|
2 | 2 |
|
3 | 3 | ## 介绍 |
4 | 4 |
|
5 | | -本目录包含了采用MegEngine实现的经典网络结构,包括[RetinaNet](https://arxiv.org/pdf/1708.02002>)、[Faster R-CNN](https://arxiv.org/pdf/1612.03144.pdf)等,同时提供了在COCO2017数据集上的完整训练和测试代码。 |
| 5 | +本目录包含了采用MegEngine实现的如下经典网络结构,并提供了在COCO2017数据集上的完整训练和测试代码: |
| 6 | + |
| 7 | +- [RetinaNet](https://arxiv.org/abs/1708.02002) |
| 8 | +- [Faster R-CNN](https://arxiv.org/abs/1612.03144) |
| 9 | +- [FCOS](https://arxiv.org/abs/1904.01355) |
| 10 | +- [ATSS](https://arxiv.org/abs/1912.02424) |
6 | 11 |
|
7 | 12 | 网络在COCO2017验证集上的性能和结果如下: |
8 | 13 |
|
|
13 | 18 | | retinanet-resx101-coco-2x-800size | 42.7 | 2 | |
14 | 19 | | faster-rcnn-res50-coco-1x-800size | 38.0 | 2 | |
15 | 20 | | faster-rcnn-res101-coco-2x-800size | 42.5 | 2 | |
16 | | -| faster-rcnn-resx101-coco-2x-800size | 44.7 * | 2 | |
| 21 | +| faster-rcnn-resx101-coco-2x-800size | 43.6 | 2 | |
17 | 22 | | fcos-res50-coco-1x-800size | 39.7 | 2 | |
18 | 23 | | fcos-res101-coco-2x-800size | 44.1 | 2 | |
19 | | -| fcos-resx101-coco-2x-800size | 39.7 * | 2 | |
| 24 | +| fcos-resx101-coco-2x-800size | 44.9 | 2 | |
20 | 25 | | atss-res50-coco-1x-800size | 40.1 | 2 | |
21 | 26 | | atss-res101-coco-2x-800size | 44.5 | 2 | |
22 | 27 | | atss-resx101-coco-2x-800size | 45.9 | 2 | |
@@ -119,7 +124,7 @@ python3 tools/test.py -f configs/retinanet_res50_coco_1x_800size.py -n 8 \ |
119 | 124 |
|
120 | 125 | ## 参考文献 |
121 | 126 |
|
122 | | -- [Focal Loss for Dense Object Detection](https://arxiv.org/pdf/1708.02002) Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollár. Proceedings of the IEEE international conference on computer vision. 2017: 2980-2988. |
123 | | -- [Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks](https://arxiv.org/pdf/1506.01497.pdf) S. Ren, K. He, R. Girshick, and J. Sun. In: Neural Information Processing Systems(NIPS)(2015). |
124 | | -- [Feature Pyramid Networks for Object Detection](https://arxiv.org/pdf/1612.03144.pdf) T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 936-944, doi: 10.1109/CVPR.2017.106. |
125 | | -- [Microsoft COCO: Common Objects in Context](https://arxiv.org/pdf/1405.0312.pdf) Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Dollár, Piotr and Zitnick, C Lawrence, Lin T Y, Maire M, Belongie S, et al. European conference on computer vision. Springer, Cham, 2014: 740-755. |
| 127 | +- [Microsoft COCO: Common Objects in Context](https://arxiv.org/abs/1405.0312) Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Dollár, Piotr and Zitnick, C Lawrence, Lin T Y, Maire M, Belongie S, et al. European conference on computer vision. Springer, Cham, 2014: 740-755. |
| 128 | +- [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002) Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollár. Proceedings of the IEEE international conference on computer vision. 2017: 2980-2988. |
| 129 | +- [Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks](https://arxiv.org/abs/1506.01497) S. Ren, K. He, R. Girshick, and J. Sun. In: Neural Information Processing Systems(NIPS)(2015). |
| 130 | +- [Feature Pyramid Networks for Object Detection](https://arxiv.org/abs/1612.03144) T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 936-944, doi: 10.1109/CVPR.2017.106. |
0 commit comments