|
| 1 | +import json |
| 2 | +from typing import Optional |
| 3 | + |
| 4 | +import verifiers as vf |
| 5 | +from datasets import load_dataset |
| 6 | +from datasets.utils.logging import disable_progress_bar |
| 7 | +from medarc_verifiers.parsers.xml_parser import XMLParser |
| 8 | +from medarc_verifiers.prompts import THINK_XML_SYSTEM_PROMPT, XML_SYSTEM_PROMPT, AnswerFormat |
| 9 | +from medarc_verifiers.rewards.multiple_choice_accuracy import multiple_choice_accuracy |
| 10 | +from medarc_verifiers.utils import default_judge_api_key, judge_sampling_args_and_headers |
| 11 | +from medarc_verifiers.utils.randomize_multiple_choice import randomize_multiple_choice |
| 12 | +from openai import AsyncOpenAI |
| 13 | +from verifiers.types import Info, State |
| 14 | +from verifiers.utils.data_utils import BOXED_SYSTEM_PROMPT, THINK_BOXED_SYSTEM_PROMPT, extract_boxed_answer |
| 15 | + |
| 16 | +disable_progress_bar() |
| 17 | + |
| 18 | +MCQ_QUESTION_TEMPLATE = """\ |
| 19 | +Question: {question} |
| 20 | +Choices: |
| 21 | +{choices} |
| 22 | +Answer:""" |
| 23 | + |
| 24 | +OPEN_QUESTION_TEMPLATE = """\ |
| 25 | +{question}""" |
| 26 | + |
| 27 | +JUDGE_TEMPLATE = """\ |
| 28 | +You are evaluating an AI assistant's answer to a medical question. |
| 29 | +
|
| 30 | +<question>{question}</question> |
| 31 | +<reference_answer>{answer}</reference_answer> |
| 32 | +<assistant_answer>{response}</assistant_answer> |
| 33 | +
|
| 34 | +Is the assistant's answer medically equivalent to the reference answer? |
| 35 | +Consider synonyms, paraphrasing, and reasonable generalizations as correct. |
| 36 | +Answer [yes/no].""" |
| 37 | + |
| 38 | + |
| 39 | +def _parse_options(options_str: str | None) -> dict[str, str] | None: |
| 40 | + """Parse the options field from the dataset. |
| 41 | +
|
| 42 | + The options field can be a JSON string representing a dict or list, |
| 43 | + or it can be empty/None for open-ended questions. |
| 44 | + """ |
| 45 | + if not options_str or options_str.strip() in ("", "None", "null", "{}"): |
| 46 | + return None |
| 47 | + try: |
| 48 | + parsed = json.loads(options_str) |
| 49 | + except (json.JSONDecodeError, TypeError): |
| 50 | + return None |
| 51 | + |
| 52 | + if isinstance(parsed, dict): |
| 53 | + if not parsed: |
| 54 | + return None |
| 55 | + return {str(k): str(v) for k, v in parsed.items()} |
| 56 | + if isinstance(parsed, list): |
| 57 | + if not parsed: |
| 58 | + return None |
| 59 | + labels = [chr(ord("A") + i) for i in range(len(parsed))] |
| 60 | + return dict(zip(labels, [str(v) for v in parsed])) |
| 61 | + return None |
| 62 | + |
| 63 | + |
| 64 | +def _format_mcq_prompt(question: str, options: dict[str, str]) -> str: |
| 65 | + """Format a multiple-choice question prompt.""" |
| 66 | + choices = "\n".join(f"{k}. {v}" for k, v in options.items()) |
| 67 | + return MCQ_QUESTION_TEMPLATE.format(question=question, choices=choices) |
| 68 | + |
| 69 | + |
| 70 | +def load_environment( |
| 71 | + use_think: bool = False, |
| 72 | + system_prompt: Optional[str] = None, |
| 73 | + shuffle_answers: bool = False, |
| 74 | + shuffle_seed: int | None = 1618, |
| 75 | + answer_format: AnswerFormat | str = AnswerFormat.XML, |
| 76 | + judge_model: str = "gpt-4o-mini", |
| 77 | + judge_base_url: str | None = None, |
| 78 | + judge_api_key: str | None = None, |
| 79 | +) -> vf.Environment: |
| 80 | + """ |
| 81 | + MedReason medical reasoning evaluation environment. |
| 82 | +
|
| 83 | + Supports both multiple-choice and open-ended questions from the MedReason |
| 84 | + dataset (UCSC-VLAA/MedReason). MCQ items are graded by accuracy; open-ended |
| 85 | + items use LLM-as-a-Judge evaluation. |
| 86 | +
|
| 87 | + Args: |
| 88 | + use_think: Enable chain-of-thought reasoning with <think> tags. |
| 89 | + system_prompt: Custom system prompt override. |
| 90 | + shuffle_answers: Shuffle MCQ answer options. |
| 91 | + shuffle_seed: Seed for deterministic answer shuffling. |
| 92 | + answer_format: Answer format (xml or boxed). |
| 93 | + judge_model: Model to use for LLM-as-judge evaluation. |
| 94 | + judge_base_url: Base URL for judge API. |
| 95 | + judge_api_key: API key for judge model. |
| 96 | + """ |
| 97 | + ds = load_dataset("UCSC-VLAA/MedReason", split="train") |
| 98 | + |
| 99 | + # Set up judge for open-ended questions |
| 100 | + api_key = default_judge_api_key(judge_base_url) if judge_api_key is None else judge_api_key |
| 101 | + sampling_args, default_headers = judge_sampling_args_and_headers(judge_model, judge_base_url) |
| 102 | + judge_client = AsyncOpenAI(base_url=judge_base_url, api_key=api_key, default_headers=default_headers) |
| 103 | + judge_rubric = vf.JudgeRubric( |
| 104 | + judge_client=judge_client, |
| 105 | + judge_model=judge_model, |
| 106 | + judge_prompt="{question}", |
| 107 | + judge_sampling_args=sampling_args, |
| 108 | + ) |
| 109 | + |
| 110 | + def _map(ex, idx=None): |
| 111 | + question_text = ex["question"] |
| 112 | + answer_text = ex["answer"] |
| 113 | + options = _parse_options(ex.get("options")) |
| 114 | + |
| 115 | + if options: |
| 116 | + # MCQ: find gold letter by matching answer text to options |
| 117 | + gold_letter = None |
| 118 | + for letter, opt_text in options.items(): |
| 119 | + if opt_text.strip().lower() == answer_text.strip().lower(): |
| 120 | + gold_letter = letter |
| 121 | + break |
| 122 | + |
| 123 | + if gold_letter is None: |
| 124 | + # Answer is the letter itself |
| 125 | + candidate = answer_text.strip().upper() |
| 126 | + if candidate in options: |
| 127 | + gold_letter = candidate |
| 128 | + else: |
| 129 | + gold_letter = "A" |
| 130 | + |
| 131 | + if shuffle_answers and gold_letter in options: |
| 132 | + options, gold_letter, _ = randomize_multiple_choice( |
| 133 | + options=options, |
| 134 | + answer_choice=gold_letter, |
| 135 | + seed=shuffle_seed, |
| 136 | + row_id=ex.get("id_in_dataset", idx), |
| 137 | + ) |
| 138 | + |
| 139 | + return { |
| 140 | + "question": _format_mcq_prompt(question_text, options), |
| 141 | + "answer": gold_letter, |
| 142 | + "info": { |
| 143 | + "is_mcq": True, |
| 144 | + "answer_text": options.get(gold_letter, answer_text), |
| 145 | + "dataset_name": ex.get("dataset_name", ""), |
| 146 | + **({} if not shuffle_answers else {"options": options}), |
| 147 | + }, |
| 148 | + } |
| 149 | + else: |
| 150 | + # Open-ended question |
| 151 | + return { |
| 152 | + "question": OPEN_QUESTION_TEMPLATE.format(question=question_text), |
| 153 | + "answer": answer_text, |
| 154 | + "info": { |
| 155 | + "is_mcq": False, |
| 156 | + "dataset_name": ex.get("dataset_name", ""), |
| 157 | + "question_raw": question_text, |
| 158 | + }, |
| 159 | + } |
| 160 | + |
| 161 | + load_from_cache_file = not shuffle_answers |
| 162 | + eval_dataset = ds.map( |
| 163 | + _map, |
| 164 | + with_indices=True, |
| 165 | + remove_columns=ds.column_names, |
| 166 | + load_from_cache_file=load_from_cache_file, |
| 167 | + ) |
| 168 | + |
| 169 | + # Set up parser based on answer format |
| 170 | + answer_format = AnswerFormat(answer_format) if isinstance(answer_format, str) else answer_format |
| 171 | + if answer_format == AnswerFormat.XML: |
| 172 | + final_system_prompt = system_prompt or (THINK_XML_SYSTEM_PROMPT if use_think else XML_SYSTEM_PROMPT) |
| 173 | + parser_fields = ["think", "answer"] if use_think else ["answer"] |
| 174 | + parser = XMLParser(fields=parser_fields, answer_field="answer") |
| 175 | + elif answer_format == AnswerFormat.BOXED: |
| 176 | + parser = vf.ThinkParser(extract_boxed_answer) if use_think else vf.Parser(extract_boxed_answer) |
| 177 | + final_system_prompt = system_prompt or (THINK_BOXED_SYSTEM_PROMPT if use_think else BOXED_SYSTEM_PROMPT) |
| 178 | + else: |
| 179 | + raise ValueError(f"Unsupported answer format: {answer_format=}") |
| 180 | + |
| 181 | + async def medreason_reward_func( |
| 182 | + completion, |
| 183 | + answer, |
| 184 | + info: Info, |
| 185 | + state: State, |
| 186 | + **kwargs, |
| 187 | + ) -> float: |
| 188 | + """Unified reward: accuracy for MCQ, LLM judge for open-ended.""" |
| 189 | + is_mcq = info.get("is_mcq", False) |
| 190 | + |
| 191 | + if is_mcq: |
| 192 | + parsed_answer = parser.parse_answer(completion) or "" |
| 193 | + answer_text_val = info.get("answer_text", None) |
| 194 | + is_correct = multiple_choice_accuracy( |
| 195 | + llm_answer=parsed_answer, |
| 196 | + answer_letter=answer, |
| 197 | + answer_text=answer_text_val, |
| 198 | + ) |
| 199 | + return 1.0 if is_correct else 0.0 |
| 200 | + else: |
| 201 | + # Open-ended: use LLM judge |
| 202 | + parsed = parser.parse(completion, last=True) |
| 203 | + model_answer = getattr(parsed, "answer", None) |
| 204 | + |
| 205 | + if model_answer is not None: |
| 206 | + question_raw = info.get("question_raw", "") |
| 207 | + judge_prompt = JUDGE_TEMPLATE.format( |
| 208 | + question=question_raw, |
| 209 | + answer=answer, |
| 210 | + response=model_answer, |
| 211 | + ) |
| 212 | + judge_response = await judge_rubric.judge(judge_prompt, model_answer, answer, state) |
| 213 | + judge_response_clean = judge_response.strip().lower() |
| 214 | + else: |
| 215 | + judge_response_clean = "no" |
| 216 | + judge_response = "no answer" |
| 217 | + |
| 218 | + info.setdefault("judge_feedback", []).append( |
| 219 | + { |
| 220 | + "parsed": judge_response_clean, |
| 221 | + "raw_judge": str(judge_response), |
| 222 | + } |
| 223 | + ) |
| 224 | + |
| 225 | + if "yes" in judge_response_clean and "no" not in judge_response_clean: |
| 226 | + return 1.0 |
| 227 | + else: |
| 228 | + return 0.0 |
| 229 | + |
| 230 | + judge_rubric.add_reward_func(medreason_reward_func, weight=1.0) |
| 231 | + |
| 232 | + return vf.SingleTurnEnv( |
| 233 | + eval_dataset=eval_dataset, |
| 234 | + system_prompt=final_system_prompt, |
| 235 | + parser=parser, |
| 236 | + rubric=judge_rubric, |
| 237 | + ) |
0 commit comments