|
13 | 13 | \bottomrule |
14 | 14 | \end{tabular*} |
15 | 15 | \begin{minipage}{\linewidth} |
16 | | - \textsuperscript{\textit{1}}Power computed with average hazard ratio method.\\ |
| 16 | + \vspace{.05em} |
| 17 | + \textsuperscript{\textit{1}} Power computed with average hazard ratio method.\\ |
17 | 18 | \end{minipage} |
18 | 19 | \end{table} |
19 | 20 |
|
|
32 | 33 | \bottomrule |
33 | 34 | \end{tabular*} |
34 | 35 | \begin{minipage}{\linewidth} |
35 | | - \textsuperscript{\textit{1}}Custom footnote.\\ |
| 36 | + \vspace{.05em} |
| 37 | + \textsuperscript{\textit{1}} Custom footnote.\\ |
36 | 38 | \end{minipage} |
37 | 39 | \end{table} |
38 | 40 |
|
|
51 | 53 | \bottomrule |
52 | 54 | \end{tabular*} |
53 | 55 | \begin{minipage}{\linewidth} |
54 | | - \textsuperscript{\textit{1}}Power for Fleming-Harrington test FH(0, 0) (logrank) using method of Yung and Liu.\\ |
| 56 | + \vspace{.05em} |
| 57 | + \textsuperscript{\textit{1}} Power for Fleming-Harrington test FH(0, 0) (logrank) using method of Yung and Liu.\\ |
55 | 58 | \end{minipage} |
56 | 59 | \end{table} |
57 | 60 |
|
|
75 | 78 | \bottomrule |
76 | 79 | \end{tabular*} |
77 | 80 | \begin{minipage}{\linewidth} |
78 | | - \textsuperscript{\textit{1}}One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\ |
79 | | - \textsuperscript{\textit{2}}Approximate hazard ratio to cross bound.\\ |
| 81 | + \vspace{.05em} |
| 82 | + \textsuperscript{\textit{1}} One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\ |
| 83 | + \textsuperscript{\textit{2}} Approximate hazard ratio to cross bound.\\ |
80 | 84 | \end{minipage} |
81 | 85 | \end{table} |
82 | 86 |
|
|
111 | 115 | \bottomrule |
112 | 116 | \end{tabular*} |
113 | 117 | \begin{minipage}{\linewidth} |
114 | | - \textsuperscript{\textit{1}}One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\ |
115 | | - \textsuperscript{\textit{2}}Approximate hazard ratio to cross bound.\\ |
| 118 | + \vspace{.05em} |
| 119 | + \textsuperscript{\textit{1}} One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\ |
| 120 | + \textsuperscript{\textit{2}} Approximate hazard ratio to cross bound.\\ |
116 | 121 | \end{minipage} |
117 | 122 | \end{table} |
118 | 123 |
|
|
136 | 141 | \bottomrule |
137 | 142 | \end{tabular*} |
138 | 143 | \begin{minipage}{\linewidth} |
139 | | - \textsuperscript{\textit{1}}One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\ |
140 | | - \textsuperscript{\textit{2}}Approximate hazard ratio to cross bound.\\ |
141 | | - \textsuperscript{\textit{3}}wAHR is the weighted AHR.\\ |
| 144 | + \vspace{.05em} |
| 145 | + \textsuperscript{\textit{1}} One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\ |
| 146 | + \textsuperscript{\textit{2}} Approximate hazard ratio to cross bound.\\ |
| 147 | + \textsuperscript{\textit{3}} wAHR is the weighted AHR.\\ |
142 | 148 | \end{minipage} |
143 | 149 | \end{table} |
144 | 150 |
|
|
173 | 179 | \bottomrule |
174 | 180 | \end{tabular*} |
175 | 181 | \begin{minipage}{\linewidth} |
176 | | - \textsuperscript{\textit{1}}this table is generated by gs\_power\_wlr.\\ |
177 | | - \textsuperscript{\textit{2}}the crossing probability.\\ |
178 | | - \textsuperscript{\textit{3}}approximate weighted hazard ratio to cross bound.\\ |
179 | | - \textsuperscript{\textit{4}}wAHR is the weighted AHR.\\ |
| 182 | + \vspace{.05em} |
| 183 | + \textsuperscript{\textit{1}} this table is generated by gs\_power\_wlr.\\ |
| 184 | + \textsuperscript{\textit{2}} the crossing probability.\\ |
| 185 | + \textsuperscript{\textit{3}} approximate weighted hazard ratio to cross bound.\\ |
| 186 | + \textsuperscript{\textit{4}} wAHR is the weighted AHR.\\ |
180 | 187 | \end{minipage} |
181 | 188 | \end{table} |
182 | 189 |
|
|
211 | 218 | \bottomrule |
212 | 219 | \end{tabular*} |
213 | 220 | \begin{minipage}{\linewidth} |
214 | | - \textsuperscript{\textit{1}}One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\ |
215 | | - \textsuperscript{\textit{2}}EF is event fraction. AHR is under regular weighted log rank test.\\ |
| 221 | + \vspace{.05em} |
| 222 | + \textsuperscript{\textit{1}} One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\ |
| 223 | + \textsuperscript{\textit{2}} EF is event fraction. AHR is under regular weighted log rank test.\\ |
216 | 224 | \end{minipage} |
217 | 225 | \end{table} |
218 | 226 |
|
|
236 | 244 | \bottomrule |
237 | 245 | \end{tabular*} |
238 | 246 | \begin{minipage}{\linewidth} |
239 | | - \textsuperscript{\textit{1}}One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\ |
| 247 | + \vspace{.05em} |
| 248 | + \textsuperscript{\textit{1}} One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\ |
240 | 249 | \end{minipage} |
241 | 250 | \end{table} |
242 | 251 |
|
|
269 | 278 | \bottomrule |
270 | 279 | \end{tabular*} |
271 | 280 | \begin{minipage}{\linewidth} |
272 | | - \textsuperscript{\textit{1}}One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\ |
273 | | - \textsuperscript{\textit{2}}Cumulative alpha for final analysis (0.0238) is less than the full alpha (0.025) when the futility bound is non-binding. The smaller value subtracts the probability of crossing a futility bound before crossing an efficacy bound at a later analysis (0.025 - 0.0012 = 0.0238) under the null hypothesis.\\ |
| 281 | + \vspace{.05em} |
| 282 | + \textsuperscript{\textit{1}} One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\ |
| 283 | + \textsuperscript{\textit{2}} Cumulative alpha for final analysis (0.0238) is less than the full alpha (0.025) when the futility bound is non-binding. The smaller value subtracts the probability of crossing a futility bound before crossing an efficacy bound at a later analysis (0.025 - 0.0012 = 0.0238) under the null hypothesis.\\ |
274 | 284 | \end{minipage} |
275 | 285 | \end{table} |
276 | 286 |
|
|
305 | 315 | \bottomrule |
306 | 316 | \end{tabular*} |
307 | 317 | \begin{minipage}{\linewidth} |
308 | | - \textsuperscript{\textit{1}}One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\ |
309 | | - \textsuperscript{\textit{2}}Approximate hazard ratio to cross bound.\\ |
310 | | - \textsuperscript{\textit{3}}wAHR is the weighted AHR.\\ |
| 318 | + \vspace{.05em} |
| 319 | + \textsuperscript{\textit{1}} One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\ |
| 320 | + \textsuperscript{\textit{2}} Approximate hazard ratio to cross bound.\\ |
| 321 | + \textsuperscript{\textit{3}} wAHR is the weighted AHR.\\ |
311 | 322 | \end{minipage} |
312 | 323 | \end{table} |
313 | 324 |
|
|
342 | 353 | \bottomrule |
343 | 354 | \end{tabular*} |
344 | 355 | \begin{minipage}{\linewidth} |
345 | | - \textsuperscript{\textit{1}}One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\ |
346 | | - \textsuperscript{\textit{2}}Approximate hazard ratio to cross bound.\\ |
347 | | - \textsuperscript{\textit{3}}wAHR is the weighted AHR.\\ |
| 356 | + \vspace{.05em} |
| 357 | + \textsuperscript{\textit{1}} One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\ |
| 358 | + \textsuperscript{\textit{2}} Approximate hazard ratio to cross bound.\\ |
| 359 | + \textsuperscript{\textit{3}} wAHR is the weighted AHR.\\ |
348 | 360 | \end{minipage} |
349 | 361 | \end{table} |
350 | 362 |
|
|
379 | 391 | \bottomrule |
380 | 392 | \end{tabular*} |
381 | 393 | \begin{minipage}{\linewidth} |
382 | | - \textsuperscript{\textit{1}}this table is generated by gs\_power\_wlr.\\ |
383 | | - \textsuperscript{\textit{2}}the crossing probability.\\ |
384 | | - \textsuperscript{\textit{3}}approximate weighted hazard ratio to cross bound.\\ |
385 | | - \textsuperscript{\textit{4}}wAHR is the weighted AHR.\\ |
| 394 | + \vspace{.05em} |
| 395 | + \textsuperscript{\textit{1}} this table is generated by gs\_power\_wlr.\\ |
| 396 | + \textsuperscript{\textit{2}} the crossing probability.\\ |
| 397 | + \textsuperscript{\textit{3}} approximate weighted hazard ratio to cross bound.\\ |
| 398 | + \textsuperscript{\textit{4}} wAHR is the weighted AHR.\\ |
386 | 399 | \end{minipage} |
387 | 400 | \end{table} |
388 | 401 |
|
|
414 | 427 | \bottomrule |
415 | 428 | \end{tabular*} |
416 | 429 | \begin{minipage}{\linewidth} |
417 | | - \textsuperscript{\textit{1}}One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\ |
418 | | - \textsuperscript{\textit{2}}Approximate hazard ratio to cross bound.\\ |
419 | | - \textsuperscript{\textit{3}}wAHR is the weighted AHR.\\ |
| 430 | + \vspace{.05em} |
| 431 | + \textsuperscript{\textit{1}} One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\ |
| 432 | + \textsuperscript{\textit{2}} Approximate hazard ratio to cross bound.\\ |
| 433 | + \textsuperscript{\textit{3}} wAHR is the weighted AHR.\\ |
420 | 434 | \end{minipage} |
421 | 435 | \end{table} |
422 | 436 |
|
|
451 | 465 | \bottomrule |
452 | 466 | \end{tabular*} |
453 | 467 | \begin{minipage}{\linewidth} |
454 | | - \textsuperscript{\textit{1}}One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\ |
455 | | - \textsuperscript{\textit{2}}wAHR is the weighted AHR.\\ |
| 468 | + \vspace{.05em} |
| 469 | + \textsuperscript{\textit{1}} One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\ |
| 470 | + \textsuperscript{\textit{2}} wAHR is the weighted AHR.\\ |
456 | 471 | \end{minipage} |
457 | 472 | \end{table} |
458 | 473 |
|
0 commit comments