-The base image is specified as a parameter in environment, and `docker.io/tensorflow/serving:latest` is used in this example. As you inspect the container, you can find that this server uses `ENTRYPOINT` to start an entry point script, which takes the environment variables such as `MODEL_BASE_PATH` and `MODEL_NAME`, and exposed ports like `8501`. These details are all specific information for this chosen server. You can use this understanding of the server, to determine how to define the deployment. For example, if you set environment variables for `MODEL_BASE_PATH` and `MODEL_NAME` in the deployment definition, the server (in this case, TF Serving) will take the values to initiate the server. Likewise, if you set the port for the routes to be `8501` in the deployment definition, the user request to such routes will be correctly routed to the TF Serving server.
0 commit comments