_intersect``
138+ (:math:`radius_1`, :math:`radius_2`, :math:`centers\_distance`)
135139
136140 >>> vol_spheres_union(2, 2, 1)
137141 45.814892864851146
0 commit comments