@@ -13,11 +13,26 @@ Last updated: 2025-04-29
1313<details >
1414<summary ><b >List of References </b > (Click to expand)</summary >
1515
16+ - [ AutoML Regression] ( https://learn.microsoft.com/en-us/azure/machine-learning/component-reference-v2/regression?view=azureml-api-2 )
17+ - [ Evaluate automated machine learning experiment results] ( https://learn.microsoft.com/en-us/azure/machine-learning/how-to-understand-automated-ml?view=azureml-api-2 )
18+ - [ Evaluate Model component] ( https://learn.microsoft.com/en-us/azure/machine-learning/component-reference/evaluate-model?view=azureml-api-2 )
19+
1620</details >
1721
1822<details >
1923<summary ><b >Table of Content </b > (Click to expand)</summary >
2024
25+ - [ Step 1: Set Up Your Azure ML Workspace] ( #step-1-set-up-your-azure-ml-workspace )
26+ - [ Step 2: Create a Compute Instance] ( #step-2-create-a-compute-instance )
27+ - [ Step 3: Prepare Your Data] ( #step-3-prepare-your-data )
28+ - [ Step 4: Create a New Notebook or Script] ( #step-4-create-a-new-notebook-or-script )
29+ - [ Step 5: Load and Explore the Data] ( #step-5-load-and-explore-the-data )
30+ - [ Step 6: Train Your Model] ( #step-6-train-your-model )
31+ - [ Step 7: Evaluate the Model] ( #step-7-evaluate-the-model )
32+ - [ Step 8: Register the Model] ( #step-8-register-the-model )
33+ - [ Step 9: Deploy the Model] ( #step-9-deploy-the-model )
34+ - [ Step 10: Test the Endpoint] ( #step-10-test-the-endpoint )
35+
2136</details >
2237
2338## Step 1: Set Up Your Azure ML Workspace
@@ -227,29 +242,81 @@ https://github.com/user-attachments/assets/a82ff03e-437c-41bc-85fa-8b9903384a5b
227242
228243## Step 9: Deploy the Model
229244
245+ > Create the Scoring Script:
246+
247+ ``` python
248+ import joblib
249+ import numpy as np
250+ from azureml.core.model import Model
251+
252+ def init ():
253+ global model
254+ model_path = Model.get_model_path(" my_model_RegressionModel" )
255+ model = joblib.load(model_path)
256+
257+ def run (data ):
258+ try :
259+ input_data = np.array(data[" data" ])
260+ result = model.predict(input_data)
261+ return result.tolist()
262+ except Exception as e:
263+ return str (e)
264+ ```
265+
266+ https://github.com/user-attachments/assets/cdc64857-3bde-4ec9-957d-5399d9447813
267+
268+ > Create the Environment File (env.yml):
269+
270+ https://github.com/user-attachments/assets/8e7c37a2-e32b-4630-8516-f95926c374c0
271+
272+ > Create a new notebook:
273+
274+ https://github.com/user-attachments/assets/1b3e5602-dc64-4c39-be72-ed1cbd74361e
275+
230276> Create an ** inference configuration** and deploy to a web service:
231277
232278 ``` python
279+ from azureml.core import Workspace
233280 from azureml.core.environment import Environment
234- from azureml.core.model import InferenceConfig
281+ from azureml.core.model import InferenceConfig, Model
235282 from azureml.core.webservice import AciWebservice
236-
237- env = Environment.from_conda_specification(name = " myenv" , file_path = " env.yml" )
283+
284+ # Load the workspace
285+ ws = Workspace.from_config()
286+
287+ # Get the registered model
288+ registered_model = Model(ws, name = " my_model_RegressionModel" )
289+
290+ # Create environment from requirements.txt (no conda)
291+ env = Environment.from_pip_requirements(
292+ name = " regression-env" ,
293+ file_path = " requirements.txt" # Make sure this file exists in your working directory
294+ )
295+
296+ # Define inference configuration
238297 inference_config = InferenceConfig(entry_script = " score.py" , environment = env)
239-
298+
299+ # Define deployment configuration
240300 deployment_config = AciWebservice.deploy_configuration(cpu_cores = 1 , memory_gb = 1 )
241- service = Model.deploy(workspace = ws,
242- name = " my-service" ,
243- models = [model],
244- inference_config = inference_config,
245- deployment_config = deployment_config)
301+
302+ # Deploy the model
303+ service = Model.deploy(
304+ workspace = ws,
305+ name = " regression-model-service" ,
306+ models = [registered_model],
307+ inference_config = inference_config,
308+ deployment_config = deployment_config
309+ )
310+
246311 service.wait_for_deployment(show_output = True )
312+ print (f " Scoring URI: { service.scoring_uri} " )
247313 ```
248314
249- ---
250315
251- ### ** 10. Test the Endpoint**
252- - Once deployed, you can send HTTP requests to the endpoint to get predictions.
316+
317+ ## Step 10: Test the Endpoint
318+
319+ > Once deployed, you can send HTTP requests to the endpoint to get predictions.
253320
254321
255322
0 commit comments