|
| 1 | +import argparse |
| 2 | +import itertools |
| 3 | +import webbrowser |
| 4 | +import neuroglancer |
| 5 | +import neuroglancer.cli |
| 6 | +from pathlib import Path |
| 7 | +from bfio import BioReader |
| 8 | +import dask |
| 9 | +import dask.array |
| 10 | +import numpy as np |
| 11 | + |
| 12 | +HERE = Path(__file__).parent |
| 13 | + |
| 14 | +FILEPATH = Path("x.ome.tiff") |
| 15 | + |
| 16 | + |
| 17 | +def add_image_layer(state, path, name="image"): |
| 18 | + br = BioReader(str(path), backend="bioformats") |
| 19 | + chunk_shape = np.array([256, 256, 128, 1]) |
| 20 | + shape = np.array(br.shape) |
| 21 | + num_chunks_per_dim = np.ceil(shape / chunk_shape).astype(int) |
| 22 | + padded_chunk_shape = num_chunks_per_dim * chunk_shape |
| 23 | + |
| 24 | + def chunked_reader(x_i, y_i, z_i, c): |
| 25 | + x_start, x_end = x_i * chunk_shape[0], min((x_i + 1) * chunk_shape[0], shape[0]) |
| 26 | + y_start, y_end = y_i * chunk_shape[1], min((y_i + 1) * chunk_shape[1], shape[1]) |
| 27 | + z_start, z_end = z_i * chunk_shape[2], min((z_i + 1) * chunk_shape[2], shape[2]) |
| 28 | + |
| 29 | + # Read the chunk from the BioReader |
| 30 | + chunk = br.read( |
| 31 | + X=(x_start, x_end), Y=(y_start, y_end), Z=(z_start, z_end), C=(c,) |
| 32 | + ) |
| 33 | + # Extend the chunk to be X, Y, Z, 1 not just X, Y, Z |
| 34 | + chunk = np.expand_dims(chunk, axis=-1) |
| 35 | + # If the chunk is smaller than the padded chunk shape, pad it |
| 36 | + if chunk.shape != tuple(chunk_shape[:3]): |
| 37 | + padded_chunk = np.zeros(chunk_shape, dtype=chunk.dtype) |
| 38 | + padded_chunk[: chunk.shape[0], : chunk.shape[1], : chunk.shape[2], :] = ( |
| 39 | + chunk |
| 40 | + ) |
| 41 | + return padded_chunk |
| 42 | + return chunk |
| 43 | + |
| 44 | + def chunk_size(x_i, y_i, z_i, c): |
| 45 | + x_start, x_end = x_i * chunk_shape[0], min((x_i + 1) * chunk_shape[0], shape[0]) |
| 46 | + y_start, y_end = y_i * chunk_shape[1], min((y_i + 1) * chunk_shape[1], shape[1]) |
| 47 | + z_start, z_end = z_i * chunk_shape[2], min((z_i + 1) * chunk_shape[2], shape[2]) |
| 48 | + |
| 49 | + return (x_end - x_start, y_end - y_start, z_end - z_start, 1) |
| 50 | + |
| 51 | + lazy_reader = dask.delayed(chunked_reader) |
| 52 | + lazy_chunks = [ |
| 53 | + lazy_reader(x, y, z, c) |
| 54 | + for x, y, z, c in itertools.product(*[range(i) for i in num_chunks_per_dim]) |
| 55 | + ] |
| 56 | + # chunk_sizes = [ |
| 57 | + # chunk_size(x, y, z, c) |
| 58 | + # for x, y, z, c in itertools.product(*[range(i) for i in num_chunks_per_dim]) |
| 59 | + # ] |
| 60 | + sample = lazy_chunks[ |
| 61 | + 0 |
| 62 | + ].compute() # load the first chunk (assume rest are same shape/dtype) |
| 63 | + arrays = [ |
| 64 | + dask.array.from_delayed(lazy_chunk, dtype=sample.dtype, shape=sample.shape) |
| 65 | + for lazy_chunk in lazy_chunks |
| 66 | + ] |
| 67 | + x = dask.array.concatenate(arrays) |
| 68 | + print(x.shape, shape, np.prod(x.shape), np.prod(padded_chunk_shape)) |
| 69 | + # We need to reshape in iterations, |
| 70 | + # x.reshape(padded_chunk_shape) |
| 71 | + scales = [1, 1, 1, 1] |
| 72 | + dimensions = neuroglancer.CoordinateSpace( |
| 73 | + names=["x", "y", "z", "c"], units="um", scales=scales |
| 74 | + ) |
| 75 | + local_volume = neuroglancer.LocalVolume(x, dimensions) |
| 76 | + state.layers.append( |
| 77 | + name=name, |
| 78 | + layer=neuroglancer.ImageLayer( |
| 79 | + source=local_volume, |
| 80 | + volume_rendering_mode="ON", |
| 81 | + volume_rendering_depth_samples=400, |
| 82 | + ), |
| 83 | + shader=""" |
| 84 | +#uicontrol invlerp normalized |
| 85 | +void main() { |
| 86 | + float val = normalized(); |
| 87 | + emitRGBA(vec4(val, val, val, val)); |
| 88 | + } |
| 89 | + """, |
| 90 | + ) |
| 91 | + state.layout = "3d" |
| 92 | + |
| 93 | + |
| 94 | +def launch_nglancer(): |
| 95 | + ap = argparse.ArgumentParser() |
| 96 | + neuroglancer.cli.add_server_arguments(ap) |
| 97 | + args = ap.parse_args() |
| 98 | + neuroglancer.cli.handle_server_arguments(args) |
| 99 | + viewer = neuroglancer.Viewer() |
| 100 | + return viewer |
| 101 | + |
| 102 | + |
| 103 | +def main(): |
| 104 | + viewer = launch_nglancer() |
| 105 | + with viewer.txn() as s: |
| 106 | + add_image_layer(s, FILEPATH, "image") |
| 107 | + webbrowser.open_new(viewer.get_viewer_url()) |
| 108 | + |
| 109 | + |
| 110 | +if __name__ == "__main__": |
| 111 | + main() |
0 commit comments