Skip to content

Commit 1e15d3d

Browse files
committed
added AI assisted tag
1 parent 68b0592 commit 1e15d3d

File tree

1 file changed

+4
-0
lines changed

1 file changed

+4
-0
lines changed

articles/machine-learning/how-to-use-batch-model-deployments.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -10,6 +10,7 @@ author: s-polly
1010
ms.author: scottpolly
1111
ms.reviewer: cacrest
1212
ms.date: 08/04/2025
13+
ai-usage: ai-assisted
1314
ms.custom:
1415
- how-to
1516
- devplatv2
@@ -621,6 +622,9 @@ Once you've identified the data store you want to use, configure the output as f
621622
[!notebook-python[] (~/azureml-examples-main/sdk/python/endpoints/batch/deploy-models/mnist-classifier/mnist-batch.ipynb?name=start_batch_scoring_job_set_output)]
622623

623624
__Example `params_override` usage__:
625+
626+
The `params_override` parameter values correspond to deployment configuration settings that can be temporarily modified for individual jobs. These parameters come from your deployment's YAML schema settings, datastore configurations (like output paths), and runtime variables you define in your code.
627+
624628
```python
625629
# Override multiple settings for this specific job
626630
job = ml_client.batch_endpoints.invoke(

0 commit comments

Comments
 (0)