|
1 | 1 | """Parser for image_url content parts.""" |
2 | 2 |
|
| 3 | +import json |
| 4 | +import re |
| 5 | + |
3 | 6 | from typing import Any |
4 | 7 |
|
5 | 8 | from memos.embedders.base import BaseEmbedder |
6 | 9 | from memos.llms.base import BaseLLM |
7 | 10 | from memos.log import get_logger |
8 | | -from memos.memories.textual.item import SourceMessage, TextualMemoryItem |
| 11 | +from memos.memories.textual.item import ( |
| 12 | + SourceMessage, |
| 13 | + TextualMemoryItem, |
| 14 | + TreeNodeTextualMemoryMetadata, |
| 15 | +) |
| 16 | +from memos.templates.mem_reader_prompts import IMAGE_ANALYSIS_PROMPT_EN, IMAGE_ANALYSIS_PROMPT_ZH |
9 | 17 | from memos.types.openai_chat_completion_types import ChatCompletionContentPartImageParam |
10 | 18 |
|
11 | | -from .base import BaseMessageParser |
| 19 | +from .base import BaseMessageParser, _derive_key |
| 20 | +from .utils import detect_lang |
12 | 21 |
|
13 | 22 |
|
14 | 23 | logger = get_logger(__name__) |
@@ -43,7 +52,7 @@ def create_source( |
43 | 52 | detail = "auto" |
44 | 53 | return SourceMessage( |
45 | 54 | type="image", |
46 | | - content=f"[image_url]: {url}", |
| 55 | + content=url, |
47 | 56 | original_part=message, |
48 | 57 | url=url, |
49 | 58 | detail=detail, |
@@ -87,7 +96,262 @@ def parse_fine( |
87 | 96 | info: dict[str, Any], |
88 | 97 | **kwargs, |
89 | 98 | ) -> list[TextualMemoryItem]: |
90 | | - """Parse image_url in fine mode - placeholder for future vision model integration.""" |
91 | | - # Fine mode processing would use vision models to extract text from images |
92 | | - # For now, return empty list |
93 | | - return [] |
| 99 | + """ |
| 100 | + Parse image_url in fine mode using vision models to extract information from images. |
| 101 | +
|
| 102 | + Args: |
| 103 | + message: Image message to parse |
| 104 | + info: Dictionary containing user_id and session_id |
| 105 | + **kwargs: Additional parameters (e.g., context_items, custom_tags) |
| 106 | +
|
| 107 | + Returns: |
| 108 | + List of TextualMemoryItem objects extracted from the image |
| 109 | + """ |
| 110 | + if not self.llm: |
| 111 | + logger.warning("[ImageParser] LLM not available for fine mode processing") |
| 112 | + return [] |
| 113 | + |
| 114 | + # Extract image information |
| 115 | + if not isinstance(message, dict): |
| 116 | + logger.warning(f"[ImageParser] Expected dict, got {type(message)}") |
| 117 | + return [] |
| 118 | + |
| 119 | + image_url = message.get("image_url", {}) |
| 120 | + if isinstance(image_url, dict): |
| 121 | + url = image_url.get("url", "") |
| 122 | + detail = image_url.get("detail", "auto") |
| 123 | + else: |
| 124 | + url = str(image_url) |
| 125 | + detail = "auto" |
| 126 | + |
| 127 | + if not url: |
| 128 | + logger.warning("[ImageParser] No image URL found in message") |
| 129 | + return [] |
| 130 | + |
| 131 | + # Create source for this image |
| 132 | + source = self.create_source(message, info) |
| 133 | + |
| 134 | + # Get context items if available |
| 135 | + context_items = kwargs.get("context_items") |
| 136 | + |
| 137 | + # Determine language from context if available |
| 138 | + lang = "en" |
| 139 | + if context_items: |
| 140 | + for item in context_items: |
| 141 | + if hasattr(item, "memory") and item.memory: |
| 142 | + lang = detect_lang(item.memory) |
| 143 | + break |
| 144 | + |
| 145 | + # Select prompt based on language |
| 146 | + image_analysis_prompt = ( |
| 147 | + IMAGE_ANALYSIS_PROMPT_ZH if lang == "zh" else IMAGE_ANALYSIS_PROMPT_EN |
| 148 | + ) |
| 149 | + |
| 150 | + # Build messages with image content |
| 151 | + messages = [ |
| 152 | + { |
| 153 | + "role": "user", |
| 154 | + "content": [ |
| 155 | + {"type": "text", "text": image_analysis_prompt}, |
| 156 | + { |
| 157 | + "type": "image_url", |
| 158 | + "image_url": { |
| 159 | + "url": url, |
| 160 | + "detail": detail, |
| 161 | + }, |
| 162 | + }, |
| 163 | + ], |
| 164 | + } |
| 165 | + ] |
| 166 | + |
| 167 | + # Add context if available |
| 168 | + if context_items: |
| 169 | + context_text = "" |
| 170 | + for item in context_items: |
| 171 | + if hasattr(item, "memory") and item.memory: |
| 172 | + context_text += f"{item.memory}\n" |
| 173 | + if context_text: |
| 174 | + messages.insert( |
| 175 | + 0, |
| 176 | + { |
| 177 | + "role": "system", |
| 178 | + "content": f"Context from previous conversation:\n{context_text}", |
| 179 | + }, |
| 180 | + ) |
| 181 | + |
| 182 | + try: |
| 183 | + # Call LLM with vision model |
| 184 | + response_text = self.llm.generate(messages) |
| 185 | + if not response_text: |
| 186 | + logger.warning("[ImageParser] Empty response from LLM") |
| 187 | + return [] |
| 188 | + |
| 189 | + # Parse JSON response |
| 190 | + response_json = self._parse_json_result(response_text) |
| 191 | + |
| 192 | + # Extract memory items from response |
| 193 | + memory_items = [] |
| 194 | + memory_list = response_json.get("memory list", []) |
| 195 | + |
| 196 | + if not memory_list: |
| 197 | + logger.warning("[ImageParser] No memory items extracted from image") |
| 198 | + # Fallback: create a simple memory item with the summary |
| 199 | + summary = response_json.get( |
| 200 | + "summary", "Image analyzed but no specific memories extracted." |
| 201 | + ) |
| 202 | + if summary: |
| 203 | + memory_items.append( |
| 204 | + self._create_memory_item( |
| 205 | + value=summary, |
| 206 | + info=info, |
| 207 | + memory_type="LongTermMemory", |
| 208 | + tags=["image", "visual"], |
| 209 | + key=_derive_key(summary), |
| 210 | + sources=[source], |
| 211 | + background=summary, |
| 212 | + ) |
| 213 | + ) |
| 214 | + return memory_items |
| 215 | + |
| 216 | + # Create memory items from parsed response |
| 217 | + for mem_data in memory_list: |
| 218 | + try: |
| 219 | + # Normalize memory_type |
| 220 | + memory_type = ( |
| 221 | + mem_data.get("memory_type", "LongTermMemory") |
| 222 | + .replace("长期记忆", "LongTermMemory") |
| 223 | + .replace("用户记忆", "UserMemory") |
| 224 | + ) |
| 225 | + if memory_type not in ["LongTermMemory", "UserMemory"]: |
| 226 | + memory_type = "LongTermMemory" |
| 227 | + |
| 228 | + value = mem_data.get("value", "").strip() |
| 229 | + if not value: |
| 230 | + continue |
| 231 | + |
| 232 | + tags = mem_data.get("tags", []) |
| 233 | + if not isinstance(tags, list): |
| 234 | + tags = [] |
| 235 | + # Add image-related tags |
| 236 | + if "image" not in [t.lower() for t in tags]: |
| 237 | + tags.append("image") |
| 238 | + if "visual" not in [t.lower() for t in tags]: |
| 239 | + tags.append("visual") |
| 240 | + |
| 241 | + key = mem_data.get("key", "") |
| 242 | + background = response_json.get("summary", "") |
| 243 | + |
| 244 | + memory_item = self._create_memory_item( |
| 245 | + value=value, |
| 246 | + info=info, |
| 247 | + memory_type=memory_type, |
| 248 | + tags=tags, |
| 249 | + key=key if key else _derive_key(value), |
| 250 | + sources=[source], |
| 251 | + background=background, |
| 252 | + ) |
| 253 | + memory_items.append(memory_item) |
| 254 | + except Exception as e: |
| 255 | + logger.error(f"[ImageParser] Error creating memory item: {e}") |
| 256 | + continue |
| 257 | + |
| 258 | + return memory_items |
| 259 | + |
| 260 | + except Exception as e: |
| 261 | + logger.error(f"[ImageParser] Error processing image in fine mode: {e}") |
| 262 | + # Fallback: create a simple memory item |
| 263 | + fallback_value = f"Image analyzed: {url}" |
| 264 | + return [ |
| 265 | + self._create_memory_item( |
| 266 | + value=fallback_value, |
| 267 | + info=info, |
| 268 | + memory_type="LongTermMemory", |
| 269 | + tags=["image", "visual"], |
| 270 | + key=_derive_key(fallback_value), |
| 271 | + sources=[source], |
| 272 | + background="Image processing encountered an error.", |
| 273 | + ) |
| 274 | + ] |
| 275 | + |
| 276 | + def _parse_json_result(self, response_text: str) -> dict: |
| 277 | + """ |
| 278 | + Parse JSON result from LLM response. |
| 279 | + Similar to SimpleStructMemReader.parse_json_result. |
| 280 | + """ |
| 281 | + s = (response_text or "").strip() |
| 282 | + |
| 283 | + # Try to extract JSON from code blocks |
| 284 | + m = re.search(r"```(?:json)?\s*([\s\S]*?)```", s, flags=re.I) |
| 285 | + s = (m.group(1) if m else s.replace("```", "")).strip() |
| 286 | + |
| 287 | + # Find first { |
| 288 | + i = s.find("{") |
| 289 | + if i == -1: |
| 290 | + return {} |
| 291 | + s = s[i:].strip() |
| 292 | + |
| 293 | + try: |
| 294 | + return json.loads(s) |
| 295 | + except json.JSONDecodeError: |
| 296 | + pass |
| 297 | + |
| 298 | + # Try to find the last } or ] |
| 299 | + j = max(s.rfind("}"), s.rfind("]")) |
| 300 | + if j != -1: |
| 301 | + try: |
| 302 | + return json.loads(s[: j + 1]) |
| 303 | + except json.JSONDecodeError: |
| 304 | + pass |
| 305 | + |
| 306 | + # Try to close brackets |
| 307 | + def _cheap_close(t: str) -> str: |
| 308 | + t += "}" * max(0, t.count("{") - t.count("}")) |
| 309 | + t += "]" * max(0, t.count("[") - t.count("]")) |
| 310 | + return t |
| 311 | + |
| 312 | + t = _cheap_close(s) |
| 313 | + try: |
| 314 | + return json.loads(t) |
| 315 | + except json.JSONDecodeError as e: |
| 316 | + if "Invalid \\escape" in str(e): |
| 317 | + s = s.replace("\\", "\\\\") |
| 318 | + try: |
| 319 | + return json.loads(s) |
| 320 | + except json.JSONDecodeError: |
| 321 | + pass |
| 322 | + logger.error(f"[ImageParser] Failed to parse JSON: {e}\nResponse: {response_text}") |
| 323 | + return {} |
| 324 | + |
| 325 | + def _create_memory_item( |
| 326 | + self, |
| 327 | + value: str, |
| 328 | + info: dict[str, Any], |
| 329 | + memory_type: str, |
| 330 | + tags: list[str], |
| 331 | + key: str, |
| 332 | + sources: list[SourceMessage], |
| 333 | + background: str = "", |
| 334 | + ) -> TextualMemoryItem: |
| 335 | + """Create a TextualMemoryItem with the given parameters.""" |
| 336 | + info_ = info.copy() |
| 337 | + user_id = info_.pop("user_id", "") |
| 338 | + session_id = info_.pop("session_id", "") |
| 339 | + |
| 340 | + return TextualMemoryItem( |
| 341 | + memory=value, |
| 342 | + metadata=TreeNodeTextualMemoryMetadata( |
| 343 | + user_id=user_id, |
| 344 | + session_id=session_id, |
| 345 | + memory_type=memory_type, |
| 346 | + status="activated", |
| 347 | + tags=tags, |
| 348 | + key=key, |
| 349 | + embedding=self.embedder.embed([value])[0], |
| 350 | + usage=[], |
| 351 | + sources=sources, |
| 352 | + background=background, |
| 353 | + confidence=0.99, |
| 354 | + type="fact", |
| 355 | + info=info_, |
| 356 | + ), |
| 357 | + ) |
0 commit comments