Skip to content

Commit 0366b39

Browse files
committed
Address PR comments: reference YAML instead of hard-coding it
1 parent 20764ff commit 0366b39

File tree

1 file changed

+1
-73
lines changed

1 file changed

+1
-73
lines changed

articles/machine-learning/how-to-monitor-model-performance.md

Lines changed: 1 addition & 73 deletions
Original file line numberDiff line numberDiff line change
@@ -922,79 +922,7 @@ After you register your production data and preprocessing component, you can set
922922
- For the `target_column` value, use the name of the output column that contains values that the model predicts.
923923
- Under `emails`, list the email addresses that you want to use for notifications.
924924

925-
```yml
926-
# model-monitoring-with-collected-data.yaml
927-
$schema: http://azureml/sdk-2-0/Schedule.json
928-
name: fraud_detection_model_monitoring
929-
display_name: Fraud detection model monitoring
930-
description: Fraud detection model monitoring with your own production data
931-
932-
trigger:
933-
# perform model monitoring activity daily at 3:15am
934-
type: recurrence
935-
frequency: day # Possible frequency values include "minute," "hour," "day," "week," and "month."
936-
interval: 1 # Monitoring runs every day when you use the value 1.
937-
schedule:
938-
hours: 3 # Monitoring starts sometime in the hour after 3:00 AM.
939-
minutes: 15 # Monitoring starts 15 minutes after the scheduled hour.
940-
941-
create_monitor:
942-
compute:
943-
instance_type: standard_e4s_v3
944-
runtime_version: "3.3"
945-
monitoring_target:
946-
ml_task: classification
947-
endpoint_deployment_id: azureml:fraud-detection-endpoint:fraud-detection-deployment
948-
949-
monitoring_signals:
950-
951-
advanced_data_drift: # This term is the monitoring signal name. You can use any user-defined name.
952-
type: data_drift
953-
# Define a production data asset that contains your collected data.
954-
production_data:
955-
input_data:
956-
path: azureml:my_production_inference_data_model_inputs:1 # Your collected data is registered as an Azure Machine Learning asset.
957-
type: uri_folder
958-
data_context: model_inputs
959-
pre_processing_component: azureml:production_data_preprocessing:1.0.0
960-
reference_data:
961-
input_data:
962-
path: azureml:my_model_training_data:1 # Use training data as a comparison baseline.
963-
type: mltable
964-
data_context: training
965-
data_column_names:
966-
target_column: is_fraud
967-
features:
968-
top_n_feature_importance: 20 # Monitor drift for the top 20 features.
969-
metric_thresholds:
970-
numerical:
971-
jensen_shannon_distance: 0.01
972-
categorical:
973-
pearsons_chi_squared_test: 0.02
974-
975-
advanced_prediction_drift: # This term is the monitoring signal name. You can use any user-defined name.
976-
type: prediction_drift
977-
# Define a production data asset that contains your collected data.
978-
production_data:
979-
input_data:
980-
path: azureml:my_production_inference_data_model_outputs:1 # Your collected data is registered as an Azure Machine Learning asset.
981-
type: uri_folder
982-
data_context: model_outputs
983-
pre_processing_component: azureml:production_data_preprocessing:1.0.0
984-
reference_data:
985-
input_data:
986-
path: azureml:my_model_validation_data:1 # Use training data as a comparison reference data asset.
987-
type: mltable
988-
data_context: validation
989-
metric_thresholds:
990-
categorical:
991-
pearsons_chi_squared_test: 0.02
992-
993-
alert_notification:
994-
emails:
995-
996-
997-
```
925+
:::code language="yaml" source="~/azureml-examples-main/cli/monitoring/model-monitoring-with-collected-data.yaml":::
998926

999927
1. Run the following command to create the model.
1000928

0 commit comments

Comments
 (0)