@@ -922,79 +922,7 @@ After you register your production data and preprocessing component, you can set
922
922
- For the `target_column` value, use the name of the output column that contains values that the model predicts.
923
923
- Under `emails`, list the email addresses that you want to use for notifications.
924
924
925
- ` ` ` yml
926
- # model-monitoring-with-collected-data.yaml
927
- $schema: http://azureml/sdk-2-0/Schedule.json
928
- name: fraud_detection_model_monitoring
929
- display_name: Fraud detection model monitoring
930
- description: Fraud detection model monitoring with your own production data
931
-
932
- trigger:
933
- # perform model monitoring activity daily at 3:15am
934
- type: recurrence
935
- frequency: day # Possible frequency values include "minute," "hour," "day," "week," and "month."
936
- interval: 1 # Monitoring runs every day when you use the value 1.
937
- schedule:
938
- hours: 3 # Monitoring starts sometime in the hour after 3:00 AM.
939
- minutes: 15 # Monitoring starts 15 minutes after the scheduled hour.
940
-
941
- create_monitor:
942
- compute:
943
- instance_type: standard_e4s_v3
944
- runtime_version: "3.3"
945
- monitoring_target:
946
- ml_task: classification
947
- endpoint_deployment_id: azureml:fraud-detection-endpoint:fraud-detection-deployment
948
-
949
- monitoring_signals:
950
-
951
- advanced_data_drift: # This term is the monitoring signal name. You can use any user-defined name.
952
- type: data_drift
953
- # Define a production data asset that contains your collected data.
954
- production_data:
955
- input_data:
956
- path: azureml:my_production_inference_data_model_inputs:1 # Your collected data is registered as an Azure Machine Learning asset.
957
- type: uri_folder
958
- data_context: model_inputs
959
- pre_processing_component: azureml:production_data_preprocessing:1.0.0
960
- reference_data:
961
- input_data:
962
- path: azureml:my_model_training_data:1 # Use training data as a comparison baseline.
963
- type: mltable
964
- data_context: training
965
- data_column_names:
966
- target_column: is_fraud
967
- features:
968
- top_n_feature_importance: 20 # Monitor drift for the top 20 features.
969
- metric_thresholds:
970
- numerical:
971
- jensen_shannon_distance: 0.01
972
- categorical:
973
- pearsons_chi_squared_test: 0.02
974
-
975
- advanced_prediction_drift: # This term is the monitoring signal name. You can use any user-defined name.
976
- type: prediction_drift
977
- # Define a production data asset that contains your collected data.
978
- production_data:
979
- input_data:
980
- path: azureml:my_production_inference_data_model_outputs:1 # Your collected data is registered as an Azure Machine Learning asset.
981
- type: uri_folder
982
- data_context: model_outputs
983
- pre_processing_component: azureml:production_data_preprocessing:1.0.0
984
- reference_data:
985
- input_data:
986
- path: azureml:my_model_validation_data:1 # Use training data as a comparison reference data asset.
987
- type: mltable
988
- data_context: validation
989
- metric_thresholds:
990
- categorical:
991
- pearsons_chi_squared_test: 0.02
992
-
993
- alert_notification:
994
- emails:
995
-
996
-
997
- ` ` `
925
+ :::code language="yaml" source="~/azureml-examples-main/cli/monitoring/model-monitoring-with-collected-data.yaml":: :
998
926
999
927
1. Run the following command to create the model.
1000
928
0 commit comments