Skip to content

Commit 055dc60

Browse files
committed
New supported embedding model
1 parent bdfeed7 commit 055dc60

7 files changed

+34
-27
lines changed

articles/search/search-get-started-portal-image-search.md

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ ms.author: haileytapia
77
ms.service: azure-ai-search
88
ms.update-cycle: 90-days
99
ms.topic: quickstart
10-
ms.date: 06/11/2025
10+
ms.date: 07/16/2025
1111
ms.custom:
1212
- references_regions
1313
---
@@ -52,7 +52,7 @@ For content embedding, you can choose either image verbalization (followed by te
5252
| Method | Description | Supported models |
5353
|--|--|--|
5454
| Image verbalization | Uses an LLM to generate natural-language descriptions of images, and then uses an embedding model to vectorize plain text and verbalized images.<br><br>Requires an [Azure OpenAI resource](/azure/ai-services/openai/how-to/create-resource) <sup>1, 2</sup> or [Azure AI Foundry project](/azure/ai-foundry/how-to/create-projects).<br><br>For text vectorization, you can also use an [Azure AI services multi-service resource](/azure/ai-services/multi-service-resource#azure-ai-multi-services-resource-for-azure-ai-search-skills) <sup>3</sup> in a [supported region](cognitive-search-skill-vision-vectorize.md). | LLMs:<br>GPT-4o<br>GPT-4o-mini<br>phi-4 <sup>4</sup><br><br>Embedding models:<br>text-embedding-ada-002<br>text-embedding-3-small<br>text-embedding-3-large |
55-
| Multimodal embeddings | Uses an embedding model to directly vectorize both text and images.<br><br>Requires an [Azure AI Foundry project](/azure/ai-foundry/how-to/create-projects) or [Azure AI services multi-service resource](/azure/ai-services/multi-service-resource#azure-ai-multi-services-resource-for-azure-ai-search-skills) <sup>3</sup> in a [supported region](cognitive-search-skill-vision-vectorize.md). | Cohere-embed-v3-english<br>Cohere-embed-v3-multilingual |
55+
| Multimodal embeddings | Uses an embedding model to directly vectorize both text and images.<br><br>Requires an [Azure AI Foundry project](/azure/ai-foundry/how-to/create-projects) or [Azure AI services multi-service resource](/azure/ai-services/multi-service-resource#azure-ai-multi-services-resource-for-azure-ai-search-skills) <sup>3</sup> in a [supported region](cognitive-search-skill-vision-vectorize.md). | Cohere-embed-v3-english<br>Cohere-embed-v3-multilingual<br>embed-v-4-0 <sup>5</sup> |
5656

5757
<sup>1</sup> The endpoint of your Azure OpenAI resource must have a [custom subdomain](/azure/ai-services/cognitive-services-custom-subdomains), such as `https://my-unique-name.openai.azure.com`. If you created your resource in the [Azure portal](https://portal.azure.com/), this subdomain was automatically generated during resource setup.
5858

@@ -62,6 +62,8 @@ For content embedding, you can choose either image verbalization (followed by te
6262

6363
<sup>4</sup> `phi-4` is only available to Azure AI Foundry projects.
6464

65+
<sup>5</sup> The Azure portal doesn't support `embed-v-4-0` for vectorization, so don't use it for this quickstart. Instead, use the [AML skill](cognitive-search-aml-skill.md) to programmatically specify this model. You can then use the portal to view and manage the skillset.
66+
6567
### Public endpoint requirements
6668

6769
All of the preceding resources must have public access enabled so that the Azure portal nodes can access them. Otherwise, the wizard fails. After the wizard runs, you can enable firewalls and private endpoints on the integration components for security. For more information, see [Secure connections in the import wizards](search-import-data-portal.md#secure-connections).

articles/search/search-get-started-portal-import-vectors.md

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ ms.custom:
1010
- build-2024
1111
- ignite-2024
1212
ms.topic: quickstart
13-
ms.date: 06/11/2025
13+
ms.date: 07/16/2025
1414
---
1515

1616
# Quickstart: Vectorize text in the Azure portal
@@ -49,7 +49,7 @@ For integrated vectorization, you must use one of the following embedding models
4949
|--|--|
5050
| [Azure OpenAI in Azure AI Foundry Models](/azure/ai-services/openai/how-to/create-resource) <sup>1, 2</sup> | text-embedding-ada-002<br>text-embedding-3-small<br>text-embedding-3-large |
5151
| [Azure AI services multi-service resource](/azure/ai-services/multi-service-resource#azure-ai-multi-services-resource-for-azure-ai-search-skills) <sup>3</sup> | For text and images: [Azure AI Vision multimodal](/azure/ai-services/computer-vision/how-to/image-retrieval) <sup>4</sup></li> |
52-
| [Azure AI Foundry model catalog](/azure/ai-foundry/what-is-azure-ai-foundry) | For text:<br>Cohere-embed-v3-english<br>Cohere-embed-v3-multilingual<br><br>For images:<br>Facebook-DinoV2-Image-Embeddings-ViT-Base<br>Facebook-DinoV2-Image-Embeddings-ViT-Giant |
52+
| [Azure AI Foundry model catalog](/azure/ai-foundry/what-is-azure-ai-foundry) | For text:<br>Cohere-embed-v3-english<br>Cohere-embed-v3-multilingual<br><br>For images:<br>Facebook-DinoV2-Image-Embeddings-ViT-Base<br>Facebook-DinoV2-Image-Embeddings-ViT-Giant<br><br>For text and images:<br>embed-v-4-0 <sup>5</sup> |
5353

5454
<sup>1</sup> The endpoint of your Azure OpenAI resource must have a [custom subdomain](/azure/ai-services/cognitive-services-custom-subdomains), such as `https://my-unique-name.openai.azure.com`. If you created your resource in the [Azure portal](https://portal.azure.com/), this subdomain was automatically generated during resource setup.
5555

@@ -59,6 +59,8 @@ For integrated vectorization, you must use one of the following embedding models
5959

6060
<sup>4</sup> The Azure AI Vision multimodal embedding model is available in [select regions](/azure/ai-services/computer-vision/overview-image-analysis#region-availability).
6161

62+
<sup>5</sup> The Azure portal doesn't support `embed-v-4-0` for vectorization, so don't use it for this quickstart. Instead, use the [AML skill](cognitive-search-aml-skill.md) to programmatically specify this model. You can then use the portal to view and manage the skillset.
63+
6264
### Public endpoint requirements
6365

6466
For the purposes of this quickstart, all of the preceding resources must have public access enabled so that the Azure portal nodes can access them. Otherwise, the wizard fails. After the wizard runs, you can enable firewalls and private endpoints on the integration components for security. For more information, see [Secure connections in the import wizards](search-import-data-portal.md#secure-connections).

articles/search/search-how-to-integrated-vectorization.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ author: haileytap
77
ms.author: haileytapia
88
ms.service: azure-ai-search
99
ms.topic: how-to
10-
ms.date: 06/11/2025
10+
ms.date: 07/16/2025
1111
---
1212

1313
# Set up integrated vectorization in Azure AI Search using REST
@@ -48,7 +48,7 @@ For integrated vectorization, you must use one of the following embedding models
4848
|--|--|
4949
| [Azure OpenAI in Azure AI Foundry Models](/azure/ai-services/openai/how-to/create-resource) <sup>1, 2</sup> | text-embedding-ada-002<br>text-embedding-3-small<br>text-embedding-3-large |
5050
| [Azure AI services multi-service resource](/azure/ai-services/multi-service-resource#azure-ai-services-resource-for-azure-ai-search-skills) <sup>3</sup> | For text and images: [Azure AI Vision multimodal](/azure/ai-services/computer-vision/how-to/image-retrieval) <sup>4</sup></li> |
51-
<!--| [Azure AI Foundry model catalog](/azure/ai-foundry/what-is-azure-ai-foundry) | For text:<br>Cohere-embed-v3-english<br>Cohere-embed-v3-multilingual<br><br>For images:<br>Facebook-DinoV2-Image-Embeddings-ViT-Base<br>Facebook-DinoV2-Image-Embeddings-ViT-Giant |-->
51+
<!--| [Azure AI Foundry model catalog](/azure/ai-foundry/what-is-azure-ai-foundry) | For text:<br>Cohere-embed-v3-english<br>Cohere-embed-v3-multilingual<br><br>For images:<br>Facebook-DinoV2-Image-Embeddings-ViT-Base<br>Facebook-DinoV2-Image-Embeddings-ViT-Giant<br>For text and images:<br>embed-v-4-0|-->
5252

5353
<sup>1</sup> The endpoint of your Azure OpenAI resource must have a [custom subdomain](/azure/ai-services/cognitive-services-custom-subdomains), such as `https://my-unique-name.openai.azure.com`. If you created your resource in the [Azure portal](https://portal.azure.com/), this subdomain was automatically generated during resource setup.
5454

articles/search/tutorial-rag-build-solution-models.md

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ ms.service: azure-ai-search
99
ms.update-cycle: 180-days
1010
ms.topic: tutorial
1111
ms.custom: references_regions
12-
ms.date: 06/11/2025
12+
ms.date: 07/16/2025
1313

1414
---
1515

@@ -54,11 +54,13 @@ Azure AI Search provides skill and vectorizer support for the following embeddin
5454
|--------|------------------|-------|------------|
5555
| Azure OpenAI | text-embedding-ada-002, <br>text-embedding-3-large, <br>text-embedding-3-small | [AzureOpenAIEmbedding](cognitive-search-skill-azure-openai-embedding.md) | [AzureOpenAIEmbedding](vector-search-vectorizer-azure-open-ai.md) |
5656
| Azure AI Vision | multimodal 4.0 <sup>1</sup> | [AzureAIVision](cognitive-search-skill-vision-vectorize.md) | [AzureAIVision](vector-search-vectorizer-ai-services-vision.md) |
57-
| Azure AI Foundry model catalog | Facebook-DinoV2-Image-Embeddings-ViT-Base, <br>Facebook-DinoV2-Image-Embeddings-ViT-Giant, <br>Cohere-embed-v3-english, <br>Cohere-embed-v3-multilingual | [AML](cognitive-search-aml-skill.md) <sup>2</sup> | [Azure AI Foundry model catalog](vector-search-vectorizer-azure-machine-learning-ai-studio-catalog.md) |
57+
| Azure AI Foundry model catalog | Facebook-DinoV2-Image-Embeddings-ViT-Base, <br>Facebook-DinoV2-Image-Embeddings-ViT-Giant, <br>Cohere-embed-v3-english, <br>Cohere-embed-v3-multilingual, <br>embed-v-4-0 <sup>1, 2</sup> | [AML](cognitive-search-aml-skill.md) <sup>3</sup> | [Azure AI Foundry model catalog](vector-search-vectorizer-azure-machine-learning-ai-studio-catalog.md) |
5858

5959
<sup>1</sup> Supports image and text vectorization.
6060

61-
<sup>2</sup> Deployed models in the model catalog are accessed over an AML endpoint. We use the existing AML skill for this connection.
61+
<sup>2</sup> At this time, you can only specify `embed-v-4-0` programmatically through the [AML skill](cognitive-search-aml-skill.md), not through the Azure portal. However, you can use the portal to view and manage the skillset afterward.
62+
63+
<sup>3</sup> Deployed models in the model catalog are accessed over an AML endpoint. We use the existing AML skill for this connection.
6264

6365
You can use other models besides the ones listed here. For more information, see [Use non-Azure models for embeddings](#use-non-azure-models-for-embeddings) in this article.
6466

articles/search/vector-search-how-to-configure-vectorizer.md

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ ms.update-cycle: 180-days
1010
ms.custom:
1111
- build-2024
1212
ms.topic: how-to
13-
ms.date: 05/08/2025
13+
ms.date: 07/16/2025
1414
---
1515

1616
# Configure a vectorizer in a search index
@@ -44,10 +44,12 @@ The following table lists the embedding models that can be used with a vectorize
4444
| Vectorizer kind | Model names | Model provider | Associated skill |
4545
|-----------------|------------|----------------|------------------|
4646
| [`azureOpenAI`](vector-search-vectorizer-azure-open-ai.md) | text-embedding-ada-002, text-embedding-3 | Azure OpenAI | [AzureOpenAIEmbedding skill](cognitive-search-skill-azure-openai-embedding.md) |
47-
| [`aml`](vector-search-vectorizer-azure-machine-learning-ai-studio-catalog.md) | Facebook-DinoV2-Image-Embeddings, Cohere-embed-v3 | [Azure AI Foundry model catalog](vector-search-integrated-vectorization-ai-studio.md) | [AML skill](cognitive-search-aml-skill.md) |
47+
| [`aml`](vector-search-vectorizer-azure-machine-learning-ai-studio-catalog.md) | Facebook-DinoV2-Image-Embeddings, Cohere-embed-v3, embed-v-4-0 <sup>1</sup> | [Azure AI Foundry model catalog](vector-search-integrated-vectorization-ai-studio.md) | [AML skill](cognitive-search-aml-skill.md) |
4848
| [`aiServicesVision`](vector-search-vectorizer-ai-services-vision.md) | [Multimodal embeddings 4.0 API](/azure/ai-services/computer-vision/concept-image-retrieval) | Azure AI Vision (through an Azure AI services multi-service account) | [Azure AI Vision multimodal embeddings skill](cognitive-search-skill-vision-vectorize.md) |
4949
| [`customWebApi`](vector-search-vectorizer-custom-web-api.md) | Any embedding model | Hosted externally | [Custom Web API skill](cognitive-search-custom-skill-web-api.md) |
5050

51+
<sup>1</sup> At this time, you can only specify `embed-v-4-0` programmatically through the [AML skill](cognitive-search-aml-skill.md), not through the Azure portal. However, you can use the portal to view and manage the skillset afterward.
52+
5153
## Try a vectorizer with sample data
5254

5355
The [Import and vectorize data wizard](search-get-started-portal-import-vectors.md) reads files from Azure Blob storage, creates an index with chunked and vectorized fields, and adds a vectorizer. By design, the vectorizer that's created by the wizard is set to the same embedding model used to index the blob content.

articles/search/vector-search-integrated-vectorization-ai-studio.md

Lines changed: 10 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ ms.service: azure-ai-search
88
ms.custom:
99
- build-2024
1010
ms.topic: how-to
11-
ms.date: 07/07/2025
11+
ms.date: 07/16/2025
1212
---
1313

1414
# Use embedding models from Azure AI Foundry model catalog for integrated vectorization
@@ -35,15 +35,13 @@ After the model is deployed, you can use it for [integrated vectorization](vecto
3535

3636
Integrated vectorization and the [Import and vectorize data wizard](search-import-data-portal.md) support the following embedding models in the model catalog:
3737

38-
For text embeddings:
38+
| Embedding type | Supported models |
39+
|--|--|
40+
| Text | Cohere-embed-v3-english, Cohere-embed-v3-multilingual|
41+
| Image | Facebook-DinoV2-Image-Embeddings-ViT-Base, Facebook-DinoV2-Image-Embeddings-ViT-Giant |
42+
| Multimodal (text and image) | embed-v-4-0 <sup>1</sup> |
3943

40-
+ Cohere-embed-v3-english
41-
+ Cohere-embed-v3-multilingual
42-
43-
For image embeddings:
44-
45-
+ Facebook-DinoV2-Image-Embeddings-ViT-Base
46-
+ Facebook-DinoV2-Image-Embeddings-ViT-Giant
44+
<sup>1</sup> At this time, you can only specify `embed-v-4-0` programmatically through the [AML skill](cognitive-search-aml-skill.md), not through the Azure portal. However, you can use the portal to view and manage the skillset afterward.
4745

4846
## Deploy an embedding model from the Azure AI Foundry model catalog
4947

@@ -178,15 +176,14 @@ This AML skill payload works with the following text embedding models from Azure
178176

179177
+ Cohere-embed-v3-english
180178
+ Cohere-embed-v3-multilingual
179+
+ embed-v-4-0
181180

182181
It assumes that you're chunking your content using the Text Split skill and therefore your text to be vectorized is in the `/document/pages/*` path. If your text comes from a different path, update all references to the `/document/pages/*` path accordingly.
183182

184183
You must add the `/v1/embed` path onto the end of the URL that you copied from your Azure AI Foundry deployment. You might also change the values for the `input_type`, `truncate` and `embedding_types` inputs to better fit your use case. For more information on the available options, review the [Cohere Embed API reference](/azure/ai-foundry/how-to/deploy-models-cohere-embed).
185184

186185
The URI and key are generated when you deploy the model from the catalog. For more information about these values, see [How to deploy Cohere Embed models with Azure AI Foundry](/azure/ai-foundry/how-to/deploy-models-cohere-embed).
187186

188-
Note that image URIs aren't supported by this integration at this time.
189-
190187
```json
191188
{
192189
"@odata.type": "#Microsoft.Skills.Custom.AmlSkill",
@@ -220,9 +217,9 @@ Note that image URIs aren't supported by this integration at this time.
220217
}
221218
```
222219

223-
In addition, the output of the Cohere model isn't the embeddings array directly, but rather a JSON object that contains it. You need to select it appropriately when mapping it to the index definition via `indexProjections` or `outputFieldMappings`. Here's a sample `indexProjections` payload that would allow you to do implement this mapping.
220+
In addition, the output of the Cohere model isn't the embeddings array directly, but rather a JSON object that contains it. You need to select it appropriately when mapping it to the index definition via `indexProjections` or `outputFieldMappings`. Here's a sample `indexProjections` payload that would allow you to do implement this mapping.
224221

225-
If you selected a different `embedding_types` in your skill definition that you have to change `float` in the `source` path to the appropriate type that you did select instead.
222+
If you selected a different `embedding_types` in your skill definition, change `float` in the `source` path to the type you selected.
226223

227224
```json
228225
"indexProjections": {

articles/search/vector-search-vectorizer-azure-machine-learning-ai-studio-catalog.md

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -8,13 +8,13 @@ ms.service: azure-ai-search
88
ms.custom:
99
- build-2024
1010
ms.topic: reference
11-
ms.date: 12/03/2024
11+
ms.date: 07/16/2024
1212
---
1313

1414
# Azure AI Foundry model catalog vectorizer
1515

1616
> [!IMPORTANT]
17-
> This vectorizer is in public preview under [Supplemental Terms of Use](https://azure.microsoft.com/support/legal/preview-supplemental-terms/). The [2024-05-01-Preview REST API](/rest/api/searchservice/indexes/create-or-update?view=rest-searchservice-2024-05-01-Preview&preserve-view=true) supports this feature.
17+
> This vectorizer is in public preview under [Supplemental Terms of Use](https://azure.microsoft.com/support/legal/preview-supplemental-terms/). To use this feature, we recommend the latest preview version of [Indexes - Create Or Update](/rest/api/searchservice/indexes/create-or-update) (REST API).
1818
1919
The **Azure AI Foundry model catalog** vectorizer connects to an embedding model that was deployed via [the Azure AI Foundry model catalog](/azure/ai-foundry/how-to/model-catalog-overview) to an Azure Machine Learning endpoint. Your data is processed in the [Geo](https://azure.microsoft.com/explore/global-infrastructure/data-residency/) where your model is deployed.
2020

@@ -27,7 +27,7 @@ Parameters are case-sensitive. Which parameters you choose to use depends on wha
2727
| Parameter name | Description |
2828
|--------------------|-------------|
2929
| `uri` | (Required) The [URI of the AML online endpoint](../machine-learning/how-to-authenticate-online-endpoint.md) to which the _JSON_ payload is sent. Only the **https** URI scheme is allowed. |
30-
| `modelName` | (Required) The model ID from the Azure AI Foundry model catalog that is deployed at the provided endpoint. Supported models are: <ul><li>Facebook-DinoV2-Image-Embeddings-ViT-Base </li><li>Facebook-DinoV2-Image-Embeddings-ViT-Giant </li><li>Cohere-embed-v3-english </li><li>Cohere-embed-v3-multilingual</ul> |
30+
| `modelName` | (Required) The model ID from the Azure AI Foundry model catalog that is deployed at the provided endpoint. Supported models are:<p><ul><li>Facebook-DinoV2-Image-Embeddings-ViT-Base </li><li>Facebook-DinoV2-Image-Embeddings-ViT-Giant </li><li>Cohere-embed-v3-english </li><li>Cohere-embed-v3-multilingual</li><li>Cohere-embed-v4</li></ul> |
3131
| `key` | (Required for [key authentication](#WhatParametersToUse)) The [key for the AML online endpoint](../machine-learning/how-to-authenticate-online-endpoint.md). |
3232
| `resourceId` | (Required for [token authentication](#WhatParametersToUse)). The Azure Resource Manager resource ID of the AML online endpoint. It should be in the format subscriptions/{guid}/resourceGroups/{resource-group-name}/Microsoft.MachineLearningServices/workspaces/{workspace-name}/onlineendpoints/{endpoint_name}. |
3333
| `region` | (Optional for [token authentication](#WhatParametersToUse)). The [region](https://azure.microsoft.com/global-infrastructure/regions/) the AML online endpoint is deployed in. Needed if the region is different from the region of the search service. |
@@ -55,6 +55,7 @@ Which vector query types are supported by the Azure AI Foundry model catalog vec
5555
| Facebook-DinoV2-Image-Embeddings-ViT-Giant | | X | X |
5656
| Cohere-embed-v3-english | X | | |
5757
| Cohere-embed-v3-multilingual | X | | |
58+
| Cohere-embed-v4 | X | X | X |
5859

5960
## Expected field dimensions
6061

@@ -66,6 +67,7 @@ The expected field dimensions for a vector field configured with an Azure AI Fou
6667
| Facebook-DinoV2-Image-Embeddings-ViT-Giant | 1536 |
6768
| Cohere-embed-v3-english | 1024 |
6869
| Cohere-embed-v3-multilingual | 1024 |
70+
| Cohere-embed-v4 | 256–1536 |
6971

7072
## Sample definition
7173

0 commit comments

Comments
 (0)