@@ -69,30 +69,44 @@ https://github.com/user-attachments/assets/c199156f-96cf-4ed0-a8b5-c88db3e7a552
6969
7070https://github.com/user-attachments/assets/f8cbd32c-94fc-43d3-a7a8-00f63cdc543d
7171
72+ ## Step 4: Create a New Notebook or Script
7273
73- ### ** 4. Create a New Notebook or Script**
7474- Use the compute instance to open a ** Jupyter notebook** or create a Python script.
7575- Import necessary libraries:
76+
7677 ``` python
7778 import pandas as pd
7879 from sklearn.model_selection import train_test_split
7980 from sklearn.ensemble import RandomForestClassifier
8081 from sklearn.metrics import accuracy_score
8182 ```
8283
83- ---
84+ https://github.com/user-attachments/assets/16650584-11cb-48fb-928d-c032e519c14b
85+
86+ ## Step 5: Load and Explore the Data
8487
85- ### ** 5. Load and Explore the Data**
8688- Load the dataset and perform basic EDA (exploratory data analysis):
89+
8790 ``` python
88- data = pd.read_csv(' your_dataset.csv' )
89- print (data.head())
91+ import mltable
92+ from azure.ai.ml import MLClient
93+ from azure.identity import DefaultAzureCredential
94+
95+ ml_client = MLClient.from_config(credential = DefaultAzureCredential())
96+ data_asset = ml_client.data.get(" employee_data" , version = " 1" )
97+
98+ tbl = mltable.load(f ' azureml:/ { data_asset.id} ' )
99+
100+ df = tbl.to_pandas_dataframe()
101+ df
90102 ```
91103
92- ---
104+ https://github.com/user-attachments/assets/5fa65d95-8502-4ab7-ba0d-dfda66378cc2
105+
106+ ## Step 6: Train Your Model
93107
94- ### ** 6. Train Your Model**
95108- Split the data and train a model:
109+
96110 ``` python
97111 X = data.drop(' target' , axis = 1 )
98112 y = data[' target' ]
0 commit comments