|
| 1 | +import os |
| 2 | +import time |
| 3 | +import uuid |
| 4 | + |
| 5 | +from datetime import datetime |
| 6 | + |
| 7 | +from dotenv import load_dotenv |
| 8 | + |
| 9 | +from memos.configs.mem_cube import GeneralMemCubeConfig |
| 10 | +from memos.configs.mem_os import MOSConfig |
| 11 | +from memos.mem_cube.general import GeneralMemCube |
| 12 | +from memos.mem_os.main import MOS |
| 13 | + |
| 14 | + |
| 15 | +load_dotenv() |
| 16 | + |
| 17 | +# 1. Create MOS Config and set openai config |
| 18 | +print(f"🚀 [{datetime.now().strftime('%H:%M:%S')}] Starting to create MOS configuration...") |
| 19 | +start_time = time.time() |
| 20 | + |
| 21 | +user_name = str(uuid.uuid4()) |
| 22 | +print(user_name) |
| 23 | + |
| 24 | +# 1.1 Set openai config |
| 25 | +openapi_config = { |
| 26 | + "model_name_or_path": "gpt-4o-mini", |
| 27 | + "temperature": 0.8, |
| 28 | + "max_tokens": 1024, |
| 29 | + "top_p": 0.9, |
| 30 | + "top_k": 50, |
| 31 | + "remove_think_prefix": True, |
| 32 | + "api_key": os.getenv("OPENAI_API_KEY", "sk-xxxxx"), |
| 33 | + "api_base": os.getenv("OPENAI_API_BASE", "https://api.openai.com/v1"), |
| 34 | +} |
| 35 | +embedder_config = { |
| 36 | + "backend": "universal_api", |
| 37 | + "config": { |
| 38 | + "provider": "openai", |
| 39 | + "api_key": os.getenv("OPENAI_API_KEY", "sk-xxxxx"), |
| 40 | + "model_name_or_path": "text-embedding-3-large", |
| 41 | + "base_url": os.getenv("OPENAI_API_BASE", "https://api.openai.com/v1"), |
| 42 | + }, |
| 43 | +} |
| 44 | +EMBEDDING_DIMENSION = 3072 |
| 45 | + |
| 46 | +# 1.2 Set neo4j config |
| 47 | +neo4j_uri = os.getenv("NEO4J_URI", "bolt://localhost:7687") |
| 48 | + |
| 49 | +# 1.3 Create MOS Config |
| 50 | +config = { |
| 51 | + "user_id": user_name, |
| 52 | + "chat_model": { |
| 53 | + "backend": "openai", |
| 54 | + "config": openapi_config, |
| 55 | + }, |
| 56 | + "mem_reader": { |
| 57 | + "backend": "simple_struct", |
| 58 | + "config": { |
| 59 | + "llm": { |
| 60 | + "backend": "openai", |
| 61 | + "config": openapi_config, |
| 62 | + }, |
| 63 | + "embedder": embedder_config, |
| 64 | + "chunker": { |
| 65 | + "backend": "sentence", |
| 66 | + "config": { |
| 67 | + "tokenizer_or_token_counter": "gpt2", |
| 68 | + "chunk_size": 512, |
| 69 | + "chunk_overlap": 128, |
| 70 | + "min_sentences_per_chunk": 1, |
| 71 | + }, |
| 72 | + }, |
| 73 | + }, |
| 74 | + }, |
| 75 | + "max_turns_window": 20, |
| 76 | + "top_k": 5, |
| 77 | + "enable_textual_memory": True, |
| 78 | + "enable_activation_memory": False, |
| 79 | + "enable_parametric_memory": False, |
| 80 | +} |
| 81 | + |
| 82 | +mos_config = MOSConfig(**config) |
| 83 | +# you can set PRO_MODE to True to enable CoT enhancement mos_config.PRO_MODE = True |
| 84 | +mos = MOS(mos_config) |
| 85 | + |
| 86 | +print( |
| 87 | + f"✅ [{datetime.now().strftime('%H:%M:%S')}] MOS configuration created successfully, time elapsed: {time.time() - start_time:.2f}s\n" |
| 88 | +) |
| 89 | + |
| 90 | +# 2. Initialize memory cube |
| 91 | +print(f"🚀 [{datetime.now().strftime('%H:%M:%S')}] Starting to initialize MemCube configuration...") |
| 92 | +start_time = time.time() |
| 93 | + |
| 94 | +config = GeneralMemCubeConfig.model_validate( |
| 95 | + { |
| 96 | + "user_id": user_name, |
| 97 | + "cube_id": f"{user_name}", |
| 98 | + "text_mem": { |
| 99 | + "backend": "tree_text", |
| 100 | + "config": { |
| 101 | + "extractor_llm": { |
| 102 | + "backend": "openai", |
| 103 | + "config": openapi_config, |
| 104 | + }, |
| 105 | + "dispatcher_llm": { |
| 106 | + "backend": "openai", |
| 107 | + "config": openapi_config, |
| 108 | + }, |
| 109 | + "embedder": embedder_config, |
| 110 | + "graph_db": { |
| 111 | + "backend": "neo4j-community", |
| 112 | + "config": { |
| 113 | + "uri": neo4j_uri, |
| 114 | + "user": "neo4j", |
| 115 | + "password": "12345678", |
| 116 | + "db_name": "neo4j", |
| 117 | + "user_name": "alice", |
| 118 | + "use_multi_db": False, |
| 119 | + "auto_create": False, |
| 120 | + "embedding_dimension": EMBEDDING_DIMENSION, |
| 121 | + "vec_config": { |
| 122 | + "backend": "qdrant", |
| 123 | + "config": { |
| 124 | + "collection_name": "neo4j_vec_db", |
| 125 | + "vector_dimension": EMBEDDING_DIMENSION, |
| 126 | + "distance_metric": "cosine", |
| 127 | + "host": "localhost", |
| 128 | + "port": 6333, |
| 129 | + }, |
| 130 | + }, |
| 131 | + }, |
| 132 | + }, |
| 133 | + "reorganize": True, |
| 134 | + }, |
| 135 | + }, |
| 136 | + "act_mem": {}, |
| 137 | + "para_mem": {}, |
| 138 | + }, |
| 139 | +) |
| 140 | + |
| 141 | +print( |
| 142 | + f"✅ [{datetime.now().strftime('%H:%M:%S')}] MemCube configuration initialization completed, time elapsed: {time.time() - start_time:.2f}s\n" |
| 143 | +) |
| 144 | + |
| 145 | +# 3. Initialize the MemCube with the configuration |
| 146 | +print(f"🚀 [{datetime.now().strftime('%H:%M:%S')}] Starting to create MemCube instance...") |
| 147 | +start_time = time.time() |
| 148 | + |
| 149 | +mem_cube = GeneralMemCube(config) |
| 150 | +try: |
| 151 | + mem_cube.dump(f"/tmp/{user_name}/") |
| 152 | + print( |
| 153 | + f"✅ [{datetime.now().strftime('%H:%M:%S')}] MemCube created and saved successfully, time elapsed: {time.time() - start_time:.2f}s\n" |
| 154 | + ) |
| 155 | +except Exception as e: |
| 156 | + print( |
| 157 | + f"❌ [{datetime.now().strftime('%H:%M:%S')}] MemCube save failed: {e}, time elapsed: {time.time() - start_time:.2f}s\n" |
| 158 | + ) |
| 159 | + |
| 160 | +# 4. Register the MemCube |
| 161 | +print(f"🚀 [{datetime.now().strftime('%H:%M:%S')}] Starting to register MemCube...") |
| 162 | +start_time = time.time() |
| 163 | + |
| 164 | +mos.register_mem_cube(f"/tmp/{user_name}", mem_cube_id=user_name) |
| 165 | + |
| 166 | +print( |
| 167 | + f"✅ [{datetime.now().strftime('%H:%M:%S')}] MemCube registration completed, time elapsed: {time.time() - start_time:.2f}s\n" |
| 168 | +) |
| 169 | + |
| 170 | +# 5. Add, get, search memory |
| 171 | +print(f"🚀 [{datetime.now().strftime('%H:%M:%S')}] Starting to add single memory...") |
| 172 | +start_time = time.time() |
| 173 | + |
| 174 | +mos.add(memory_content="I like playing football.") |
| 175 | + |
| 176 | +print( |
| 177 | + f"✅ [{datetime.now().strftime('%H:%M:%S')}] Single memory added successfully, time elapsed: {time.time() - start_time:.2f}s" |
| 178 | +) |
| 179 | + |
| 180 | +print(f"🚀 [{datetime.now().strftime('%H:%M:%S')}] Starting to get all memories...") |
| 181 | +start_time = time.time() |
| 182 | + |
| 183 | +get_all_results = mos.get_all() |
| 184 | + |
| 185 | + |
| 186 | +# Filter out embedding fields, keeping only necessary fields |
| 187 | +def filter_memory_data(memories_data): |
| 188 | + filtered_data = {} |
| 189 | + for key, value in memories_data.items(): |
| 190 | + if key == "text_mem": |
| 191 | + filtered_data[key] = [] |
| 192 | + for mem_group in value: |
| 193 | + # Check if it's the new data structure (list of TextualMemoryItem objects) |
| 194 | + if "memories" in mem_group and isinstance(mem_group["memories"], list): |
| 195 | + # New data structure: directly a list of TextualMemoryItem objects |
| 196 | + filtered_memories = [] |
| 197 | + for memory_item in mem_group["memories"]: |
| 198 | + # Create filtered dictionary |
| 199 | + filtered_item = { |
| 200 | + "id": memory_item.id, |
| 201 | + "memory": memory_item.memory, |
| 202 | + "metadata": {}, |
| 203 | + } |
| 204 | + # Filter metadata, excluding embedding |
| 205 | + if hasattr(memory_item, "metadata") and memory_item.metadata: |
| 206 | + for attr_name in dir(memory_item.metadata): |
| 207 | + if not attr_name.startswith("_") and attr_name != "embedding": |
| 208 | + attr_value = getattr(memory_item.metadata, attr_name) |
| 209 | + if not callable(attr_value): |
| 210 | + filtered_item["metadata"][attr_name] = attr_value |
| 211 | + filtered_memories.append(filtered_item) |
| 212 | + |
| 213 | + filtered_group = { |
| 214 | + "cube_id": mem_group.get("cube_id", ""), |
| 215 | + "memories": filtered_memories, |
| 216 | + } |
| 217 | + filtered_data[key].append(filtered_group) |
| 218 | + else: |
| 219 | + # Old data structure: dictionary with nodes and edges |
| 220 | + filtered_group = { |
| 221 | + "memories": {"nodes": [], "edges": mem_group["memories"].get("edges", [])} |
| 222 | + } |
| 223 | + for node in mem_group["memories"].get("nodes", []): |
| 224 | + filtered_node = { |
| 225 | + "id": node.get("id"), |
| 226 | + "memory": node.get("memory"), |
| 227 | + "metadata": { |
| 228 | + k: v |
| 229 | + for k, v in node.get("metadata", {}).items() |
| 230 | + if k != "embedding" |
| 231 | + }, |
| 232 | + } |
| 233 | + filtered_group["memories"]["nodes"].append(filtered_node) |
| 234 | + filtered_data[key].append(filtered_group) |
| 235 | + else: |
| 236 | + filtered_data[key] = value |
| 237 | + return filtered_data |
| 238 | + |
| 239 | + |
| 240 | +filtered_results = filter_memory_data(get_all_results) |
| 241 | +print(f"Get all results after add memory: {filtered_results['text_mem'][0]['memories']}") |
| 242 | + |
| 243 | +print( |
| 244 | + f"✅ [{datetime.now().strftime('%H:%M:%S')}] Get all memories completed, time elapsed: {time.time() - start_time:.2f}s\n" |
| 245 | +) |
| 246 | + |
| 247 | +# 6. Add messages |
| 248 | +print(f"🚀 [{datetime.now().strftime('%H:%M:%S')}] Starting to add conversation messages...") |
| 249 | +start_time = time.time() |
| 250 | + |
| 251 | +messages = [ |
| 252 | + {"role": "user", "content": "I like playing football."}, |
| 253 | + {"role": "assistant", "content": "yes football is my favorite game."}, |
| 254 | +] |
| 255 | +mos.add(messages) |
| 256 | + |
| 257 | +print( |
| 258 | + f"✅ [{datetime.now().strftime('%H:%M:%S')}] Conversation messages added successfully, time elapsed: {time.time() - start_time:.2f}s" |
| 259 | +) |
| 260 | + |
| 261 | +print( |
| 262 | + f"🚀 [{datetime.now().strftime('%H:%M:%S')}] Starting to get all memories (after adding messages)..." |
| 263 | +) |
| 264 | +start_time = time.time() |
| 265 | + |
| 266 | +get_all_results = mos.get_all() |
| 267 | +filtered_results = filter_memory_data(get_all_results) |
| 268 | +print(f"Get all results after add messages: {filtered_results}") |
| 269 | + |
| 270 | +print( |
| 271 | + f"✅ [{datetime.now().strftime('%H:%M:%S')}] Get all memories completed, time elapsed: {time.time() - start_time:.2f}s\n" |
| 272 | +) |
| 273 | + |
| 274 | +# 7. Add document |
| 275 | +print(f"🚀 [{datetime.now().strftime('%H:%M:%S')}] Starting to add document...") |
| 276 | +start_time = time.time() |
| 277 | +## 7.1 add pdf for ./tmp/data if use doc mem mos.add(doc_path="./tmp/data/") |
| 278 | +start_time = time.time() |
| 279 | + |
| 280 | +get_all_results = mos.get_all() |
| 281 | +filtered_results = filter_memory_data(get_all_results) |
| 282 | +print(f"Get all results after add doc: {filtered_results}") |
| 283 | + |
| 284 | +print( |
| 285 | + f"✅ [{datetime.now().strftime('%H:%M:%S')}] Get all memories completed, time elapsed: {time.time() - start_time:.2f}s\n" |
| 286 | +) |
| 287 | + |
| 288 | +# 8. Search |
| 289 | +print(f"🚀 [{datetime.now().strftime('%H:%M:%S')}] Starting to search memories...") |
| 290 | +start_time = time.time() |
| 291 | + |
| 292 | +search_results = mos.search(query="my favorite football game", user_id=user_name) |
| 293 | +filtered_search_results = filter_memory_data(search_results) |
| 294 | +print(f"Search results: {filtered_search_results}") |
| 295 | + |
| 296 | +print( |
| 297 | + f"✅ [{datetime.now().strftime('%H:%M:%S')}] Memory search completed, time elapsed: {time.time() - start_time:.2f}s\n" |
| 298 | +) |
| 299 | + |
| 300 | +# 9. Chat |
| 301 | +print(f"🎯 [{datetime.now().strftime('%H:%M:%S')}] Starting chat mode...") |
| 302 | +while True: |
| 303 | + user_input = input("👤 [You] ").strip() |
| 304 | + if user_input.lower() in ["quit", "exit"]: |
| 305 | + break |
| 306 | + |
| 307 | + print() |
| 308 | + chat_start_time = time.time() |
| 309 | + response = mos.chat(user_input) |
| 310 | + chat_duration = time.time() - chat_start_time |
| 311 | + |
| 312 | + print(f"🤖 [Assistant] {response}") |
| 313 | + print(f"⏱️ [Response time: {chat_duration:.2f}s]\n") |
| 314 | + |
| 315 | +print("📢 [System] MemChat has stopped.") |
0 commit comments