Skip to content

Commit 5a81f9d

Browse files
authored
Merge pull request #1 from MicrosoftCloudEssentials-LearningHub/update-md-date'trigge
pipeline update-md-date
2 parents e97fc95 + 2606bec commit 5a81f9d

File tree

2 files changed

+57
-0
lines changed

2 files changed

+57
-0
lines changed
Lines changed: 41 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,41 @@
1+
name: Update Last Modified Date
2+
3+
on:
4+
pull_request:
5+
branches:
6+
- main
7+
8+
permissions:
9+
contents: write
10+
11+
jobs:
12+
update-date:
13+
runs-on: ubuntu-latest
14+
15+
steps:
16+
- name: Checkout repository
17+
uses: actions/checkout@v4
18+
with:
19+
fetch-depth: 0
20+
21+
- name: Set up Python
22+
uses: actions/setup-python@v4
23+
with:
24+
python-version: '3.x'
25+
26+
- name: Install dependencies
27+
run: pip install python-dateutil
28+
29+
- name: Configure Git
30+
run: |
31+
git config --global user.email "github-actions[bot]@users.noreply.github.com"
32+
git config --global user.name "github-actions[bot]"
33+
34+
- name: Update last modified date in Markdown files
35+
run: python .github/workflows/update_date.py
36+
37+
- name: Commit changes
38+
run: |
39+
git add -A
40+
git commit -m "Update last modified date in Markdown files" || echo "No changes to commit"
41+
git push origin HEAD:${{ github.event.pull_request.head.ref }}

README.md

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -20,6 +20,22 @@ Last updated: 2025-02-21
2020

2121
</details>
2222

23+
## Workspace
24+
25+
## Authoring
26+
27+
## Assets
28+
29+
## Manage
30+
31+
| Compute Type | Description | Purpose | Ideal Use Cases | Key Features |
32+
|----------------------|-------------|---------|------------------|---------------|
33+
| **Compute Instances** | Preconfigured VMs (CPU/GPU) with tools like VS Code, JupyterLab, and RStudio. | Interactive development and experimentation. | Data exploration, model prototyping, debugging. | Auto-shutdown, integrated notebooks, preinstalled ML frameworks. |
34+
| **Compute Clusters** | Scalable clusters that auto-scale based on workload. Supports both CPU and GPU nodes. | Distributed training and batch inference. | Training large models, running parallel experiments. | Autoscaling, cost control, reusable across users. |
35+
| **Kubernetes Clusters** | Includes AKS and attached Kubernetes clusters for production-grade deployments. | Real-time inference and scalable deployment. | Hosting REST endpoints, high-availability inference. | Load balancing, autoscaling, secure networking. |
36+
| **Attached Compute** | External compute resources manually connected to Azure ML. | Leverage existing infrastructure. | Using Azure VMs, Databricks, or on-prem compute. | Flexibility, hybrid cloud support, reuse of existing resources. |
37+
| **Serverless Instances** | Lightweight, on-demand compute (e.g., Azure Container Instances). | Quick testing and low-scale inference. | Temporary model deployment, dev/test environments. | No infrastructure management, fast startup, cost-effective. |
38+
2339

2440
<div align="center">
2541
<img src="" alt="Centered Image" style="border: 2px solid #4CAF50; border-radius: 5px; padding: 5px;"/>

0 commit comments

Comments
 (0)