|
| 1 | +import unittest |
| 2 | + |
| 3 | +from unittest.mock import MagicMock, patch |
| 4 | + |
| 5 | +from memos.configs.embedder import UniversalAPIEmbedderConfig |
| 6 | +from memos.embedders.universal_api import UniversalAPIEmbedder |
| 7 | + |
| 8 | + |
| 9 | +class TestUniversalAPIEmbedder(unittest.TestCase): |
| 10 | + @patch("memos.embedders.universal_api.OpenAIClient") |
| 11 | + def test_embed_single_text(self, mock_openai_client): |
| 12 | + """Test embedding a single text with OpenAI provider.""" |
| 13 | + # Mock the embeddings.create return value |
| 14 | + mock_response = MagicMock() |
| 15 | + mock_response.data = [MagicMock(embedding=[0.1, 0.2, 0.3, 0.4])] |
| 16 | + mock_openai_client.return_value.embeddings.create.return_value = mock_response |
| 17 | + |
| 18 | + config = UniversalAPIEmbedderConfig( |
| 19 | + provider="openai", |
| 20 | + api_key="fake-api-key", |
| 21 | + base_url="https://api.openai.com/v1", |
| 22 | + model_name_or_path="text-embedding-3-large", |
| 23 | + ) |
| 24 | + |
| 25 | + embedder = UniversalAPIEmbedder(config) |
| 26 | + text = ["Test input for embedding."] |
| 27 | + result = embedder.embed(text) |
| 28 | + |
| 29 | + # Assert OpenAIClient was created with proper args |
| 30 | + mock_openai_client.assert_called_once_with( |
| 31 | + api_key="fake-api-key", |
| 32 | + base_url="https://api.openai.com/v1", |
| 33 | + ) |
| 34 | + |
| 35 | + # Assert embeddings.create called with correct params |
| 36 | + embedder.client.embeddings.create.assert_called_once_with( |
| 37 | + model="text-embedding-3-large", |
| 38 | + input=text, |
| 39 | + ) |
| 40 | + |
| 41 | + self.assertEqual(len(result[0]), 4) |
| 42 | + |
| 43 | + @patch("memos.embedders.universal_api.OpenAIClient") |
| 44 | + def test_embed_batch_text(self, mock_openai_client): |
| 45 | + """Test embedding multiple texts at once with OpenAI provider.""" |
| 46 | + # Mock response for multiple texts |
| 47 | + mock_response = MagicMock() |
| 48 | + mock_response.data = [ |
| 49 | + MagicMock(embedding=[0.1, 0.2]), |
| 50 | + MagicMock(embedding=[0.3, 0.4]), |
| 51 | + MagicMock(embedding=[0.5, 0.6]), |
| 52 | + ] |
| 53 | + mock_openai_client.return_value.embeddings.create.return_value = mock_response |
| 54 | + |
| 55 | + config = UniversalAPIEmbedderConfig( |
| 56 | + provider="openai", |
| 57 | + api_key="fake-api-key", |
| 58 | + base_url="https://api.openai.com/v1", |
| 59 | + model_name_or_path="text-embedding-3-large", |
| 60 | + ) |
| 61 | + |
| 62 | + embedder = UniversalAPIEmbedder(config) |
| 63 | + texts = ["First text.", "Second text.", "Third text."] |
| 64 | + result = embedder.embed(texts) |
| 65 | + |
| 66 | + embedder.client.embeddings.create.assert_called_once_with( |
| 67 | + model="text-embedding-3-large", |
| 68 | + input=texts, |
| 69 | + ) |
| 70 | + |
| 71 | + self.assertEqual(len(result), 3) |
| 72 | + self.assertEqual(result[0], [0.1, 0.2]) |
| 73 | + |
| 74 | + |
| 75 | +if __name__ == "__main__": |
| 76 | + unittest.main() |
0 commit comments