|
| 1 | +import sys |
| 2 | + |
| 3 | +from collections import defaultdict |
| 4 | +from pathlib import Path |
| 5 | + |
| 6 | +from memos.api.routers.server_router import mem_scheduler |
| 7 | +from memos.mem_scheduler.schemas.message_schemas import ScheduleMessageItem |
| 8 | + |
| 9 | + |
| 10 | +FILE_PATH = Path(__file__).absolute() |
| 11 | +BASE_DIR = FILE_PATH.parent.parent.parent |
| 12 | +sys.path.insert(0, str(BASE_DIR)) |
| 13 | + |
| 14 | + |
| 15 | +def make_message(user_id: str, mem_cube_id: str, label: str, idx: int | str) -> ScheduleMessageItem: |
| 16 | + return ScheduleMessageItem( |
| 17 | + item_id=f"{user_id}:{mem_cube_id}:{label}:{idx}", |
| 18 | + user_id=user_id, |
| 19 | + mem_cube_id=mem_cube_id, |
| 20 | + label=label, |
| 21 | + content=f"msg-{idx} for {user_id}/{mem_cube_id}/{label}", |
| 22 | + ) |
| 23 | + |
| 24 | + |
| 25 | +def seed_messages_for_test_fairness(queue, combos, per_stream): |
| 26 | + # send overwhelm message by one user |
| 27 | + (u, c, label) = combos[0] |
| 28 | + task_target = 100 |
| 29 | + print(f"{u}:{c}:{label} submit {task_target} messages") |
| 30 | + for i in range(task_target): |
| 31 | + msg = make_message(u, c, label, f"overwhelm_{i}") |
| 32 | + queue.submit_messages(msg) |
| 33 | + |
| 34 | + for u, c, label in combos: |
| 35 | + print(f"{u}:{c}:{label} submit {per_stream} messages") |
| 36 | + for i in range(per_stream): |
| 37 | + msg = make_message(u, c, label, i) |
| 38 | + queue.submit_messages(msg) |
| 39 | + print("======= seed_messages Done ===========") |
| 40 | + |
| 41 | + |
| 42 | +def count_by_stream(messages): |
| 43 | + counts = defaultdict(int) |
| 44 | + for m in messages: |
| 45 | + key = f"{m.user_id}:{m.mem_cube_id}:{m.label}" |
| 46 | + counts[key] += 1 |
| 47 | + return counts |
| 48 | + |
| 49 | + |
| 50 | +def run_fair_redis_schedule(batch_size: int = 3): |
| 51 | + print("=== Redis Fairness Demo ===") |
| 52 | + print(f"use_redis_queue: {mem_scheduler.use_redis_queue}") |
| 53 | + mem_scheduler.consume_batch = batch_size |
| 54 | + queue = mem_scheduler.memos_message_queue |
| 55 | + |
| 56 | + # Isolate and clear queue |
| 57 | + queue.clear() |
| 58 | + |
| 59 | + # Define multiple streams: (user_id, mem_cube_id, task_label) |
| 60 | + combos = [ |
| 61 | + ("u1", "u1", "labelX"), |
| 62 | + ("u1", "u1", "labelY"), |
| 63 | + ("u2", "u2", "labelX"), |
| 64 | + ("u2", "u2", "labelY"), |
| 65 | + ] |
| 66 | + per_stream = 5 |
| 67 | + |
| 68 | + # Seed messages evenly across streams |
| 69 | + seed_messages_for_test_fairness(queue, combos, per_stream) |
| 70 | + |
| 71 | + # Compute target batch size (fair split across streams) |
| 72 | + print(f"Request batch_size={batch_size} for {len(combos)} streams") |
| 73 | + |
| 74 | + for _ in range(len(combos)): |
| 75 | + # Fetch one brokered pack |
| 76 | + msgs = queue.get_messages(batch_size=batch_size) |
| 77 | + print(f"Fetched {len(msgs)} messages in first pack") |
| 78 | + |
| 79 | + # Check fairness: counts per stream |
| 80 | + counts = count_by_stream(msgs) |
| 81 | + for k in sorted(counts): |
| 82 | + print(f"{k}: {counts[k]}") |
| 83 | + |
| 84 | + |
| 85 | +if __name__ == "__main__": |
| 86 | + # task 1 fair redis schedule |
| 87 | + run_fair_redis_schedule() |
0 commit comments