Skip to content

Commit 203c5e9

Browse files
committed
Adjust language and data asset names
1 parent 4e204d9 commit 203c5e9

File tree

1 file changed

+41
-41
lines changed

1 file changed

+41
-41
lines changed

articles/machine-learning/how-to-access-data-batch-endpoints-jobs.md

Lines changed: 41 additions & 41 deletions
Original file line numberDiff line numberDiff line change
@@ -115,7 +115,7 @@ from azure.identity import DefaultAzureCredential
115115
job = ml_client.batch_endpoints.invoke(
116116
endpoint_name=endpoint.name,
117117
inputs={
118-
"heart_data_asset_unlabeled": Input(path="https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data")
118+
"heart_data": Input(path="https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data")
119119
}
120120
)
121121
```
@@ -130,7 +130,7 @@ job = ml_client.batch_endpoints.invoke(
130130
{
131131
"properties": {
132132
"InputData": {
133-
"heart_data_asset_unlabeled": {
133+
"heart_data": {
134134
"JobInputType" : "UriFolder",
135135
"Uri": "https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data"
136136
}
@@ -179,7 +179,7 @@ job = ml_client.batch_endpoints.invoke(
179179
endpoint_name=endpoint.name,
180180
deployment_name=deployment.name,
181181
inputs={
182-
"heart_data_asset_unlabeled": Input(path="https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data")
182+
"heart_data": Input(path="https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data")
183183
}
184184
)
185185
```
@@ -192,7 +192,7 @@ job = ml_client.batch_endpoints.invoke(
192192
{
193193
"properties": {
194194
"InputData": {
195-
"heart_data_asset_unlabeled": {
195+
"heart_data": {
196196
"JobInputType" : "UriFolder",
197197
"Uri": "https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data"
198198
}
@@ -249,7 +249,7 @@ job = ml_client.batch_endpoints.invoke(
249249
endpoint_name=endpoint.name,
250250
experiment_name="my-batch-job-experiment",
251251
inputs={
252-
"heart_data_asset_unlabeled": Input(path="https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data"),
252+
"heart_data": Input(path="https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data"),
253253
}
254254
)
255255
```
@@ -262,7 +262,7 @@ job = ml_client.batch_endpoints.invoke(
262262
{
263263
"properties": {
264264
"InputData": {
265-
"heart_data_asset_unlabeled": {
265+
"heart_data": {
266266
"JobInputType" : "UriFolder",
267267
"Uri": "https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data"
268268
}
@@ -319,15 +319,15 @@ Data inputs refer to inputs that point to a location where data is placed. Becau
319319
Batch endpoints can read files that are located in the following types of storage:
320320

321321
- [Machine Learning data assets](#use-input-data-from-a-data-asset), including the folder (`uri_folder`) and file (`uri_file`) types.
322-
- [Machine Learning data stores](#use-input-data-from-a-data-stores), including Azure Blob Storage, Azure Data Lake Storage Gen1, and Azure Data Lake Storage Gen2.
322+
- [Machine Learning data stores](#use-input-data-from-a-data-store), including Azure Blob Storage, Azure Data Lake Storage Gen1, and Azure Data Lake Storage Gen2.
323323
- [Azure Storage accounts](#use-input-data-from-a-storage-account), including Blob Storage, Data Lake Storage Gen1, and Data Lake Storage Gen2.
324324
- Local data folders and files, when you use the Machine Learning CLI or the Machine Learning SDK for Python to invoke endpoints. But the local data gets uploaded to the default data store of your Machine Learning workspace.
325325

326326
> [!IMPORTANT]
327-
> **Deprecation notice**: Data assets of type `FileDataset` (V1) are deprecated and will be retired in the future. Existing batch endpoints that rely on this functionality will continue to work. But there's no support for V1 datasets in batch endpoints that are created with versions of:
327+
> **Deprecation notice**: Data assets of type `FileDataset` (V1) are deprecated and will be retired in the future. Existing batch endpoints that rely on this functionality will continue to work. But there's no support for V1 datasets in batch endpoints that are created with:
328328
>
329-
> - The Machine Learning CLI v2 that are generally available (2.4.0 and newer).
330-
> - The REST API that are generally available (2022-05-01 and newer).
329+
> - Versions of the Machine Learning CLI v2 that are generally available (2.4.0 and newer).
330+
> - Versions of the REST API that are generally available (2022-05-01 and newer).
331331
332332
### Explore literal inputs
333333

@@ -362,20 +362,20 @@ Machine Learning data assets (formerly known as datasets) are supported as input
362362

363363
# [Azure CLI](#tab/cli)
364364

365-
1. Create a data asset definition in a YAML file named heart-data-asset-unlabeled.yml:
365+
1. Create a data asset definition in a YAML file named heart-data.yml:
366366

367-
```yaml
367+
```yml
368368
$schema: https://azuremlschemas.azureedge.net/latest/data.schema.json
369-
name: heart-data-asset-unlabeled
369+
name: heart-data
370370
description: An unlabeled data asset for heart classification.
371371
type: uri_folder
372372
path: data
373373
```
374-
375-
1. Create the data asset:
374+
375+
1. Create the data asset:
376376
377377
```bash
378-
az ml data create -f heart-data-asset-unlabeled.yml
378+
az ml data create -f heart-data.yml
379379
```
380380

381381
# [Python](#tab/sdk)
@@ -389,9 +389,9 @@ Machine Learning data assets (formerly known as datasets) are supported as input
389389
from azure.ai.ml.entities import Data
390390
391391
data_path = "heart-classifier-mlflow/data"
392-
data_asset_name = "heart-data-asset-unlabeled"
392+
data_asset_name = "heart-data"
393393
394-
heart_data_asset_unlabeled = Data(
394+
heart_data_object = Data(
395395
path=data_path,
396396
type=AssetTypes.URI_FOLDER,
397397
description="An unlabeled data asset for heart classification",
@@ -402,13 +402,13 @@ Machine Learning data assets (formerly known as datasets) are supported as input
402402
1. Create the data asset:
403403

404404
```python
405-
ml_client.data.create_or_update(heart_data_asset_unlabeled)
405+
ml_client.data.create_or_update(heart_data_object)
406406
```
407407

408408
To retrieve the newly created data asset, use the following command:
409409

410410
```python
411-
heart_data_asset_unlabeled = ml_client.data.get(name=data_asset_name, label="latest")
411+
heart_data_asset = ml_client.data.get(name=data_asset_name, label="latest")
412412
```
413413

414414
# [REST](#tab/rest)
@@ -422,13 +422,13 @@ Machine Learning data assets (formerly known as datasets) are supported as input
422422
# [Azure CLI](#tab/cli)
423423

424424
```azurecli
425-
DATA_ASSET_ID=$(az ml data show -n heart-data-asset-unlabeled --label latest | jq -r .id)
425+
DATA_ASSET_ID=$(az ml data show -n heart-data --label latest | jq -r .id)
426426
```
427427

428428
# [Python](#tab/sdk)
429429

430430
```python
431-
input = Input(path=heart_data_asset_unlabeled.id)
431+
input = Input(path=heart_data_asset.id)
432432
```
433433

434434
# [REST](#tab/rest)
@@ -453,7 +453,7 @@ Machine Learning data assets (formerly known as datasets) are supported as input
453453

454454
```azurecli
455455
az ml batch-endpoint invoke --name $ENDPOINT_NAME \
456-
--set inputs.heart_data_asset_unlabeled.type="uri_folder" inputs.heart_data_asset_unlabeled.path=$DATA_ASSET_ID
456+
--set inputs.heart_data.type="uri_folder" inputs.heart_data.path=$DATA_ASSET_ID
457457
```
458458

459459
For an endpoint that serves a model deployment, you can use the `--input` argument to specify the data input, because a model deployment always requires only one data input.
@@ -466,9 +466,9 @@ Machine Learning data assets (formerly known as datasets) are supported as input
466466

467467
```yml
468468
inputs:
469-
heart_data_asset_unlabeled:
469+
heart_data:
470470
type: uri_folder
471-
path: /subscriptions/<subscription-ID>/resourceGroups/<resource-group-name>/providers/Microsoft.MachineLearningServices/workspaces/<workspace-name>/data/heart-data-asset-unlabeled/versions/1
471+
path: /subscriptions/<subscription-ID>/resourceGroups/<resource-group-name>/providers/Microsoft.MachineLearningServices/workspaces/<workspace-name>/data/heart-data/versions/1
472472
```
473473

474474
Then you can run the following command, which uses the `--file` argument to specify the inputs:
@@ -485,7 +485,7 @@ Machine Learning data assets (formerly known as datasets) are supported as input
485485
job = ml_client.batch_endpoints.invoke(
486486
endpoint_name=endpoint.name,
487487
inputs={
488-
"heart_data_asset_unlabeled": input
488+
"heart_data": input
489489
}
490490
)
491491
```
@@ -510,7 +510,7 @@ Machine Learning data assets (formerly known as datasets) are supported as input
510510
{
511511
"properties": {
512512
"InputData": {
513-
"heart_data_asset_unlabeled": {
513+
"heart_data": {
514514
"JobInputType" : "UriFolder",
515515
"Uri": "<data-asset-ID>"
516516
}
@@ -578,7 +578,7 @@ This example uses the default data store, but you can use a different data store
578578
{
579579
"properties": {
580580
"InputData": {
581-
"heart_data_asset_unlabeled": {
581+
"heart_data": {
582582
"JobInputType" : "UriFolder",
583583
"Uri": "/subscriptions/<subscription-ID>/resourceGroups/<resource-group-name>/providers/Microsoft.MachineLearningServices/workspaces/<workspace-name>/datastores/workspaceblobstore/paths/<data-path>"
584584
}
@@ -602,7 +602,7 @@ This example uses the default data store, but you can use a different data store
602602

603603
```azurecli
604604
az ml batch-endpoint invoke --name $ENDPOINT_NAME \
605-
--set inputs.heart_data_asset_unlabeled.type="uri_folder" inputs.heart_data_asset_unlabeled.path=$INPUT_PATH
605+
--set inputs.heart_data.type="uri_folder" inputs.heart_data.path=$INPUT_PATH
606606
```
607607

608608
For an endpoint that serves a model deployment, you can use the `--input` argument to specify the data input, because a model deployment always requires only one data input.
@@ -615,7 +615,7 @@ This example uses the default data store, but you can use a different data store
615615

616616
```yml
617617
inputs:
618-
heart_data_asset_unlabeled:
618+
heart_data:
619619
type: uri_folder
620620
path: azureml://datastores/workspaceblobstore/paths/<data-path>
621621
```
@@ -636,7 +636,7 @@ This example uses the default data store, but you can use a different data store
636636
job = ml_client.batch_endpoints.invoke(
637637
endpoint_name=endpoint.name,
638638
inputs={
639-
"heart_data_asset_unlabeled": input
639+
"heart_data": input
640640
}
641641
)
642642
```
@@ -723,7 +723,7 @@ For more information about extra required configurations for reading data from s
723723
{
724724
"properties": {
725725
"InputData": {
726-
"heart_data_asset_unlabeled": {
726+
"heart_data": {
727727
"JobInputType" : "UriFolder",
728728
"Uri": "https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data"
729729
}
@@ -738,7 +738,7 @@ For more information about extra required configurations for reading data from s
738738
{
739739
"properties": {
740740
"InputData": {
741-
"heart_data_asset_unlabeled": {
741+
"heart_data": {
742742
"JobInputType" : "UriFile",
743743
"Uri": "https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data/heart.csv"
744744
}
@@ -757,7 +757,7 @@ For more information about extra required configurations for reading data from s
757757

758758
```azurecli
759759
az ml batch-endpoint invoke --name $ENDPOINT_NAME \
760-
--set inputs.heart_data_asset_unlabeled.type="uri_folder" inputs.heart_data_asset_unlabeled.path=$INPUT_DATA
760+
--set inputs.heart_data.type="uri_folder" inputs.heart_data.path=$INPUT_DATA
761761
```
762762

763763
For an endpoint that serves a model deployment, you can use the `--input` argument to specify the data input, because a model deployment always requires only one data input.
@@ -770,7 +770,7 @@ For more information about extra required configurations for reading data from s
770770

771771
```yml
772772
inputs:
773-
heart_data_asset_unlabeled:
773+
heart_data:
774774
type: uri_folder
775775
path: https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data
776776
```
@@ -791,7 +791,7 @@ For more information about extra required configurations for reading data from s
791791
job = ml_client.batch_endpoints.invoke(
792792
endpoint_name=endpoint.name,
793793
inputs={
794-
"heart_data_asset_unlabeled": input
794+
"heart_data": input
795795
}
796796
)
797797
```
@@ -903,7 +903,7 @@ job = ml_client.batch_endpoints.invoke(
903903

904904
## Create jobs with data outputs
905905

906-
The following example shows how to change the location of an output named `score`. For completeness, these examples also configure an input named `heart_data_asset_unlabeled`.
906+
The following example shows how to change the location of an output named `score`. For completeness, the example also configures an input named `heart_data`.
907907

908908
This example uses the default data store, **workspaceblobstore**. But you can use any other data store in your workspace as long as it's a Blob Storage account. If you want to use a different data store, replace `workspaceblobstore` in the following steps with the name of your preferred data store.
909909

@@ -945,7 +945,7 @@ This example uses the default data store, **workspaceblobstore**. But you can us
945945

946946
```yml
947947
inputs:
948-
heart_data_asset_unlabeled:
948+
heart_data:
949949
type: uri_folder
950950
path: https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data
951951
outputs:
@@ -967,7 +967,7 @@ This example uses the default data store, **workspaceblobstore**. But you can us
967967

968968
```python
969969
input = Input(
970-
type=AssetTypes.URI_FILE,
970+
type=AssetTypes.URI_FOLDER,
971971
path="https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data"
972972
)
973973
```
@@ -980,7 +980,7 @@ This example uses the default data store, **workspaceblobstore**. But you can us
980980
{
981981
"properties": {
982982
"InputData": {
983-
"heart_data_asset_unlabeled": {
983+
"heart_data": {
984984
"JobInputType" : "UriFolder",
985985
"Uri": "https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data"
986986
}
@@ -1017,7 +1017,7 @@ This example uses the default data store, **workspaceblobstore**. But you can us
10171017
```python
10181018
job = ml_client.batch_endpoints.invoke(
10191019
endpoint_name=endpoint.name,
1020-
inputs={ "heart_data_asset_unlabeled": input },
1020+
inputs={ "heart_data": input },
10211021
outputs={ "score": output }
10221022
)
10231023
```

0 commit comments

Comments
 (0)