Skip to content

Commit d2ac9f9

Browse files
authored
Merge pull request #20 from MicrosoftCloudEssentials-LearningHub/LakePermissions
overview lakehouse permissions
2 parents ca67086 + 950ae12 commit d2ac9f9

File tree

2 files changed

+94
-19
lines changed

2 files changed

+94
-19
lines changed

Security/LakehousePermissions.md

Lines changed: 91 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,91 @@
1+
# Lakehouse: Security \& Governance
2+
3+
Costa Rica
4+
5+
[![GitHub](https://img.shields.io/badge/--181717?logo=github&logoColor=ffffff)](https://github.com/)
6+
[brown9804](https://github.com/brown9804)
7+
8+
Last updated: 2025-05-08
9+
10+
------------------------------------------
11+
12+
<details>
13+
<summary><b>List of References</b> (Click to expand)</summary>
14+
15+
- [Workspace roles in Lakehouse](https://learn.microsoft.com/en-us/fabric/data-engineering/workspace-roles-lakehouse)
16+
- [How lakehouse sharing works](https://learn.microsoft.com/en-us/fabric/data-engineering/lakehouse-sharing)
17+
18+
</details>
19+
20+
<details>
21+
<summary><b>Table of Contents</b> (Click to expand)</summary>
22+
23+
- [Read all SQL endpoint data](#read-all-sql-endpoint-data)
24+
- [Lakehouse Semantic Model](#lakehouse-semantic-model)
25+
- [SQL Analytics Endpoint](#sql-analytics-endpoint)
26+
27+
</details>
28+
29+
> `Lakehouse`is a `specific type of data architecture within Microsoft Fabric`that combines the features of data lakes and data warehouses. `It allows for the storage and processing of both structured and unstructured data`, providing the flexibility of a data lake with the performance and management features of a data warehouse. <br/> <br/>
30+
31+
<div align="center">
32+
<img width="700" alt="image" src="https://github.com/user-attachments/assets/fd102034-660b-4f93-8aa1-ccda4e4d1893" style="border: 2px solid #4CAF50; border-radius: 5px; padding: 5px;"/>
33+
</div>
34+
35+
| **Permission** | **Definition** | **Use Cases** |
36+
|-----------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
37+
| Read all SQL endpoint data | This permission allows access to SQL-based data endpoints in Microsoft Fabric. | - `Power BI`: Connecting to semantic models or datasets using DirectQuery or Import mode.<br/>- `Data Factory Pipelines`: Reading from or writing to SQL endpoints as part of ETL/ELT processes.<br/>- `OneLake / Gen2 Data Lake`: SQL endpoints can expose structured views over data stored in the lake.<br/>- `Data Activator / Agents`: Agents may use SQL endpoints to monitor or trigger actions based on data changes.<br/>- `Excel / Office Integration`: Connecting Excel to SQL endpoints for live data refresh and pivot analysis.<br/>- `Third-party BI Tools`: Using Tableau, Qlik, etc., to connect to SQL endpoints.<br/>- `Custom Applications`: Internal apps querying SQL endpoints for real-time dashboards. |
38+
| Read all Apache Spark and subscribe to events | This permission relates to Apache Spark workloads, which are more code- and compute-intensive. | - `Notebooks`: Running PySpark, Scala, or SparkSQL code for data exploration and transformation.<br/>- `Machine Learning`: Training models using Spark MLlib or integrating with Azure ML.<br/>- `Data Science Workloads`: Performing large-scale data analysis or feature engineering.<br/>- `Copilot & Agents`: If they need to interact with Spark jobs or listen to Spark events (e.g., job completion).<br/>- `Streaming Analytics`: Real-time data processing using Spark Structured Streaming.<br/>- `Data Engineering Pipelines`: Complex transformations and joins across large datasets.<br/>- `Event-Driven Automation`: Triggering workflows or alerts based on Spark job events.<br/>- `Integration with Delta Lake`: Managing transactional data lakes with ACID guarantees. |
39+
40+
<https://github.com/user-attachments/assets/2974bdee-4b02-4750-ba6c-b745215e0f82>
41+
42+
## Read all SQL endpoint data
43+
44+
> Permissions:
45+
>
46+
> - Read <br/>
47+
> - Read All <br/>
48+
> - Subscribe OneLake Events
49+
50+
> Lakehouse Manage Permissions:
51+
52+
<img width="550" alt="image" src="https://github.com/user-attachments/assets/a2559d8a-35b9-456b-a14c-81c9bb5d2b9c" /> |
53+
54+
<img width="550" alt="image" src="https://github.com/user-attachments/assets/2f0c625d-2cbb-43c0-930a-a2ee29eff60f" />
55+
56+
> When `Read all SQL endpoint data`:
57+
58+
<img width="550" alt="image" src="https://github.com/user-attachments/assets/19a31eaf-79e6-4836-a380-75137823e315" />
59+
60+
> `Read` access is granted, you add more permissions.
61+
62+
<img width="800" alt="image" src="https://github.com/user-attachments/assets/2035ae73-f247-493d-905c-d9a3d76ec5f2" />
63+
64+
## Lakehouse Semantic Model
65+
66+
> Permissions:
67+
>
68+
> - Reshare <br/>
69+
> - Build <br/>
70+
> - Write
71+
72+
<img width="550" alt="image" src="https://github.com/user-attachments/assets/f767acdc-6491-4576-a99e-337cf6f2b37c" />
73+
74+
<img width="800" alt="image" src="https://github.com/user-attachments/assets/a574988f-f78c-43be-b29c-150f67599386">
75+
76+
## SQL Analytics Endpoint
77+
78+
> Permissions:
79+
>
80+
> - Read <br/>
81+
> - Read Data <br/>
82+
> - Read All
83+
84+
<img width="550" alt="image" src="https://github.com/user-attachments/assets/969433d1-5ceb-4369-a11f-26a29bb606dd" />
85+
86+
<img width="800" alt="image" src="https://github.com/user-attachments/assets/60241837-759f-44f6-8934-67bb98002ada" />
87+
88+
<div align="center">
89+
<h3 style="color: #4CAF50;">Total Visitors</h3>
90+
<img src="https://profile-counter.glitch.me/brown9804/count.svg" alt="Visitor Count" style="border: 2px solid #4CAF50; border-radius: 5px; padding: 5px;"/>
91+
</div>

Security/README.md

Lines changed: 3 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -1,33 +1,17 @@
1-
# Security \& Governance
1+
# Security \& Governance Overview
22

33
Costa Rica
44

55
[![GitHub](https://img.shields.io/badge/--181717?logo=github&logoColor=ffffff)](https://github.com/)
66
[brown9804](https://github.com/brown9804)
77

8-
Last updated: 2025-02-03
8+
Last updated: 2025-05-08
99

1010
------------------------------------------
1111

12-
13-
## Lakehouse Permissions
14-
15-
> `Lakehouse `is a `specific type of data architecture within Microsoft Fabric `that combines the features of data lakes and data warehouses. `It allows for the storage and processing of both structured and unstructured data`, providing the flexibility of a data lake with the performance and management features of a data warehouse. <br/> <br/>
16-
17-
<div align="center">
18-
<img width="700" alt="image" src="https://github.com/user-attachments/assets/fd102034-660b-4f93-8aa1-ccda4e4d1893" style="border: 2px solid #4CAF50; border-radius: 5px; padding: 5px;"/>
19-
</div>
20-
21-
| **Permission** | **Definition** | **Use Cases** |
22-
|-----------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
23-
| Read all SQL endpoint data | This permission allows access to SQL-based data endpoints in Microsoft Fabric. | - `Power BI`: Connecting to semantic models or datasets using DirectQuery or Import mode.<br/>- `Data Factory Pipelines`: Reading from or writing to SQL endpoints as part of ETL/ELT processes.<br/>- `OneLake / Gen2 Data Lake`: SQL endpoints can expose structured views over data stored in the lake.<br/>- `Data Activator / Agents`: Agents may use SQL endpoints to monitor or trigger actions based on data changes.<br/>- `Excel / Office Integration`: Connecting Excel to SQL endpoints for live data refresh and pivot analysis.<br/>- `Third-party BI Tools`: Using Tableau, Qlik, etc., to connect to SQL endpoints.<br/>- `Custom Applications`: Internal apps querying SQL endpoints for real-time dashboards. |
24-
| Read all Apache Spark and subscribe to events | This permission relates to Apache Spark workloads, which are more code- and compute-intensive. | - `Notebooks`: Running PySpark, Scala, or SparkSQL code for data exploration and transformation.<br/>- `Machine Learning`: Training models using Spark MLlib or integrating with Azure ML.<br/>- `Data Science Workloads`: Performing large-scale data analysis or feature engineering.<br/>- `Copilot & Agents`: If they need to interact with Spark jobs or listen to Spark events (e.g., job completion).<br/>- `Streaming Analytics`: Real-time data processing using Spark Structured Streaming.<br/>- `Data Engineering Pipelines`: Complex transformations and joins across large datasets.<br/>- `Event-Driven Automation`: Triggering workflows or alerts based on Spark job events.<br/>- `Integration with Delta Lake`: Managing transactional data lakes with ACID guarantees. |
25-
26-
https://github.com/user-attachments/assets/2974bdee-4b02-4750-ba6c-b745215e0f82
27-
12+
- [Lakehouse Permissions](./LakehousePermissions.md): Lakehouse, Semantic Model, SQL Endpoint
2813

2914
<div align="center">
3015
<h3 style="color: #4CAF50;">Total Visitors</h3>
3116
<img src="https://profile-counter.glitch.me/brown9804/count.svg" alt="Visitor Count" style="border: 2px solid #4CAF50; border-radius: 5px; padding: 5px;"/>
3217
</div>
33-

0 commit comments

Comments
 (0)