|
| 1 | +from typing import Any |
| 2 | + |
| 3 | +from memos.configs.vec_db import MilvusVecDBConfig |
| 4 | +from memos.dependency import require_python_package |
| 5 | +from memos.log import get_logger |
| 6 | +from memos.vec_dbs.base import BaseVecDB |
| 7 | +from memos.vec_dbs.item import VecDBItem |
| 8 | + |
| 9 | + |
| 10 | +logger = get_logger(__name__) |
| 11 | + |
| 12 | + |
| 13 | +class MilvusVecDB(BaseVecDB): |
| 14 | + """Milvus vector database implementation.""" |
| 15 | + |
| 16 | + @require_python_package( |
| 17 | + import_name="pymilvus", |
| 18 | + install_command="pip install -U pymilvus", |
| 19 | + install_link="https://milvus.io/docs/install-pymilvus.md", |
| 20 | + ) |
| 21 | + def __init__(self, config: MilvusVecDBConfig): |
| 22 | + """Initialize the Milvus vector database and the collection.""" |
| 23 | + from pymilvus import MilvusClient |
| 24 | + self.config = config |
| 25 | + |
| 26 | + # Create Milvus client |
| 27 | + self.client = MilvusClient( |
| 28 | + uri=self.config.uri, user=self.config.user_name, password=self.config.password |
| 29 | + ) |
| 30 | + self.schema = self.create_schema() |
| 31 | + self.index_params = self.create_index() |
| 32 | + self.create_collection() |
| 33 | + |
| 34 | + def create_schema(self): |
| 35 | + """Create schema for the milvus collection.""" |
| 36 | + from pymilvus import DataType |
| 37 | + schema = self.client.create_schema(auto_id=False, enable_dynamic_field=True) |
| 38 | + schema.add_field( |
| 39 | + field_name="id", datatype=DataType.VARCHAR, max_length=65535, is_primary=True |
| 40 | + ) |
| 41 | + schema.add_field( |
| 42 | + field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=self.config.vector_dimension |
| 43 | + ) |
| 44 | + schema.add_field(field_name="payload", datatype=DataType.JSON) |
| 45 | + |
| 46 | + return schema |
| 47 | + |
| 48 | + def create_index(self): |
| 49 | + """Create index for the milvus collection.""" |
| 50 | + index_params = self.client.prepare_index_params() |
| 51 | + index_params.add_index( |
| 52 | + field_name="vector", index_type="FLAT", metric_type=self._get_metric_type() |
| 53 | + ) |
| 54 | + |
| 55 | + return index_params |
| 56 | + |
| 57 | + def create_collection(self) -> None: |
| 58 | + """Create a new collection with specified parameters.""" |
| 59 | + for collection_name in self.config.collection_name: |
| 60 | + if self.collection_exists(collection_name): |
| 61 | + logger.warning(f"Collection '{collection_name}' already exists. Skipping creation.") |
| 62 | + continue |
| 63 | + |
| 64 | + self.client.create_collection( |
| 65 | + collection_name=collection_name, |
| 66 | + dimension=self.config.vector_dimension, |
| 67 | + metric_type=self._get_metric_type(), |
| 68 | + schema=self.schema, |
| 69 | + index_params=self.index_params, |
| 70 | + ) |
| 71 | + |
| 72 | + logger.info( |
| 73 | + f"Collection '{collection_name}' created with {self.config.vector_dimension} dimensions." |
| 74 | + ) |
| 75 | + |
| 76 | + def create_collection_by_name(self, collection_name: str) -> None: |
| 77 | + """Create a new collection with specified parameters.""" |
| 78 | + if self.collection_exists(collection_name): |
| 79 | + logger.warning(f"Collection '{collection_name}' already exists. Skipping creation.") |
| 80 | + return |
| 81 | + |
| 82 | + self.client.create_collection( |
| 83 | + collection_name=collection_name, |
| 84 | + dimension=self.config.vector_dimension, |
| 85 | + metric_type=self._get_metric_type(), |
| 86 | + schema=self.schema, |
| 87 | + index_params=self.index_params, |
| 88 | + ) |
| 89 | + |
| 90 | + def list_collections(self) -> list[str]: |
| 91 | + """List all collections.""" |
| 92 | + return self.client.list_collections() |
| 93 | + |
| 94 | + def delete_collection(self, name: str) -> None: |
| 95 | + """Delete a collection.""" |
| 96 | + self.client.drop_collection(name) |
| 97 | + |
| 98 | + def collection_exists(self, name: str) -> bool: |
| 99 | + """Check if a collection exists.""" |
| 100 | + return self.client.has_collection(collection_name=name) |
| 101 | + |
| 102 | + def search( |
| 103 | + self, |
| 104 | + query_vector: list[float], |
| 105 | + collection_name: str, |
| 106 | + top_k: int, |
| 107 | + filter: dict[str, Any] | None = None, |
| 108 | + ) -> list[VecDBItem]: |
| 109 | + """ |
| 110 | + Search for similar items in the database. |
| 111 | +
|
| 112 | + Args: |
| 113 | + query_vector: Single vector to search |
| 114 | + collection_name: Name of the collection to search |
| 115 | + top_k: Number of results to return |
| 116 | + filter: Payload filters |
| 117 | +
|
| 118 | + Returns: |
| 119 | + List of search results with distance scores and payloads. |
| 120 | + """ |
| 121 | + # Convert filter to Milvus expression |
| 122 | + expr = self._dict_to_expr(filter) if filter else "" |
| 123 | + |
| 124 | + results = self.client.search( |
| 125 | + collection_name=collection_name, |
| 126 | + data=[query_vector], |
| 127 | + limit=top_k, |
| 128 | + filter=expr, |
| 129 | + output_fields=["*"], # Return all fields |
| 130 | + ) |
| 131 | + |
| 132 | + items = [] |
| 133 | + for hit in results[0]: |
| 134 | + entity = hit.get("entity", {}) |
| 135 | + |
| 136 | + items.append( |
| 137 | + VecDBItem( |
| 138 | + id=str(hit["id"]), |
| 139 | + vector=entity.get("vector"), |
| 140 | + payload=entity.get("payload", {}), |
| 141 | + score=1 - float(hit["distance"]), |
| 142 | + ) |
| 143 | + ) |
| 144 | + |
| 145 | + logger.info(f"Milvus search completed with {len(items)} results.") |
| 146 | + return items |
| 147 | + |
| 148 | + def _dict_to_expr(self, filter_dict: dict[str, Any]) -> str: |
| 149 | + """Convert a dictionary filter to a Milvus expression string.""" |
| 150 | + if not filter_dict: |
| 151 | + return "" |
| 152 | + |
| 153 | + conditions = [] |
| 154 | + for field, value in filter_dict.items(): |
| 155 | + # Skip None values as they cause Milvus query syntax errors |
| 156 | + if value is None: |
| 157 | + continue |
| 158 | + # For JSON fields, we need to use payload["field"] syntax |
| 159 | + elif isinstance(value, str): |
| 160 | + conditions.append(f"payload['{field}'] == '{value}'") |
| 161 | + elif isinstance(value, list) and len(value) == 0: |
| 162 | + # Skip empty lists as they cause Milvus query syntax errors |
| 163 | + continue |
| 164 | + elif isinstance(value, list) and len(value) > 0: |
| 165 | + conditions.append(f"payload['{field}'] in {value}") |
| 166 | + else: |
| 167 | + conditions.append(f"payload['{field}'] == '{value}'") |
| 168 | + return " and ".join(conditions) |
| 169 | + |
| 170 | + def _get_metric_type(self) -> str: |
| 171 | + """Get the metric type for search.""" |
| 172 | + metric_map = { |
| 173 | + "cosine": "COSINE", |
| 174 | + "euclidean": "L2", |
| 175 | + "dot": "IP", |
| 176 | + } |
| 177 | + return metric_map.get(self.config.distance_metric, "L2") |
| 178 | + |
| 179 | + def get_by_id(self, collection_name: str, id: str) -> VecDBItem | None: |
| 180 | + """Get a single item by ID.""" |
| 181 | + results = self.client.get( |
| 182 | + collection_name=collection_name, |
| 183 | + ids=[id], |
| 184 | + ) |
| 185 | + |
| 186 | + if not results: |
| 187 | + return None |
| 188 | + |
| 189 | + entity = results[0] |
| 190 | + payload = {k: v for k, v in entity.items() if k not in ["id", "vector", "score"]} |
| 191 | + |
| 192 | + return VecDBItem( |
| 193 | + id=entity["id"], |
| 194 | + vector=entity.get("vector"), |
| 195 | + payload=payload, |
| 196 | + ) |
| 197 | + |
| 198 | + def get_by_ids(self, collection_name: str, ids: list[str]) -> list[VecDBItem]: |
| 199 | + """Get multiple items by their IDs.""" |
| 200 | + results = self.client.get( |
| 201 | + collection_name=collection_name, |
| 202 | + ids=ids, |
| 203 | + ) |
| 204 | + |
| 205 | + if not results: |
| 206 | + return [] |
| 207 | + |
| 208 | + items = [] |
| 209 | + for entity in results: |
| 210 | + payload = {k: v for k, v in entity.items() if k not in ["id", "vector", "score"]} |
| 211 | + items.append( |
| 212 | + VecDBItem( |
| 213 | + id=entity["id"], |
| 214 | + vector=entity.get("vector"), |
| 215 | + payload=payload, |
| 216 | + ) |
| 217 | + ) |
| 218 | + |
| 219 | + return items |
| 220 | + |
| 221 | + def get_by_filter( |
| 222 | + self, collection_name: str, filter: dict[str, Any], scroll_limit: int = 100 |
| 223 | + ) -> list[VecDBItem]: |
| 224 | + """ |
| 225 | + Retrieve all items that match the given filter criteria using query_iterator. |
| 226 | +
|
| 227 | + Args: |
| 228 | + filter: Payload filters to match against stored items |
| 229 | + scroll_limit: Maximum number of items to retrieve per batch (batch_size) |
| 230 | +
|
| 231 | + Returns: |
| 232 | + List of items including vectors and payload that match the filter |
| 233 | + """ |
| 234 | + expr = self._dict_to_expr(filter) if filter else "" |
| 235 | + all_items = [] |
| 236 | + |
| 237 | + # Use query_iterator for efficient pagination |
| 238 | + iterator = self.client.query_iterator( |
| 239 | + collection_name=collection_name, |
| 240 | + filter=expr, |
| 241 | + batch_size=scroll_limit, |
| 242 | + output_fields=["*"], # Include all fields including payload |
| 243 | + ) |
| 244 | + |
| 245 | + # Iterate through all batches |
| 246 | + try: |
| 247 | + while True: |
| 248 | + batch_results = iterator.next() |
| 249 | + |
| 250 | + if not batch_results: |
| 251 | + break |
| 252 | + |
| 253 | + # Convert batch results to VecDBItem objects |
| 254 | + for entity in batch_results: |
| 255 | + # Extract the actual payload from Milvus entity |
| 256 | + payload = entity.get("payload", {}) |
| 257 | + all_items.append( |
| 258 | + VecDBItem( |
| 259 | + id=entity["id"], |
| 260 | + vector=entity.get("vector"), |
| 261 | + payload=payload, |
| 262 | + ) |
| 263 | + ) |
| 264 | + except Exception as e: |
| 265 | + logger.warning( |
| 266 | + f"Error during Milvus query iteration: {e}. Returning {len(all_items)} items found so far." |
| 267 | + ) |
| 268 | + finally: |
| 269 | + # Close the iterator |
| 270 | + iterator.close() |
| 271 | + |
| 272 | + logger.info(f"Milvus retrieve by filter completed with {len(all_items)} results.") |
| 273 | + return all_items |
| 274 | + |
| 275 | + def get_all(self, collection_name: str, scroll_limit=100) -> list[VecDBItem]: |
| 276 | + """Retrieve all items in the vector database.""" |
| 277 | + return self.get_by_filter(collection_name, {}, scroll_limit=scroll_limit) |
| 278 | + |
| 279 | + def count(self, collection_name: str, filter: dict[str, Any] | None = None) -> int: |
| 280 | + """Count items in the database, optionally with filter.""" |
| 281 | + if filter: |
| 282 | + # If there's a filter, use query method |
| 283 | + expr = self._dict_to_expr(filter) if filter else "" |
| 284 | + results = self.client.query( |
| 285 | + collection_name=collection_name, |
| 286 | + filter=expr, |
| 287 | + output_fields=["id"], |
| 288 | + ) |
| 289 | + return len(results) |
| 290 | + else: |
| 291 | + # For counting all items, use get_collection_stats for accurate count |
| 292 | + stats = self.client.get_collection_stats(collection_name) |
| 293 | + # Extract row count from stats - stats is a dict, not a list |
| 294 | + return int(stats.get("row_count", 0)) |
| 295 | + |
| 296 | + def add(self, collection_name: str, data: list[VecDBItem | dict[str, Any]]) -> None: |
| 297 | + """ |
| 298 | + Add data to the vector database. |
| 299 | +
|
| 300 | + Args: |
| 301 | + data: List of VecDBItem objects or dictionaries containing: |
| 302 | + - 'id': unique identifier |
| 303 | + - 'vector': embedding vector |
| 304 | + - 'payload': additional fields for filtering/retrieval |
| 305 | + """ |
| 306 | + entities = [] |
| 307 | + for item in data: |
| 308 | + if isinstance(item, dict): |
| 309 | + item = item.copy() |
| 310 | + item = VecDBItem.from_dict(item) |
| 311 | + |
| 312 | + # Prepare entity data |
| 313 | + entity = { |
| 314 | + "id": item.id, |
| 315 | + "vector": item.vector, |
| 316 | + "payload": item.payload if item.payload else {}, |
| 317 | + } |
| 318 | + |
| 319 | + entities.append(entity) |
| 320 | + |
| 321 | + # Use upsert to be safe (insert or update) |
| 322 | + self.client.upsert( |
| 323 | + collection_name=collection_name, |
| 324 | + data=entities, |
| 325 | + ) |
| 326 | + |
| 327 | + def update(self, collection_name: str, id: str, data: VecDBItem | dict[str, Any]) -> None: |
| 328 | + """Update an item in the vector database.""" |
| 329 | + if isinstance(data, dict): |
| 330 | + data = data.copy() |
| 331 | + data = VecDBItem.from_dict(data) |
| 332 | + |
| 333 | + # Use upsert for updates |
| 334 | + self.upsert(collection_name, [data]) |
| 335 | + |
| 336 | + def ensure_payload_indexes(self, fields: list[str]) -> None: |
| 337 | + """ |
| 338 | + Create payload indexes for specified fields in the collection. |
| 339 | + This is idempotent: it will skip if index already exists. |
| 340 | +
|
| 341 | + Args: |
| 342 | + fields (list[str]): List of field names to index (as keyword). |
| 343 | + """ |
| 344 | + # Note: Milvus doesn't have the same concept of payload indexes as Qdrant |
| 345 | + # Field indexes are created automatically for scalar fields |
| 346 | + logger.info(f"Milvus automatically indexes scalar fields: {fields}") |
| 347 | + |
| 348 | + def upsert(self, collection_name: str, data: list[VecDBItem | dict[str, Any]]) -> None: |
| 349 | + """ |
| 350 | + Add or update data in the vector database. |
| 351 | +
|
| 352 | + If an item with the same ID exists, it will be updated. |
| 353 | + Otherwise, it will be added as a new item. |
| 354 | + """ |
| 355 | + # Reuse add method since it already uses upsert |
| 356 | + self.add(collection_name, data) |
| 357 | + |
| 358 | + def delete(self, collection_name: str, ids: list[str]) -> None: |
| 359 | + """Delete items from the vector database.""" |
| 360 | + if not ids: |
| 361 | + return |
| 362 | + self.client.delete( |
| 363 | + collection_name=collection_name, |
| 364 | + ids=ids, |
| 365 | + ) |
0 commit comments