Skip to content

Commit 2186065

Browse files
committed
update documentation
1 parent cfa9a04 commit 2186065

File tree

1 file changed

+31
-26
lines changed

1 file changed

+31
-26
lines changed

README.md

Lines changed: 31 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -1,20 +1,20 @@
1-
# 🧠 AutoDocThinker: Agentic RAG System with Intelligent Search Engine
1+
# AutoDocThinker: Agentic RAG System with Intelligent Search Engine
22

3-
The Agentic RAG System is a full-stack, AI-powered multi-agent document intelligence platform that extracts insights from PDFs, DOCX, TXT files, and web URLs through natural language queries. Built with Python, Flask, LangChain, ChromaDB, and HuggingFace embeddings, it orchestrates modular agents for document ingestion, chunking, vector storage, context retrieval, LLM reasoning, and Wikipedia fallback.
3+
[![AutoDocThinker](https://github.com/user-attachments/assets/8d5c8a4c-cdc8-4569-8ade-af06b8318db9)](https://github.com/user-attachments/assets/8d5c8a4c-cdc8-4569-8ade-af06b8318db9)
44

5-
The system achieves ~95% context retrieval coverage, generates answers with ~70% accuracy and F1 ~68%, and triggers fallback in only 5% of queries, demonstrating robust reliability. Intelligent agent routing improves query efficiency by ~40%, and the system scales to handle 50+ documents simultaneously. With a responsive HTML/CSS/Bootstrap UI, secure file handling, modular backend, logging, and Docker deployment, the platform delivers measurable business impact through fast, accurate, and scalable document intelligence.
5+
## **Project Overview**
66

7-
[![AutoDocThinker](https://github.com/user-attachments/assets/8d5c8a4c-cdc8-4569-8ade-af06b8318db9)](https://github.com/user-attachments/assets/8d5c8a4c-cdc8-4569-8ade-af06b8318db9)
7+
The Agentic RAG System is an AI-powered document intelligence platform that enables users to extract insights from uploaded files (PDFs, Word docs, text) or web URLs through natural language queries. Built with Python/Flask and LangChain, the system uses a multi-agent workflow to intelligently process documents, retrieve relevant information from a vector database (ChromaDB), and generate human-like answers—seamlessly falling back to Wikipedia when needed. The responsive web interface (HTML/CSS/Bootstrap) allows users to ask questions conversationally, while the modular backend demonstrates robust error handling, logging, and secure file processing.
88

99
---
1010

11-
## 🚀 **Live Demo**
11+
## **Live Demo**
1212

13-
🖥️ **Try it now**: [AutoDocThinker: Agentic RAG System with Intelligent Search Engine](https://autodocthinker.onrender.com/)
13+
**Try it now**: [AutoDocThinker: Agentic RAG System with Intelligent Search Engine](https://autodocthinker.onrender.com/)
1414

1515
---
1616

17-
## ⚙️ **Features & Functionalities**
17+
## **Features & Functionalities**
1818

1919
| # | Module | Technology Stack | Your Implementation Details |
2020
|----|----------------------|------------------------------|------------------------------------------|
@@ -34,7 +34,7 @@ The system achieves ~95% context retrieval coverage, generates answers with ~70%
3434

3535
---
3636

37-
## 🧱 **Project Structure**
37+
## **Project Structure**
3838

3939
```
4040
AutoDocThinker/
@@ -85,7 +85,7 @@ AutoDocThinker/
8585

8686
---
8787

88-
## 🧱 **System Architecture**
88+
## **System Architecture**
8989

9090
```mermaid
9191
%% Agentic RAG System Architecture - Colorful Version
@@ -140,7 +140,7 @@ graph TD
140140

141141
---
142142

143-
### 🌍 **Real-World Applications**
143+
### **Real-World Applications**
144144

145145
1. **Corporate HR Automation**
146146
2. **Legal Document Review**
@@ -155,7 +155,7 @@ graph TD
155155

156156
---
157157

158-
## 📥 Installation
158+
## Installation
159159

160160
```bash
161161
# 1. Clone the repository
@@ -178,7 +178,7 @@ docker run -p 8501:8501 auto-doc-thinker
178178

179179
---
180180

181-
## 🔁 GitHub Actions CI/CD
181+
## GitHub Actions CI/CD
182182

183183
**.github/workflows/main.yml**
184184

@@ -212,24 +212,29 @@ jobs:
212212
213213
---
214214
215-
## 📝 Future Enhancements
215+
## Future Enhancements
216216
217-
* Multilingual document ingestion
218-
* Audio document ingestion + whisper
219-
* Long-term memory + history viewer
220-
* MongoDB/FAISS alternative for Chroma
221-
* More tools (WolframAlpha, SerpAPI)
222-
* Model selection dropdown (Gemini, LLaMA, GPT-4)
217+
* Multilingual document ingestion
218+
* Audio document ingestion + whisper
219+
* Long-term memory + history viewer
220+
* MongoDB/FAISS alternative for Chroma
221+
* More tools (WolframAlpha, SerpAPI)
222+
* Model selection dropdown (Gemini, LLaMA, GPT-4)
223223
224224
---
225225
226-
## 👨‍💻 Author
226+
## Author
227227
228228
**Md Emon Hasan**
229-
📧 Email: [email](mailto:iconicemon01@gmail.com)
230-
🔗 LinkedIn: [md-emon-hasan](https://www.linkedin.com/in/md-emon-hasan-695483237/)
231-
🔗 GitHub: [Md-Emon-Hasan](https://github.com/Md-Emon-Hasan)
232-
🔗 Facebook: [mdemon.hasan2001/](https://www.facebook.com/mdemon.hasan2001/)
233-
🔗 WhatsApp: [8801834363533](https://wa.me/8801834363533)
234229
235-
---
230+
Email: [iconicemon01@gmail.com](mailto:iconicemon01@gmail.com)
231+
232+
LinkedIn: [md-emon-hasan](https://www.linkedin.com/in/md-emon-hasan-695483237/)
233+
234+
GitHub: [Md-Emon-Hasan](https://github.com/Md-Emon-Hasan)
235+
236+
Facebook: [mdemon.hasan2001/](https://www.facebook.com/mdemon.hasan2001/)
237+
238+
WhatsApp: [8801834363533](https://wa.me/8801834363533)
239+
240+
---

0 commit comments

Comments
 (0)