|
1 | | -{"cells":[{"cell_type":"markdown","source":["# PySpark Code to Move Data from Bronze to Silver"],"metadata":{"nteract":{"transient":{"deleting":false}},"microsoft":{"language":"python","language_group":"synapse_pyspark"}},"id":"ab7f0b7c-b0cc-44ec-9948-61d68f4b0b13"},{"cell_type":"markdown","source":["This is an example on how to work with the medallion architecture. From Bronze to Silver"],"metadata":{"nteract":{"transient":{"deleting":false}},"microsoft":{"language":"python","language_group":"synapse_pyspark"}},"id":"44f47922-4e3b-45cc-81a6-c5de97634f73"},{"cell_type":"markdown","source":["## Working with 2020orders information"],"metadata":{"nteract":{"transient":{"deleting":false}},"microsoft":{"language":"python","language_group":"synapse_pyspark"}},"id":"4e1afae8-b2ef-4e4c-9ac9-485139f19e9c"},{"cell_type":"code","source":["from pyspark.sql.types import *\n","import pyspark.sql.functions \n","from pyspark.sql import *"],"outputs":[],"execution_count":null,"metadata":{"microsoft":{"language":"python","language_group":"synapse_pyspark"}},"id":"febb6c3e-6841-42c1-a633-0da056b7f69c"},{"cell_type":"code","source":["# Read the data from the bronze layer:\n","df_raw_2020orders = spark.read.format(\"delta\").load(\"abfss:// [email protected]/raw_Bronze.Lakehouse/Tables/2020orders\")\n","\n","df_raw_2020orders.head(2)"],"outputs":[{"output_type":"display_data","data":{"application/vnd.livy.statement-meta+json":{"spark_pool":null,"statement_id":4,"statement_ids":[4],"state":"finished","livy_statement_state":"available","session_id":"ecb846c9-e988-4906-95bc-af67b3aacd94","normalized_state":"finished","queued_time":"2024-10-25T19:11:30.8930212Z","session_start_time":null,"execution_start_time":"2024-10-25T19:14:18.2840528Z","execution_finish_time":"2024-10-25T19:14:24.7554027Z","parent_msg_id":"4d60fa03-18dd-4bbc-adab-cb12ff2ba6cf"},"text/plain":"StatementMeta(, ecb846c9-e988-4906-95bc-af67b3aacd94, 4, Finished, Available, Finished)"},"metadata":{}},{"output_type":"execute_result","execution_count":11,"data":{"text/plain":"[Row(ID='SO45376', Count=1, Date='1/5/2020', Name='Edgar Mehta', Style='Mountain-100 Silver, 38', price=3399.99, tax=271.9992),\n Row(ID='SO45381', Count=1, Date='1/6/2020', Name='Jordan Long', Style='Mountain-100 Silver, 38', price=3399.99, tax=271.9992)]"},"metadata":{}}],"execution_count":2,"metadata":{"jupyter":{"source_hidden":false,"outputs_hidden":false},"nteract":{"transient":{"deleting":false}},"microsoft":{"language":"python","language_group":"synapse_pyspark"}},"id":"6357dc47-1bb1-4391-8f38-b5d5a2abf5b2"},{"cell_type":"code","source":["# Clean the data (e.g., filter out rows with null values in the 'age' column):\n","df_cleaned = df_raw_2020orders.filter(df_raw_2020orders[\"Date\"].isNotNull())\n","print(df_cleaned)"],"outputs":[{"output_type":"display_data","data":{"application/vnd.livy.statement-meta+json":{"spark_pool":null,"statement_id":10,"statement_ids":[10],"state":"finished","livy_statement_state":"available","session_id":"ecb846c9-e988-4906-95bc-af67b3aacd94","normalized_state":"finished","queued_time":"2024-10-25T19:21:35.4162864Z","session_start_time":null,"execution_start_time":"2024-10-25T19:21:35.9099818Z","execution_finish_time":"2024-10-25T19:21:36.2079156Z","parent_msg_id":"d65f6fd9-d9ab-4498-ab5d-0710bab459be"},"text/plain":"StatementMeta(, ecb846c9-e988-4906-95bc-af67b3aacd94, 10, Finished, Available, Finished)"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["DataFrame[ID: string, Count: int, Date: string, Name: string, Style: string, price: double, tax: double]\n"]}],"execution_count":8,"metadata":{"jupyter":{"source_hidden":false,"outputs_hidden":false},"nteract":{"transient":{"deleting":false}},"microsoft":{"language":"python","language_group":"synapse_pyspark"}},"id":"5f5c8125-cbf5-4e00-9d8f-0c437f25b37f"},{"cell_type":"code","source":["# Save the cleaned data to the \"cleansed_Silver\" table in the Silver lakehouse:\n","df_cleaned.write.format(\"delta\").mode(\"overwrite\").save(\"abfss:// [email protected]/cleansed_test_Silver.Lakehouse/Tables/2020orders_silver\")"],"outputs":[{"output_type":"display_data","data":{"application/vnd.livy.statement-meta+json":{"spark_pool":null,"statement_id":12,"statement_ids":[12],"state":"finished","livy_statement_state":"available","session_id":"ecb846c9-e988-4906-95bc-af67b3aacd94","normalized_state":"finished","queued_time":"2024-10-25T19:23:52.3238132Z","session_start_time":null,"execution_start_time":"2024-10-25T19:23:52.7414203Z","execution_finish_time":"2024-10-25T19:24:09.4412514Z","parent_msg_id":"8c92d669-7856-4961-a9d0-c38d54833ee4"},"text/plain":"StatementMeta(, ecb846c9-e988-4906-95bc-af67b3aacd94, 12, Finished, Available, Finished)"},"metadata":{}}],"execution_count":10,"metadata":{"jupyter":{"source_hidden":false,"outputs_hidden":false},"nteract":{"transient":{"deleting":false}},"microsoft":{"language":"python","language_group":"synapse_pyspark"}},"id":"c83d4e46-2b49-490f-aadb-87a350c85e89"},{"cell_type":"markdown","source":["## Working with products information"],"metadata":{"nteract":{"transient":{"deleting":false}},"microsoft":{"language":"python","language_group":"synapse_pyspark"}},"id":"f830afb3-2b02-4076-800a-85ca9fc33fea"},{"cell_type":"code","source":["# Read data from the Bronze layer\n","bronze_df = spark.read.format(\"delta\").load(\"abfss:// [email protected]/raw_Bronze.Lakehouse/Tables/products\")\n","# Perform transformations (if any)\n","silver_df = bronze_df # Assuming no transformations for simplicity\n","# Write data to the Silver layer\n","silver_df.write.mode(\"overwrite\").format(\"delta\").save(\"abfss:// [email protected]/cleansed_test_Silver.Lakehouse/Tables/products_silver\")"],"outputs":[{"output_type":"display_data","data":{"application/vnd.livy.statement-meta+json":{"spark_pool":null,"statement_id":15,"statement_ids":[15],"state":"finished","livy_statement_state":"available","session_id":"ecb846c9-e988-4906-95bc-af67b3aacd94","normalized_state":"finished","queued_time":"2024-10-25T19:27:20.1106109Z","session_start_time":null,"execution_start_time":"2024-10-25T19:27:20.5334249Z","execution_finish_time":"2024-10-25T19:27:25.4936309Z","parent_msg_id":"bf665ff4-43d5-4b02-90a6-6c28640576c3"},"text/plain":"StatementMeta(, ecb846c9-e988-4906-95bc-af67b3aacd94, 15, Finished, Available, Finished)"},"metadata":{}}],"execution_count":13,"metadata":{"jupyter":{"source_hidden":false,"outputs_hidden":false},"nteract":{"transient":{"deleting":false}},"microsoft":{"language":"python","language_group":"synapse_pyspark"}},"id":"7f72ac98-4ece-4a8a-a5c5-5e1fc7273382"}],"metadata":{"kernel_info":{"name":"synapse_pyspark"},"kernelspec":{"name":"synapse_pyspark","language":"Python","display_name":"Synapse PySpark"},"language_info":{"name":"python"},"microsoft":{"language":"python","language_group":"synapse_pyspark","ms_spell_check":{"ms_spell_check_language":"en"}},"widgets":{},"nteract":{"version":" [email protected]"},"spark_compute":{"compute_id":"/trident/default","session_options":{"conf":{"spark.synapse.nbs.session.timeout":"1200000"}}},"dependencies":{"lakehouse":{"default_lakehouse":"251cd515-16a3-4555-a3d2-dfd12adb2335","default_lakehouse_name":"raw_Bronze","default_lakehouse_workspace_id":"597e0afc-c8db-4f4d-8464-d13570f5b075"}}},"nbformat":4,"nbformat_minor":5} |
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "ab7f0b7c-b0cc-44ec-9948-61d68f4b0b13", |
| 6 | + "metadata": { |
| 7 | + "microsoft": { |
| 8 | + "language": "python", |
| 9 | + "language_group": "synapse_pyspark" |
| 10 | + }, |
| 11 | + "nteract": { |
| 12 | + "transient": { |
| 13 | + "deleting": false |
| 14 | + } |
| 15 | + } |
| 16 | + }, |
| 17 | + "source": [ |
| 18 | + "# PySpark Code to Move Data from Bronze to Silver" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "markdown", |
| 23 | + "id": "44f47922-4e3b-45cc-81a6-c5de97634f73", |
| 24 | + "metadata": { |
| 25 | + "microsoft": { |
| 26 | + "language": "python", |
| 27 | + "language_group": "synapse_pyspark" |
| 28 | + }, |
| 29 | + "nteract": { |
| 30 | + "transient": { |
| 31 | + "deleting": false |
| 32 | + } |
| 33 | + } |
| 34 | + }, |
| 35 | + "source": [ |
| 36 | + "This is an example on how to work with the medallion architecture. From Bronze to Silver" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "markdown", |
| 41 | + "id": "4e1afae8-b2ef-4e4c-9ac9-485139f19e9c", |
| 42 | + "metadata": { |
| 43 | + "microsoft": { |
| 44 | + "language": "python", |
| 45 | + "language_group": "synapse_pyspark" |
| 46 | + }, |
| 47 | + "nteract": { |
| 48 | + "transient": { |
| 49 | + "deleting": false |
| 50 | + } |
| 51 | + } |
| 52 | + }, |
| 53 | + "source": [ |
| 54 | + "## Working with 2020orders information" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "code", |
| 59 | + "execution_count": null, |
| 60 | + "id": "febb6c3e-6841-42c1-a633-0da056b7f69c", |
| 61 | + "metadata": { |
| 62 | + "microsoft": { |
| 63 | + "language": "python", |
| 64 | + "language_group": "synapse_pyspark" |
| 65 | + } |
| 66 | + }, |
| 67 | + "outputs": [], |
| 68 | + "source": [ |
| 69 | + "from pyspark.sql.types import *\n", |
| 70 | + "import pyspark.sql.functions \n", |
| 71 | + "from pyspark.sql import *" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "code", |
| 76 | + "execution_count": 2, |
| 77 | + "id": "6357dc47-1bb1-4391-8f38-b5d5a2abf5b2", |
| 78 | + "metadata": { |
| 79 | + "jupyter": { |
| 80 | + "outputs_hidden": false, |
| 81 | + "source_hidden": false |
| 82 | + }, |
| 83 | + "microsoft": { |
| 84 | + "language": "python", |
| 85 | + "language_group": "synapse_pyspark" |
| 86 | + }, |
| 87 | + "nteract": { |
| 88 | + "transient": { |
| 89 | + "deleting": false |
| 90 | + } |
| 91 | + } |
| 92 | + }, |
| 93 | + "outputs": [ |
| 94 | + { |
| 95 | + "data": { |
| 96 | + "application/vnd.livy.statement-meta+json": { |
| 97 | + "execution_finish_time": "2024-10-25T19:14:24.7554027Z", |
| 98 | + "execution_start_time": "2024-10-25T19:14:18.2840528Z", |
| 99 | + "livy_statement_state": "available", |
| 100 | + "normalized_state": "finished", |
| 101 | + "parent_msg_id": "4d60fa03-18dd-4bbc-adab-cb12ff2ba6cf", |
| 102 | + "queued_time": "2024-10-25T19:11:30.8930212Z", |
| 103 | + "session_id": "ecb846c9-e988-4906-95bc-af67b3aacd94", |
| 104 | + "session_start_time": null, |
| 105 | + "spark_pool": null, |
| 106 | + "state": "finished", |
| 107 | + "statement_id": 4, |
| 108 | + "statement_ids": [ |
| 109 | + 4 |
| 110 | + ] |
| 111 | + }, |
| 112 | + "text/plain": [ |
| 113 | + "StatementMeta(, ecb846c9-e988-4906-95bc-af67b3aacd94, 4, Finished, Available, Finished)" |
| 114 | + ] |
| 115 | + }, |
| 116 | + "metadata": {}, |
| 117 | + "output_type": "display_data" |
| 118 | + }, |
| 119 | + { |
| 120 | + "data": { |
| 121 | + "text/plain": [ |
| 122 | + "[Row(ID='SO45376', Count=1, Date='1/5/2020', Name='Edgar Mehta', Style='Mountain-100 Silver, 38', price=3399.99, tax=271.9992),\n", |
| 123 | + " Row(ID='SO45381', Count=1, Date='1/6/2020', Name='Jordan Long', Style='Mountain-100 Silver, 38', price=3399.99, tax=271.9992)]" |
| 124 | + ] |
| 125 | + }, |
| 126 | + "execution_count": 11, |
| 127 | + "metadata": {}, |
| 128 | + "output_type": "execute_result" |
| 129 | + } |
| 130 | + ], |
| 131 | + "source": [ |
| 132 | + "# Read the data from the bronze layer:\n", |
| 133 | + "df_raw_2020orders = spark.read.format(\"delta\").load(\"abfss://[email protected]/raw_Bronze.Lakehouse/Tables/2020orders\")\n", |
| 134 | + "\n", |
| 135 | + "df_raw_2020orders.head(2)" |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "code", |
| 140 | + "execution_count": 8, |
| 141 | + "id": "5f5c8125-cbf5-4e00-9d8f-0c437f25b37f", |
| 142 | + "metadata": { |
| 143 | + "jupyter": { |
| 144 | + "outputs_hidden": false, |
| 145 | + "source_hidden": false |
| 146 | + }, |
| 147 | + "microsoft": { |
| 148 | + "language": "python", |
| 149 | + "language_group": "synapse_pyspark" |
| 150 | + }, |
| 151 | + "nteract": { |
| 152 | + "transient": { |
| 153 | + "deleting": false |
| 154 | + } |
| 155 | + } |
| 156 | + }, |
| 157 | + "outputs": [ |
| 158 | + { |
| 159 | + "data": { |
| 160 | + "application/vnd.livy.statement-meta+json": { |
| 161 | + "execution_finish_time": "2024-10-25T19:21:36.2079156Z", |
| 162 | + "execution_start_time": "2024-10-25T19:21:35.9099818Z", |
| 163 | + "livy_statement_state": "available", |
| 164 | + "normalized_state": "finished", |
| 165 | + "parent_msg_id": "d65f6fd9-d9ab-4498-ab5d-0710bab459be", |
| 166 | + "queued_time": "2024-10-25T19:21:35.4162864Z", |
| 167 | + "session_id": "ecb846c9-e988-4906-95bc-af67b3aacd94", |
| 168 | + "session_start_time": null, |
| 169 | + "spark_pool": null, |
| 170 | + "state": "finished", |
| 171 | + "statement_id": 10, |
| 172 | + "statement_ids": [ |
| 173 | + 10 |
| 174 | + ] |
| 175 | + }, |
| 176 | + "text/plain": [ |
| 177 | + "StatementMeta(, ecb846c9-e988-4906-95bc-af67b3aacd94, 10, Finished, Available, Finished)" |
| 178 | + ] |
| 179 | + }, |
| 180 | + "metadata": {}, |
| 181 | + "output_type": "display_data" |
| 182 | + }, |
| 183 | + { |
| 184 | + "name": "stdout", |
| 185 | + "output_type": "stream", |
| 186 | + "text": [ |
| 187 | + "DataFrame[ID: string, Count: int, Date: string, Name: string, Style: string, price: double, tax: double]\n" |
| 188 | + ] |
| 189 | + } |
| 190 | + ], |
| 191 | + "source": [ |
| 192 | + "# Clean the data (e.g., filter out rows with null values in the 'age' column):\n", |
| 193 | + "df_cleaned = df_raw_2020orders.filter(df_raw_2020orders[\"Date\"].isNotNull())\n", |
| 194 | + "print(df_cleaned)" |
| 195 | + ] |
| 196 | + }, |
| 197 | + { |
| 198 | + "cell_type": "code", |
| 199 | + "execution_count": 10, |
| 200 | + "id": "c83d4e46-2b49-490f-aadb-87a350c85e89", |
| 201 | + "metadata": { |
| 202 | + "jupyter": { |
| 203 | + "outputs_hidden": false, |
| 204 | + "source_hidden": false |
| 205 | + }, |
| 206 | + "microsoft": { |
| 207 | + "language": "python", |
| 208 | + "language_group": "synapse_pyspark" |
| 209 | + }, |
| 210 | + "nteract": { |
| 211 | + "transient": { |
| 212 | + "deleting": false |
| 213 | + } |
| 214 | + } |
| 215 | + }, |
| 216 | + "outputs": [ |
| 217 | + { |
| 218 | + "data": { |
| 219 | + "application/vnd.livy.statement-meta+json": { |
| 220 | + "execution_finish_time": "2024-10-25T19:24:09.4412514Z", |
| 221 | + "execution_start_time": "2024-10-25T19:23:52.7414203Z", |
| 222 | + "livy_statement_state": "available", |
| 223 | + "normalized_state": "finished", |
| 224 | + "parent_msg_id": "8c92d669-7856-4961-a9d0-c38d54833ee4", |
| 225 | + "queued_time": "2024-10-25T19:23:52.3238132Z", |
| 226 | + "session_id": "ecb846c9-e988-4906-95bc-af67b3aacd94", |
| 227 | + "session_start_time": null, |
| 228 | + "spark_pool": null, |
| 229 | + "state": "finished", |
| 230 | + "statement_id": 12, |
| 231 | + "statement_ids": [ |
| 232 | + 12 |
| 233 | + ] |
| 234 | + }, |
| 235 | + "text/plain": [ |
| 236 | + "StatementMeta(, ecb846c9-e988-4906-95bc-af67b3aacd94, 12, Finished, Available, Finished)" |
| 237 | + ] |
| 238 | + }, |
| 239 | + "metadata": {}, |
| 240 | + "output_type": "display_data" |
| 241 | + } |
| 242 | + ], |
| 243 | + "source": [ |
| 244 | + "# Save the cleaned data to the \"cleansed_Silver\" table in the Silver lakehouse:\n", |
| 245 | + "df_cleaned.write.format(\"delta\").mode(\"overwrite\").save(\"abfss://[email protected]/cleansed_test_Silver.Lakehouse/Tables/2020orders_silver\")" |
| 246 | + ] |
| 247 | + }, |
| 248 | + { |
| 249 | + "cell_type": "markdown", |
| 250 | + "id": "f830afb3-2b02-4076-800a-85ca9fc33fea", |
| 251 | + "metadata": { |
| 252 | + "microsoft": { |
| 253 | + "language": "python", |
| 254 | + "language_group": "synapse_pyspark" |
| 255 | + }, |
| 256 | + "nteract": { |
| 257 | + "transient": { |
| 258 | + "deleting": false |
| 259 | + } |
| 260 | + } |
| 261 | + }, |
| 262 | + "source": [ |
| 263 | + "## Working with products information" |
| 264 | + ] |
| 265 | + }, |
| 266 | + { |
| 267 | + "cell_type": "code", |
| 268 | + "execution_count": 13, |
| 269 | + "id": "7f72ac98-4ece-4a8a-a5c5-5e1fc7273382", |
| 270 | + "metadata": { |
| 271 | + "jupyter": { |
| 272 | + "outputs_hidden": false, |
| 273 | + "source_hidden": false |
| 274 | + }, |
| 275 | + "microsoft": { |
| 276 | + "language": "python", |
| 277 | + "language_group": "synapse_pyspark" |
| 278 | + }, |
| 279 | + "nteract": { |
| 280 | + "transient": { |
| 281 | + "deleting": false |
| 282 | + } |
| 283 | + } |
| 284 | + }, |
| 285 | + "outputs": [ |
| 286 | + { |
| 287 | + "data": { |
| 288 | + "application/vnd.livy.statement-meta+json": { |
| 289 | + "execution_finish_time": "2024-10-25T19:27:25.4936309Z", |
| 290 | + "execution_start_time": "2024-10-25T19:27:20.5334249Z", |
| 291 | + "livy_statement_state": "available", |
| 292 | + "normalized_state": "finished", |
| 293 | + "parent_msg_id": "bf665ff4-43d5-4b02-90a6-6c28640576c3", |
| 294 | + "queued_time": "2024-10-25T19:27:20.1106109Z", |
| 295 | + "session_id": "ecb846c9-e988-4906-95bc-af67b3aacd94", |
| 296 | + "session_start_time": null, |
| 297 | + "spark_pool": null, |
| 298 | + "state": "finished", |
| 299 | + "statement_id": 15, |
| 300 | + "statement_ids": [ |
| 301 | + 15 |
| 302 | + ] |
| 303 | + }, |
| 304 | + "text/plain": [ |
| 305 | + "StatementMeta(, ecb846c9-e988-4906-95bc-af67b3aacd94, 15, Finished, Available, Finished)" |
| 306 | + ] |
| 307 | + }, |
| 308 | + "metadata": {}, |
| 309 | + "output_type": "display_data" |
| 310 | + } |
| 311 | + ], |
| 312 | + "source": [ |
| 313 | + "# Read data from the Bronze layer\n", |
| 314 | + "bronze_df = spark.read.format(\"delta\").load(\"abfss://[email protected]/raw_Bronze.Lakehouse/Tables/products\")\n", |
| 315 | + "# Perform transformations (if any)\n", |
| 316 | + "silver_df = bronze_df # Assuming no transformations for simplicity\n", |
| 317 | + "# Write data to the Silver layer\n", |
| 318 | + "silver_df.write.mode(\"overwrite\").format(\"delta\").save(\"abfss://[email protected]/cleansed_test_Silver.Lakehouse/Tables/products_silver\")" |
| 319 | + ] |
| 320 | + } |
| 321 | + ], |
| 322 | + "metadata": { |
| 323 | + "dependencies": { |
| 324 | + "lakehouse": { |
| 325 | + "default_lakehouse": "251cd515-16a3-4555-a3d2-dfd12adb2335", |
| 326 | + "default_lakehouse_name": "raw_Bronze", |
| 327 | + "default_lakehouse_workspace_id": "597e0afc-c8db-4f4d-8464-d13570f5b075" |
| 328 | + } |
| 329 | + }, |
| 330 | + "kernel_info": { |
| 331 | + "name": "synapse_pyspark" |
| 332 | + }, |
| 333 | + "kernelspec": { |
| 334 | + "display_name": "Synapse PySpark", |
| 335 | + "language": "Python", |
| 336 | + "name": "synapse_pyspark" |
| 337 | + }, |
| 338 | + "language_info": { |
| 339 | + "name": "python" |
| 340 | + }, |
| 341 | + "microsoft": { |
| 342 | + "language": "python", |
| 343 | + "language_group": "synapse_pyspark", |
| 344 | + "ms_spell_check": { |
| 345 | + "ms_spell_check_language": "en" |
| 346 | + } |
| 347 | + }, |
| 348 | + "nteract": { |
| 349 | + |
| 350 | + }, |
| 351 | + "spark_compute": { |
| 352 | + "compute_id": "/trident/default", |
| 353 | + "session_options": { |
| 354 | + "conf": { |
| 355 | + "spark.synapse.nbs.session.timeout": "1200000" |
| 356 | + } |
| 357 | + } |
| 358 | + }, |
| 359 | + "widgets": { |
| 360 | + "application/vnd.jupyter.widget-state+json": { |
| 361 | + "state": {}, |
| 362 | + "version": "1.0" |
| 363 | + } |
| 364 | + } |
| 365 | + }, |
| 366 | + "nbformat": 4, |
| 367 | + "nbformat_minor": 5 |
| 368 | +} |
0 commit comments