Skip to content

Commit 17a0914

Browse files
authored
Update configure-private-link.md
Updated PuPr ip allowlist text
1 parent 429a46d commit 17a0914

File tree

1 file changed

+35
-19
lines changed

1 file changed

+35
-19
lines changed

articles/ai-foundry/how-to/configure-private-link.md

Lines changed: 35 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -264,44 +264,60 @@ You can use IP network rules to allow access to your secured hub from specific p
264264
> [!WARNING]
265265
> * Enable your endpoint's public network access flag if you want to allow access to your endpoint from specific public internet IP address ranges.
266266
> * You can only use IPv4 addresses.
267+
> * If the workspace goes from __Enable from selected IPs__ to __Disabled__ or __Enabled__, the IP ranges will be reset.
267268
268269
# [Portal](#tab/azure-portal)
269270

270271
1. From the [Azure portal](https://portal.azure.com), select your Azure Machine AI Foundry hub.
271-
1. From the left side of the page, select __Networking__ and then select the __Public access__ tab.
272-
1. Select __Enabled from selected IP addresses__, input address ranges and then select __Save__.
272+
2. From the left side of the page, select __Networking__ and then select the __Public access__ tab.
273+
3. Select __Enabled from selected IP addresses__, input address ranges and then select __Save__.
273274

274275
<!-- :::image type="content" source="./media/how-to-configure-private-link/workspace-public-access-ip-ranges.png" alt-text="Screenshot of the UI to enable access from internet IP ranges."::: -->
275276

276277
# [Azure CLI](#tab/cli)
277278

278-
279-
Use the `az ml workspace network-rule` Azure CLI command to manage public access from an IP address or address range:
279+
Use the `az ml workspace update` Azure CLI command to manage public access from an IP address or address range:
280280

281281
> [!TIP]
282282
> The configurations for the selected IP addresses are stored in the hub's properties, under `network_acls`:
283283
> ```yml
284-
> properties:
285-
> # ...
286-
> network_acls:
287-
> description: "The network ACLS for this hub, enforced when public_network_access is set to Enabled."
288-
> $ref: "3/defintions/networkAcls"
284+
> name: sample_hub
285+
> location: centraluseuap
286+
> display_name: sample hub
287+
> description: desc
288+
> public_network_access: enabled
289+
> network_acls:
290+
> ip_rules:
291+
> value: "X.X.X.X/X"
292+
> value: "X.X.X.X"
293+
> default_action: Deny
289294
> ```
290-
291-
- __List IP network rules__: `az ml workspace network-rule list --resource-group "myresourcegroup" --workspace-name "myWS" --query ipRules`
292-
- __Add a rule for a single IP address__: `az ml workspace network-rule add --resource-group "myresourcegroup" --workspace-name "myWS" --ip-address "16.17.18.19"`
293-
- __Add a rule for an IP address range__: `az ml workspace network-rule add --resource-group "myresourcegroup" --workspace-name "myWS" --ip-address "16.17.18.0/24"`
294-
- __Remove a rule for a single IP address__: `az ml workspace network-rule remove --resource-group "myresourcegroup" --workspace-name "myWS" --ip-address "16.17.18.19"`
295-
- __Remove a rule for an IP address range__: `az ml workspace network-rule remove --resource-group "myresourcegroup" --workspace-name "myWS" --ip-address "16.17.18.0/24"`
295+
296+
1. Disabled:
297+
`az ml workspace update -n test-ws -g test-rg --public-network-access Disabled`
298+
2. Enabled from selected IP addresses:
299+
`az ml workspace update -n test-ws -g test-rg --public-network-access Enabled --network-acls "167.220.238.199/32,167.220.238.194/32" `
300+
3. Enabled from all networks:
301+
`az ml workspace update -n test-ws -g test-rg --public-network-access Enabled --network-acls none`
296302
297303
---
298304
299-
You can also use the [Workspace](/python/api/azure-ai-ml/azure.ai.ml.entities.workspace) class from the Azure Machine Learning [Python SDK](/python/api/overview/azure/ai-ml-readme) to define which IP addresses are allowed inbound access:
305+
You can also use the [Workspace](/python/api/azure-ai-ml/azure.ai.ml.entities.workspace) class from the Azure Machine Learning [Python SDK](https://learn.microsoft.com/en-us/python/api/azure-ai-ml/azure.ai.ml.entities.networkacls?view=azure-python) to define which IP addresses are allowed inbound access:
300306
301307
```python
302-
Workspace(
303-
public_network_access = "Enabled",
304-
network_rule_set = NetworkRuleSet(default_action = "Allow", bypass = "AzureServices", resource_access_rules = None, ip_rules = yourIPAddress,)
308+
class Workspace(Resource):
309+
"""Azure ML workspace.
310+
:param public_network_access: Whether to allow public endpoint connectivity
311+
when a workspace is private link enabled.
312+
:type public_network_access: str
313+
:param network_acls: The network access control list (ACL) settings of the workspace.
314+
:type network_acls: ~azure.ai.ml.entities.NetworkAcls
315+
316+
def __init__(
317+
self,
318+
*,
319+
public_network_access: Optional[str] = None,
320+
network_acls: Optional[NetworkAcls] = None,
305321
```
306322
307323
### Restrictions for IP network rules

0 commit comments

Comments
 (0)