Skip to content

Commit ef66d73

Browse files
authored
Merge 00afb5f into cf51617
2 parents cf51617 + 00afb5f commit ef66d73

File tree

1 file changed

+137
-0
lines changed

1 file changed

+137
-0
lines changed

azML-modelcreation/README.md

Lines changed: 137 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,137 @@
1+
# Demostration: Creating a Machine Learning Model
2+
3+
Costa Rica
4+
5+
[![GitHub](https://img.shields.io/badge/--181717?logo=github&logoColor=ffffff)](https://github.com/)
6+
[brown9804](https://github.com/brown9804)
7+
8+
Last updated: 2025-04-29
9+
10+
------------------------------------------
11+
12+
<details>
13+
<summary><b>List of References </b> (Click to expand)</summary>
14+
15+
</details>
16+
17+
<details>
18+
<summary><b>Table of Content </b> (Click to expand)</summary>
19+
20+
</details>
21+
22+
> Azure ML is a cloud-based platform that provides tools for building, training, and deploying ML models at scale.
23+
24+
## Step 1: Set Up Your Azure ML Workspace
25+
26+
> You can use the azure portal approach:
27+
28+
- Go to the [Azure Portal](https://portal.azure.com/)
29+
- Create a **Machine Learning workspace**:
30+
- Resource group
31+
- Workspace name
32+
- Region
33+
- Once created, launch **Azure Machine Learning Studio**.
34+
35+
https://github.com/user-attachments/assets/c199156f-96cf-4ed0-a8b5-c88db3e7a552
36+
37+
> Or using terraform configurations for setting up an Azure Machine Learning workspace along with compute clusters and supportive resources to form the core of an ML platform, click here to see [Demonstration: Deploying Azure Resources for an ML Platform](./infrastructure/azMachineLearning/README.md)
38+
39+
### **2. Create a Compute Instance**
40+
- In Azure ML Studio, go to **Compute > Compute Instances**.
41+
- Create a new instance (choose CPU or GPU depending on your needs).
42+
- This will be your development environment (like a cloud-based Jupyter notebook).
43+
44+
---
45+
46+
### **3. Prepare Your Data**
47+
- Upload your dataset to **Azure ML datastore** or connect to external sources (e.g., Azure Blob Storage, SQL, etc.).
48+
- Use **Data > Datasets** to register and version your dataset.
49+
50+
---
51+
52+
### **4. Create a New Notebook or Script**
53+
- Use the compute instance to open a **Jupyter notebook** or create a Python script.
54+
- Import necessary libraries:
55+
```python
56+
import pandas as pd
57+
from sklearn.model_selection import train_test_split
58+
from sklearn.ensemble import RandomForestClassifier
59+
from sklearn.metrics import accuracy_score
60+
```
61+
62+
---
63+
64+
### **5. Load and Explore the Data**
65+
- Load the dataset and perform basic EDA (exploratory data analysis):
66+
```python
67+
data = pd.read_csv('your_dataset.csv')
68+
print(data.head())
69+
```
70+
71+
---
72+
73+
### **6. Train Your Model**
74+
- Split the data and train a model:
75+
```python
76+
X = data.drop('target', axis=1)
77+
y = data['target']
78+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
79+
80+
model = RandomForestClassifier()
81+
model.fit(X_train, y_train)
82+
```
83+
84+
---
85+
86+
### **7. Evaluate the Model**
87+
- Check performance:
88+
```python
89+
predictions = model.predict(X_test)
90+
print("Accuracy:", accuracy_score(y_test, predictions))
91+
```
92+
93+
---
94+
95+
### **8. Register the Model**
96+
- Save and register the model in Azure ML:
97+
```python
98+
import joblib
99+
joblib.dump(model, 'model.pkl')
100+
101+
from azureml.core import Workspace, Model
102+
ws = Workspace.from_config()
103+
Model.register(workspace=ws, model_path="model.pkl", model_name="my_model")
104+
```
105+
106+
---
107+
108+
### **9. Deploy the Model**
109+
- Create an **inference configuration** and deploy to a web service:
110+
```python
111+
from azureml.core.environment import Environment
112+
from azureml.core.model import InferenceConfig
113+
from azureml.core.webservice import AciWebservice
114+
115+
env = Environment.from_conda_specification(name="myenv", file_path="env.yml")
116+
inference_config = InferenceConfig(entry_script="score.py", environment=env)
117+
118+
deployment_config = AciWebservice.deploy_configuration(cpu_cores=1, memory_gb=1)
119+
service = Model.deploy(workspace=ws,
120+
name="my-service",
121+
models=[model],
122+
inference_config=inference_config,
123+
deployment_config=deployment_config)
124+
service.wait_for_deployment(show_output=True)
125+
```
126+
127+
---
128+
129+
### **10. Test the Endpoint**
130+
- Once deployed, you can send HTTP requests to the endpoint to get predictions.
131+
132+
133+
134+
<div align="center">
135+
<h3 style="color: #4CAF50;">Total Visitors</h3>
136+
<img src="https://profile-counter.glitch.me/brown9804/count.svg" alt="Visitor Count" style="border: 2px solid #4CAF50; border-radius: 5px; padding: 5px;"/>
137+
</div>

0 commit comments

Comments
 (0)